
L10
4800

10.11.2016

abhi shelat

Scheduling

L10
CS4800 F16

abhi shelat

3.5cs4102

start end

4.75

4 5.25

1 4

2 3.25

3 4

4.5 6

5 6.5

7 8

sy3333

en1612

ma1231

cs4800

cs6051

sy3100

cs1000

problem statement

find largest subset of activities C={ai} such that

(sorted)

(compatible)

find largest subset of activities C={ai} such that

(s0rted)

(compatible)

problem statement

problem statement
(sorted)

dynamic programming

dynamic programming

dynamic programming

in:
out:

max

greedy solution:

definition:

greedy solution:

goal:

greedy solution:

claim: the first action to finish in e[i,j] is
always part of some

proof:

claim: the first action to finish in e[i,j] is
always part of some

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

running time
algorithm: find first event to finish. add to solution.

remove conflicting events.
continue.

(sorted)

caching
L10
CS4800

cache hit
Cache

load r2, addr a

main memory

CPU

store r4, addr b

question:

problem statement
input:

output:

cache is

problem statement
input:

output:

cache is

K, the size of the cache
d1, d2, ..., dm memory accesses
schedule for that cache that minimizes # of cache
misses while satisfying requests

fully associative, line size is 1

contrast with reality

Belady evict rule

example
a

b

c

cache

a b c d a d e a d b a e c e a

example
a

b

c

cache a

b

d

a b c d a d e a d b a e c e a

example
a

b

c

cache a

b

d

a

e

d

a b c d a d e a d b a e c e a

example
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e a

example
cache a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

a

b

c

a

b

d

a

e

d

Surprising theorem

schedule
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

Exchange lemma

Let S be a reduced schedule that agrees with Sff on the first j
items. There exists a reduced schedule S’ that agrees with Sff
on the first j+1 items and has the same or fewer #misses as S.

Exchange Lemma:

S⇤ S↵

Proof of Lemma
Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Proof of lemma
e

S
e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

Proof of lemma
case 3

e
S

e
Sff

f f

Timeline

S’

S

Sff

Proof of lemma
dS eS’f d

Let access t

Proof of lemma
what if t=e ?

dS eS’f d

Proof of lemma
what if t=f ?

dS eS’f d

Proof of lemma
what if t is neither e nor f ?

dS eS’f d

What have we shown

S’

S

Sff

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

S⇤ S↵

Let S be a reduced sched that agrees with Sff on the first j items.
There exists a reduced sched S’ that agrees with Sff on the first j+1
items and has the same or fewer #misses as S.

Huffman  
L10
CS4800

image: wikimedia

Alice Bob

mm

Alice Bob

mm

m

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
began on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just
the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events.

 m

MOSCOW — President Vladimir V. Putin’s typically
theatrical order to withdraw the bulk of Russian forces
from Syria, a process that the Defense Ministry said it
began on Tuesday, seemingly caught Washington,
Damascus and everybody in between off guard — just
the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises,
reinforcing Russia’s newfound image as a sovereign,
global heavyweight and keeping him at the center of
world events.

e: 235
i: 200
o: 170
u: 87
p: 78
g: 47
b: 40
f: 24

881

e: 235 000
i: 200 001
o: 170 010
u: 87 011
p: 78 100
g: 47 101
b: 40 110
f: 24 111

881

3
3
3
3
3
3
3
3

B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding

881

e: 235 000
i: 200 001
o: 170 010
u: 87 011
p: 78 100
g: 47 101
b: 40 110
f: 24 111

3
3
3
3
3
3
3
3

character frequency

0

75

150

225

300

e i a o r n t s l c u p m d h y g b f v k w z x q j

e: 234803
i: 200613
a: 198938
o: 170392
r: 160491
n: 158281
t: 152570
s: 139238
l: 130172
c: 103307
u: 87211
p: 78077
m: 70504
d: 68007
h: 64165
y: 51527
g: 47011
b: 40351
f: 24110
v: 20103
k: 16012
w: 13825
z: 8439
x: 6926
q: 3729
j: 3075

morse code

image http://en.wikipedia.org/wiki/Morse_code

morse code

def: prefix-free code

def: prefix-free code

def: prefix code

e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

decoding a prefix code
e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

111111010111110

code to binary tree
e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

111111010111110

prefix code

binary tree

ie o u p

use tree to encode
e: 235 00
i: 200 01
o: 170 10
u: 87 110
p: 78 111

2
2
2
3
3

goal
given the

{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost

(all frequencies are > 0)

property

x

y

a b

lemma:optimal tree must be full.

divide & conquer?

counter-example

e: 32
i: 25
o: 20
u: 18
p: 5

2440477887170200235
e i o u p g b f

7887170200235
e i o u p g

2440
b f

64

7887170200235
e i o u p g

2440
b f

64

111

7887170200235
e i o u p

47
g

2440
b f

64

1117887170200235
e i o u p

47
g

2440
b f

64

235
e

200
i

170
o

87
u

78
p

111

g

b f

235
e

200
i

170
o

87
u

78
p

111

g

b f

165

e i o

g

b f

u p

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

470
400
340
348
312
188
200
120
2378

objective

exchange argument
lemma:

x

y

a b

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

b

x y

T ��

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

exchange argument

T

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

y

x b

exchange argument

T T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

T

a

y

x b

T �

B(T �) =
�

c

fc⇤
�
c + fx⇤�

x + fa⇤�
aB(T) =

�

c

fc⇤c + fx⇤x + fa⇤a

B(T)�B(T �) ⇥ 0

fx � fa
x

y

a b

T

a

y

x b

T �

exchange argument

a

y

x b

a

b

x y

B(T �)�B(T ��) ⇥ 0

T � T ��

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T)�B(T �) ⇥ 0

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T �)�B(T ��) ⇥ 0

T ��
is also optimal

x

y

a b

a

b

x y

exchange argument

T T �

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

fc

optimal sub-structure
fx fy

fzfc�

optimal sub-structure
fx fy

problem of size n

problem of size n-1

fc

optimal sub-structure
fx fy

problem of size n

fzfc� problem of size n-1

fc

Lemma:

optimal sub-structure
fx fy

problem of size n

fzfc� problem of size n-1

fc

Lemma:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

z

T �

z

x y

z

B(T �) B(T)

T � T

x y

z

B(T �) B(T)

T � T

B(T �) = B(T)� fx � fy

Suppose is not optimal T

yx

U
B(U) < B(T)

Suppose is not optimal T

Suppose is not optimal T

B(U) < B(T)

yx

U

z

U �

Suppose is not optimal

B(U) < B(T)

B(U �) = B(U)� fx � fy
yx

U

z

U �

But this implies that B(T’) was not optimal.

< B(t) - fx - fy

T

therefore

z

T �

x y

summary of argument

