
10.21.2016
abhi shelat
definition:tree
connected graph: for any pair $u, v \in V$, we have that there exits a path from u to v in G, a tree is
 connected graph that has No cycles
what we want:

(1) set of edges ACE that corrects all nodes in the graph
(2) minimize the cost of this set A
\uparrow
each edge has a cost

minimum spanning tree

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost min $\sum_{(u, v) \in T} w(u, v)$

facts

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost min $\sum_{(u, v) \in T} w(u, v)$

- how many edges does solution have? V-1 does solution have a cycle?
No cade!!

Greedy strategy

start with an empty set of edges A repeat for $v-1$ times:
add lightest edge that does not create a cycle

example

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

Kruskal

why does this work?
$1 \quad T \leftarrow \emptyset$
2 repeat $V-1$ times:
$3 \quad$ add to T the lightest edge $e \in E$ that does not create a cycle
definition: cut
A cut is a partition of the set V into 2 sets (S ,V-S).

example of a cut

definition: crossing a cut
An edge $e=(u, v)$ crosses a cot $(s, v-s)$ if $u \in S$ and $v \in V-S$.

definition: crossing a cut

an edge $\quad e=(u, v)$ crosses a graph cut (S,V-S) if

$$
u \in S \quad v \in V-S
$$

example of a crossing

definition: respect
A self A respects the cit $(S, V-S)$ if No edge $e \in A$ cross $(5, v-s)$.

Cut theorem
Let T be an MST for $(G, 0)$ and $L e t ~ A \subseteq T$. Let $(S, v-S)$ be some cut that A respects and Let e be the lightest edge that crosses $(S, v-S)$. $\Rightarrow A \cup\{e\}$ is a subset of some MST of G.

Cut theorem

Suppose the set of edges A is part of an m.s.t.
Let ($S, V-S$) be any cut that A respects.
Let edge \boldsymbol{e} be the min-weight edge across ($S, V-S$)
Then: $\mathcal{A} \cup\{e\}$ is part of an m.s.t.

example of theorem

v-S

$$
A=\{(i, g)(c, f)\}
$$

proof of cut theorem
Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of $G=$ (V, E). Let $(S, V-S)$ be any cut that respects A and let e be the edge with the minimum weight that crosses $(S, V-S)$. Then the set $A \cup\{e\}$ is part of a minimum spanning tree.
Proofs: By hypothesis $A \subseteq T$ where T is an $m s t$ of G,
If Au \{e\} ~ i s ~ a l r e a d y ~ $\subseteq T$, then the theorem follows.
If not, then we need to construct another T ' tree such -that Au\{e\} ~ $\subseteq T$ and T is also an MST.
How? ?
proof of cut the

Consider the tree
Let $e=(u, v)$ be the lightest edge that crosses $(S, V-S)$.
(1)e is not part of T, but since T is an MST, it connects all nodes in G. So follow the path from u to u and let $e^{\text {? }}$ be the first edge to cross $(S, V-S)$.why does e^{\prime} exist? b/ ce crosses (S,V-S) so vies and verve.
(1) $\left.w(e) \leqslant\left(c^{\prime}\right)=T v e\right\}-\left\{e^{\prime}\right\}$. It has $(V-1)$ edges.
© $A \cup\{e\} \leq T^{\prime}$
correctness

Kruskal-PSEUdocode (G)
-) $1 \quad A \leftarrow \emptyset$
repeat $V-1$ times
add to A the lightest edge $e \in E$ that does not create a cycle
Proof: By induction. A is pant of some MST T of G at line 1 . Spree A is pat of an MST after K iteration of the main loop. Show in the next iteration that A remains part of an MST. $\rightarrow e$ was the lightest edge that digit create arycle. $e=(u, v)$.

correctness

Kruskal-Pseudocode (G)
$1 \quad A \leftarrow \emptyset$
2 repeat $V-1$ times:
add to A the lightest edge $e \in E$ that does not create a cycle
s to be the
Proof: by induction. in step 1, A is part of some MST. Suppose that after k steps, A is part of some MST (line 2). In line 3 , we add an edge $e=(u, v)$.

$$
\begin{aligned}
& \text { set A) edges of A } \\
& \text { "concerted' to } \\
& u
\end{aligned}
$$

3 cases for edge e.
Case 1: $e=(u, v)$ and both u, v are in A.

