

10.11.2016

abhi shelat

Scheduling

L10 CS4800 F16

abhi shelat

	start	end
sy3333	2	3.25
en1612	1	4
ma1231	3	4
cs4102	3.5	4.75
cs4800	4	5.25
cs6051	4.5	6
sy3100	5	6.5
cs1000	7	8

problem statement

$$(a_1, \dots, a_n)$$

 (s_1, s_2, \dots, s_n)
 (f_1, f_2, \dots, f_n) (sorted) $s_i < f_i$

find largest subset of activities $C = \{a_i\}$ such that (compatible)

problem statement

$$(a_1, \dots, a_n)$$

 (s_1, s_2, \dots, s_n)
 (f_1, f_2, \dots, f_n) (sorted) $s_i < f_i$

find largest subset of activities $C = \{a_i\}$ such that (compatible)

$$a_i, a_j \in C, i < j$$
$$f_i \le s_j$$

 $SOLTN_{i,j}$

goal: $SOLTN_{0,2n}$

claim: the first action to finish in e[i,j] is always part of some $SOLTN_{i,j}$ claim: the first action to finish in e[i,j] is always part of some $SOLTN_{i,j}$

proof:

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

running time

algorithm: find first event to finish. add to solution. remove conflicting events. continue.

$$(f_1, f_2, \ldots, f_n)$$
 (sorted) $s_i < f_i$

caching

L10 CS4800

cache hit

CPU

load r2, addr a store r4, addr b

question:

problem statement

input:

output:

cache is

problem statement

- input: K, the size of the cache d₁, d₂, ..., d_m memory accesses
- output: schedule for that cache that minimizes # of cache misses while satisfying requests

cache is fully associative, line size is 1

contrast with reality

Belady evict rule

Surprising theorem

schedule

Schedule for access pattern $d_1, d_2, ..., d_n$:

Reduced schedule:

Exchange lemma
Exchange Lemma:

Let S be a reduced schedule that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced schedule S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S.

S^*

Let S be a reduced sched that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced sched S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S.

State of the cache after J operations under the two schedules.

easy case 1

easy case 2

Timeline

Let access t

what if t=e?

what if t=f?

what if t is neither e nor f?

d

S

What have we shown

Let S be a reduced sched that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced sched S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S. Let S be a reduced sched that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced sched S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S.

Huffman

L10 CS4800

MOSCOW — President Vladimir V. Putin's typically theatrical order to withdraw the bulk of Russian forces from Syria, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard — just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of

MOSCOW — President Vladimir V. Putin's typically theatrical order to withdraw the bulk of Russian forces from Syria, a process that the Defense Ministry said it began on Tuesday, seemingly caught Washington, Damascus and everybody in between off guard — just the way the Russian leader likes it.

By all accounts, Mr. Putin delights at creating surprises, reinforcing Russia's newfound image as a sovereign, global heavyweight and keeping him at the center of

- $\begin{array}{ccc} c \in C & f_c & T \\ e \colon 235 \\ \vdots & 200 \end{array}$
 - i: 200
 - o: 170
 - u: 87 p: 78
 - g: 47
 - b: 40
 - f: 24

$c \in$	$C f_c$	T	ℓ_c
e:	235	000	3
i:	200	001	3
0:	170	010	3
u:	87	011	3
р:	78	100	3
g:	47	101	3
b:	40	110	3
f :	24	111	3
	881		

def: cost of an encoding

 $B(T, \{f_c\}) = \sum f_c \cdot \ell_c$ $c \in C$

$c \in$	$C = f_c$	T	l
e:	235	000	3
i:	200	001	3
0:	170	010	3
u:	87	011	3
p :	78	100	3
g:	47	101	3
b:	40	110	3
f:	24	111	3

character frequency

morse code

International Morse Code

- 1 dash = 3 dots.
- The space between parts of the same letter = 1 dot.
- The space between letters = 3 dots.
- The space between words = 7 dots.

image http://en.wikipedia.org/wiki/Morse_code

morse code

International Morse Code

- 1 dash = 3 dots.
- The space between parts of the same letter = 1 dot.
- The space between letters = 3 dots.
- The space between words = 7 dots.

def: prefix-free code

def: prefix-free code

 $\forall x, y \in C, x \neq y \implies \text{CODE}(x) \text{ not a prefix of } \text{CODE}(y)$

def: prefix code

 $\forall x, y \in C, x \neq y \implies \text{CODE}(x) \text{ not a prefix of } \text{CODE}(y)$

e:	235	0
i:	200	10
0:	170	110
U:	87	1110
p :	78	11110
g:	47	111110
b:	40	1111110
f:	24	1111111

decoding a prefix code

e:	235	Θ
i:	200	10
0:	170	110
u:	87	1110
р:	78	11110
g:	47	111110
b:	40	111111
f:	24	111111

code to binary tree

- e: 235 i: 200 o: 170 u: 87 p: 78 g: 47 b: 40 f: 24
- 0 10 110 110 1110 11110 111110 111110 111110


```
111111010111110
```

prefix code

binary tree

use tree to encode

	$c \in$	$C f_c$	T	ℓ_c
	e:	235	ΘΘ	2
	i:	200	01	2
	0:	170	10	2
	u:	87	110	3
	p :	78	111	3
e i o u p				

given the

(all frequencies are > 0)

given the character frequencies $\{f_c\}_c \in C$

produce a prefix code T with smallest cost

$$\min_{T} B(T, \{f_c\})$$

property

lemma:optimal tree must be full.

divide & conquer?

counter-example

e: 32 i: 25 o: 20 u: 18 p: 5

lemma:

lemmaLet $x, y \in C$ be characters with smallest frequencies f_x, f_y . There exists an optimal prefix code T'' for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

proof:

 $B(T) = \sum_{c} f_{c}\ell_{c} + f_{x}\ell_{x} + f_{a}\ell_{a} \quad B(T') = \sum_{c} f_{c}\ell'_{c} + f_{x}\ell'_{x} + f_{a}\ell'_{a}$

 $B(T) - B(T') \ge 0$

 $B(T') - B(T'') \ge 0$

Lemma:

Lemma:

The optimal solution for T consists of computing an optimal solution for T'and replacing the left z with a node having children x, y.

 $B(T') = B(T) - f_x - f_y$

$$B(U) < B(T)$$

$$B(U') = B(U) - f_x - f_y$$

< B(t) - fx - fy

But this implies that B(T') was not o

therefore

summary of argument