

10.11.2016

abhi shelat

Scheduling

CS4800 F16
abhi shelat

start end

sy 3333	2	3.25
en1612	1	4
ma1231	3	4
cs4102	3.5	4.75
cs 4800	4	5.25
cs6051	4.5	6
sy 3100	5	6.5
$\operatorname{cs} 1000$	7	8

$$
\begin{aligned}
& \text { problem statement } \\
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sorted) } s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $\mathrm{C}=\{\mathrm{ai}\}$ such that (compatible)

$$
\begin{aligned}
& \text { problem statement } \\
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sOrted) } \quad s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $C=\{a i\}$ such that (compatible)

$$
\begin{aligned}
& a_{i}, a_{j} \in C, i<j \\
& f_{i} \leq s_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { problem statement } \\
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sorted) } s_{i}<f_{i}
\end{aligned}
$$

dynamic programming

 $\stackrel{s_{2} f_{1} f_{2}}{\leftrightarrows}$

goal: $\operatorname{SOLTN}_{0,2 n}$

greedy solution:

claim: the first action to finish in e[i,j] is always part of some $\operatorname{soltr}_{i, j}$

proof:

greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

greedy solution:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events. continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events. continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events. continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events. continue.

running time

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

$$
\left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sorted) } \quad s_{i}<f_{i}
$$

caching

$$
\underset{\text { CS4800 }}{L 10}
$$

Cache

$$
\begin{aligned}
& \text { CPU } \\
& \text { load r2, addr a } \\
& \text { store r4, addr b }
\end{aligned}
$$

main memory

problem statement

input:
output:

cache is

problem statement

input: K, the size of the cache $d_{1}, d_{2}, \ldots, d_{m}$ memory accesses
output: schedule for that cache that minimizes \# of cache misses while satisfying requests
cache is fully associative, line size is 1

contrast with reality

Belady evict rule

example

example

example

example

example

Surprising theorem

schedule

Schedule for access pattern $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}$:

Reduced schedule:

Exchange lemma

Exchange Lemma:

Let S be a reduced schedule that agrees with $S_{f f}$ on the first j items. There exists a reduced schedule S' that agrees with Sff on the first j+1 items and has the same or fewer \#misses as S .

S^{*}

Proof of Lemma

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with $\mathrm{Sff}_{\text {fi }}$ on the first j+1 items and has the same or fewer \#misses as S .

Proof of lemma

State of the cache after J operations under the two schedules.

easy case 1
easy case 2

Proof of lemma

Timeline

\square
\square

Proof of lemma

Let access t

Proof of lemma

S

 d f
what if $t=e$?

Proof of lemma

S

what if $t=f$?

Proof of lemma

what if t is neither e nor f ?

What have we shown

Let S be a reduced sched that agrees with $S_{f f}$ on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with Sff on $^{\text {on }}$ the first $j+1$ items and has the same or fewer \#misses as S.

Let S be a reduced sched that agrees with Sff on the first j items. There exists a reduced sched \mathbf{S}^{\prime} that agrees with S_{ff} on the first j+1 items and has the same or fewer \#misses as S.

Huffman

$$
\frac{10}{C S} \int_{000}
$$

MOSCOW - President Vladimir V. Putin’s typically theatrical order to withdraw the bulk of Russian forces from Syria, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard - just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of

MOSCOW - President Vladimir V. Putin’s typically theatrical order to withdraw the bulk of Russian forces from Syria, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard - just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of

$$
\begin{array}{cll}
c \in C & f_{c} & T \\
\mathrm{e}: & 235 & \\
\mathrm{i}: & 200 \\
\mathrm{o}: & 170 \\
\mathrm{u}: & 87 \\
\mathrm{p}: & 78 \\
\mathrm{~g}: & 47 \\
\mathrm{~b}: & 40 \\
\mathrm{f}: & 24
\end{array}
$$

881

$c \in C \quad f_{c}$	T	ℓ_{c}
$\mathrm{e}: 235$	000	3
$\mathrm{i}: 200$	001	3
$\mathrm{o}:$	170	010
$\mathrm{u}: 87$	011	3
$\mathrm{p}: 78$	100	3
$\mathrm{~g}:$	47	101
$\mathrm{~b}: 40$	110	3
$\mathrm{f}: 24$	111	3

def: cost of an encoding

$$
B\left(T,\left\{f_{c}\right\}\right)=\sum_{c \in C} f_{c} \cdot \ell_{c}
$$

$c \in C$	f_{c}	T
$\mathrm{e}: 235$	000	ℓ_{c}
$\mathrm{i}: 200$	001	3
$\mathrm{o}: 170$	010	3
$\mathrm{u}: 87$	011	3
$\mathrm{p}: 78$	100	3
$\mathrm{~g}:$	47	101
$\mathrm{~b}: 40$	110	3
$\mathrm{f}: 24$	111	3
	881	

character frequency

morse code

International Morse Code

-1 dash = 3 dots.
The space between parts of the same letter $=1$ dot
The space between letters $=3$ dots.
The space between words $=7$ dots.