3 cases for edge e.

Case 2: $e=(u, v)$ and only u is in A.

3 cases for edge e.

Case 3: $e=(u, v)$ and neither u nor v are in A.

analysis?

KRUSKAL-PSEUDOCODE (G)
$1 \quad A \leftarrow \emptyset$
2 repeat $V-1$ times:
$3 \quad$ add to A the lightest edge $e \in E$ that does not create a cycle
$\operatorname{General-MST-Strategy}(G=(V, E))$
$1 \quad A \leftarrow \emptyset$
2 repeat $V-1$ times:
$3 \quad$ Pick a cut $(S, V-S)$ that respects A,
$4 \begin{array}{ll}5 & \quad \text { Let } e \text { be min-weight edge over cut }(S, V-S) \\ A \leftarrow A \cup\{e\}\end{array}$
$5 \quad A \leftarrow A \cup\{e\}$

Prim's algorithm

$\operatorname{General-MST-Strategy}(G=(V, E))$
$A \leftarrow \emptyset$
repeat $V-1$ times:
Pick a cut $(S, V-S)$ that respects A
Let e be min-weight edge over cut $(S, V-S)$
$A \leftarrow A \cup\{e\}$
A is a subtree
edge e is lightest edge that grows the subtree
prim

prim

prim

prim

implementation
idea: At each step, we neal to identify the "lightest edge" which augments our tree -

- use priority queue
implementation
new data structure
Proority queve -
$-\operatorname{make}\left(q_{1} \ldots q_{n}\right) \&$ creaty a quere $w /$ there n elements
- extractmin - podies snallet elemat in quare
- decreakkey - reduces the key value for some item.

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value $<=$ to $k e y$ of children
insert (q)

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value <= to key of children
how to extractmin?

binary heap

full tree, key value <= to key of children how to extractmin?

binary heap

binary heap

full tree, key value <= to key of children
how to extractmin? $\rightarrow \theta(\log n)$ how to decreasekey?

binary heap

full tree, key value <= to key of children
how to extractmin? how to decreasekey? $O(\log n)$

implementation

use a priority queue to keep track of light edges
insert: \rightarrow
makequeue:

extractmin: \rightarrow
decreasekey: $\rightarrow O(\log n)$

Prim's algorithm

implementation

```
PRIM(G=(V,E))
    Q\leftarrow\emptyset \triangleright Q is a Priority Queue
    2 \text { Initialize each v} \ \ \text { with key } k _ { v } \leftarrow \infty , \pi _ { v } \leftarrow \text { NIL}
    3 Pick a starting node r and set }\mp@subsup{k}{r}{}\leftarrow
    4 \text { Insert all nodes into Q with key } k _ { v } \text { .}
    while }Q\not=
        do }u\leftarrow\mathrm{ EXTRACT-MIN (Q)
            for each v\in Adj(u)
            do if }v\inQ\mathrm{ and }w(u,v)<\mp@subsup{k}{v}{
            then }\mp@subsup{\pi}{v}{}\leftarrow
                DECREASE-KEY}(Q,v,w(u,v))\quad\triangleright Sets kv*w(u,v
```



```
PRIM(G=(V,E))
1 Q\leftarrow\emptyset}\trianglerightQ\mathrm{ is a Priority Queue
2 Initialize each v\inV with key }\mp@subsup{k}{v}{}\leftarrow\infty,\mp@subsup{\pi}{v}{}\leftarrow\mathrm{ NIL
3 Pick a starting node r and set }\mp@subsup{k}{r}{}\leftarrow
4 Insert all nodes into Q with key }\mp@subsup{k}{v}{}\mathrm{ .
while Q\not=\emptyset
do }u\leftarrow\mathrm{ EXTRACT-Min (Q)
for each v\inAdj(u)
    do if v\inQ and w(u,v)<\mp@subsup{k}{v}{}
            then }\mp@subsup{\pi}{v}{}\leftarrow
                DECREASE-KEY}(Q,v,w(u,v))\quad\triangleright Sets kv \leftarroww(u,v
```

prim

$$
\begin{array}{ll}
\operatorname{PRIM}(G=(V, E)) \\
1 & Q \leftarrow \emptyset \quad \triangleright Q \text { is a Priority Queue } \\
2 & \text { Initialize each } v \in V \text { with key } k_{v} \leftarrow \infty, \pi_{v} \leftarrow \text { NIL } \\
3 & \text { Pick a starting node } r \text { and set } k_{r} \leftarrow 0 \\
4 & \text { Insert all nodes into } Q \text { with key } k_{v} . \\
5 & \text { while } Q \neq \emptyset \\
\text { d } & \text { do } u \leftarrow \operatorname{EXTRACT}-\operatorname{Min}(Q) \\
7 & \text { for each } v \in A d j(u) \\
8 & \text { do if } v \in Q \\
9 & \text { then } \underset{\text { and } w(u, v)<k_{v}}{\pi_{v} \leftarrow \widetilde{u}} \\
10 & \text { DECREASE-KEY }^{\pi_{v}}(Q, v, w(u, v)) \quad \triangleright \operatorname{Sets} k_{v} \leftarrow w(u, v)
\end{array}
$$

$\operatorname{PRIM}(G=(V, E))$

$1 \quad Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
Pick a starting node r and set $k_{r} \leftarrow 0$
Insert all nodes into Q with key k_{v}.
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{EXTRACT}-\min (Q)$
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow u$
$\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright \operatorname{Sets} k_{v} \leftarrow w(u, v)$

$\operatorname{PRIM}(G=(V, E))$

$1 \quad Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
Pick a starting node r and set $k_{r} \leftarrow 0$
Insert all nodes into Q with key k_{v}.
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{EXTRACT}-\min (Q)$
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow u$
$\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright \operatorname{Sets} k_{v} \leftarrow w(u, v)$

$\operatorname{PRIM}(G=(V, E))$
$1 \quad Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
Pick a starting node r and set $k_{r} \leftarrow 0$
Insert all nodes into Q with key k_{v}.
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{EXTRACT}-\min (Q)$
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow u$
$\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright \operatorname{Sets} k_{v} \leftarrow w(u, v)$

$\operatorname{PRIM}(G=(V, E))$
$1 \quad Q \leftarrow \emptyset \quad Q$ is a Priority Queue
Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
Pick a starting node r and set $k_{r} \leftarrow 0$
Insert all nodes into Q with key k_{v}.
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{EXTRACT}-\operatorname{Min}(Q)$
for each $v \in \operatorname{Adj}(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow u$
$\operatorname{DECREASE-KEY}(Q, v, w(u, v)) \quad \triangleright \operatorname{Sets} k_{v} \leftarrow w(u, v)$
running time

$$
\begin{aligned}
& \left(\begin{array}{l}
\operatorname{PRIM}(G=(V, E)) \\
1 \\
2 \leftarrow \emptyset \quad \triangleright Q \text { is a Priority Queue make queue: } O(V)
\end{array} \quad\right. \\
& \text { Initialize each } v \in V \text { with key } k_{v} \leftarrow \infty, \underline{\pi_{v} \leftarrow \text { NIL }} \rightarrow \\
& \text { Pick a starting node } r \text { and set } \overline{k_{r} \leftarrow 0} \\
& \text { Insert all nodes into } Q \text { with key } k_{v} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for each } \underline{v} \in \operatorname{Adj}(u) \\
& \left(\begin{array}{l}
\text { if } \bar{v} \overline{\overline{\in Q} \text { and } w(u, v)<k_{v}} \\
\text { then } \pi_{v} \leftarrow u \\
\quad \begin{array}{l}
\text { DECREASE-KEY }(Q, v, w(u, v)) \\
\log (v) \\
\text { time }
\end{array}
\end{array} \quad \triangleright \operatorname{Sets} k_{v} \leftarrow w(u, v) . E^{\circ} \log V\right) \\
& O(E \log (v)+V \log (v))=O(E \log V)
\end{aligned}
$$