International Morse Code

-1 dash = 3 dots.
The space between parts of the same letter $=1$ dot
The space between letters $=3$ dots.
The space between words $=7$ dots.

def: prefix-free code
def: prefix-free code
$\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x)$ not a prefix of $\operatorname{CODE}(y)$

def: prefix code

$\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x)$ not a prefix of $\operatorname{CODE}(y)$

$\mathrm{e}:$	235	0
$\mathrm{i}:$	200	10
$\mathrm{o}:$	170	110
$\mathrm{u}:$	87	1110
$\mathrm{p}:$	78	11110
$\mathrm{~g}:$	47	111110
$\mathrm{~b}:$	40	1111110
$\mathrm{f}:$	24	11111110

decoding a prefix code

| $\mathrm{e}: 235$ | 0 | |
| :--- | :--- | :--- | :--- |
| $\mathrm{i}: 200$ | 10 | |
| $\mathrm{o}: 170$ | 110 | |
| $\mathrm{u}: 87$ | 1110 | |
| $\mathrm{p}: 78$ | 11110 | |
| $\mathrm{~g}: 47$ | 111110 | |
| $\mathrm{~b}: 40$ | 1111110 | |
| $\mathrm{f}: 24$ | 11111110 | |

code to binary tree

prefix code

binary tree

use tree to encode

$c \in C$	f_{c}	T	ℓ_{c}
$\mathrm{e}:$	235	00	2
$\mathrm{i}:$	200	01	2
$\mathrm{o}:$	170	10	2
$\mathrm{u}:$	87	110	3
$\mathrm{p}: 78$	111	3	

goal

given the
(all frequencies are >0)
given the character frequencies

$$
\left\{f_{c}\right\}_{c \in C}
$$

produce a prefix code T with smallest cost

$$
\min _{T} B\left(T,\left\{f_{c}\right\}\right)
$$

divide \& conquer?

counter-example

$$
\begin{array}{ll}
\mathrm{e}: & 32 \\
\mathrm{i}: & 25 \\
\mathrm{o}: & 20 \\
\mathrm{u}: & 18 \\
\mathrm{p}: & 5
\end{array}
$$

objective

exchange argument

lemma:

exchange argument

 optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

exchange argument

 optmal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

 Optmal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.
lemma ${ }^{\mathrm{Leet}} x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optmal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

first step
lemma ${ }^{\text {Leet } x, y \in C \text { be characters with smallest frequencies } f_{x}, f_{y} \text {. There exists an }}$ optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

$$
\begin{gathered}
B(T)=\sum_{c} f_{c} \ell_{c}+f_{x} \ell_{x}+f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=\sum_{c} f_{c} \ell_{c}^{\prime}+f_{x} x_{x}^{\prime}+f_{a} \ell_{a}^{\prime} \\
B(T)-B\left(T^{\prime}\right) \geq 0
\end{gathered}
$$

exchange argument

$$
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0
$$

$$
B(T)-B\left(T^{\prime}\right) \geq 0 \quad B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0
$$

$T_{\text {is also optimal }}^{1 \prime}$

exchange argument

lemma ${ }^{\text {Let } x, y \in C}$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

optimal sub-structure

optimal sub-structure

optimal sub-structure

Lemma:

optimal sub-structure

problem of size n

Lemma:
The optimal solution for T consists of computing an optimal solution for T^{\prime} and replacing the left z with a node having children x, y.

$B\left(T^{\prime}\right)$

$B(T)$

$B(T)$

$$
B\left(T^{\prime}\right)=B(T)-f_{x}-f_{y}
$$
 \section*{Suppose T is not optimal}
 \section*{Suppose T is not optimal}

Suppose T is not optimal

$$
B(U)<B(T)
$$

Suppose T is not optimal

Suppose T is not optimal

$$
\begin{aligned}
B(U) & <B(T) \\
B\left(U^{\prime}\right) & =B(U)-f_{x}-f_{y} \\
& <\mathrm{B}(\mathrm{t})-\mathrm{fx}-\mathrm{fy}
\end{aligned}
$$

But this implies that $B\left(T^{\prime}\right)$ was not o

summary of argument