implementation

```
PRIM(G=(V,E))
    Q\leftarrow\emptyset \triangleright Q is a Priority Queue
    Initialize each v\inV with key }\mp@subsup{k}{v}{}\leftarrow\infty,\mp@subsup{\pi}{v}{}\leftarrow\mathrm{ NIL
    Pick a starting node r and set }\mp@subsup{k}{r}{}\leftarrow
    4 Insert all nodes into Q with key }\mp@subsup{k}{v}{}\mathrm{ .
    5 while Q 
        do }u\leftarrow\operatorname{EXTRACT-MIN}(Q
        for each v\inAdj(u)
            do if v}\inQ and w(u,v)<\mp@subsup{k}{v}{
                        then }\mp@subsup{\pi}{v}{}\longleftarrow
                        DECREASE-KEY}(Q,v,w(u,v)) \triangleright Sets \mp@subsup{k}{v}{}\leftarroww(u,v
    O(V\operatorname{log}V+\operatorname{log}V)=Olog
```


implementation

use a priority queue to keep track of light edges

	priority queue
insert:	$\frac{O(\log n)}{n}$
makequeue:	$O((\log n)$
extractmin:	$\varnothing(\log n)$

fibonacci heap
$\log n$
n
$\log n \quad$ amorized
O(1) amorized

fibonacci heap

faster implementation

```
PRIM(G=(V,E))
    1 Q\leftarrow\emptyset \triangleright Q is a Priority Queue
    2 Initialize each v\inV with key }\mp@subsup{k}{v}{}\leftarrow\infty,\mp@subsup{\pi}{v}{}\leftarrow\mathrm{ NIL
    3 Pick a starting node r and set }\mp@subsup{k}{r}{}\leftarrow
    4 Insert all nodes into Q with key }\mp@subsup{k}{v}{}\mathrm{ .
    while Q\not=\emptyset
        do }u\leftarrow\operatorname{Extract-min}(Q
            for each v\in Adj(u)
                            do if }v\inQ\mathrm{ and }w(u,v)<\mp@subsup{k}{v}{
                        then }\mp@subsup{\pi}{v}{}\leftarrow
                            DECREASE-KEY}(Q,v,w(u,v))\quad\triangleright Sets \mp@subsup{k}{v}{}\leftarroww(u,v
                                0(1)
    O(E + V log V)
```


Research in mst

FREDMAN-TARJAN 84:

$$
E+V \log V
$$

GABOW-GALIL-SPENCER-TARJAN 86:

$$
\text { CHAZELLE } 97
$$

$$
\text { CHAZELLE } 00
$$

PETTIE-RAMACHANDRAN 02:
KARGER-KLEIN-TARJAN 95:
(randomized)
Euclidean mst: $V \log V$

Ackerman function

$$
A(m, n)= \begin{cases}n+1 & m=0 \\ A(m-1,1) & m>0, n=0 \\ A(m-1, A(m, n-1)) & m, n>0\end{cases}
$$

$$
A(4,2)=
$$

inverse ackerman
$\alpha(n)=$

application of mst

application of mst

application of mst

simple graph questions

what is the length of the path from a to e ?

shortest path property

definition:

$$
\delta(s, v)
$$

shortest paths

algorithm

```
\(\operatorname{DiJkstra}(G=(V, E), s)\)
    1 for all \(v \in V\)
\(2 \quad\) do \(d_{u} \leftarrow \infty\)
\(3 \quad \pi_{u} \leftarrow\) NIL
\(d_{s} \leftarrow 0\)
    \(Q \leftarrow \operatorname{MAKEQUEUE}(V) \quad \triangleright\) use \(d_{u}\) as key
    while \(Q \neq \emptyset\)
        do \(u \leftarrow \operatorname{ExTRACTMIN}(Q)\)
            for each \(v \in \operatorname{Adj}(u)\)
                do if \(d_{v}>d_{u}+w(u, v)\)
                    then \(d_{v} \leftarrow d_{u}+w(u, v)\)
                        \(\pi_{v} \leftarrow u\)
                        DECREASEKEY \((Q, v)\)
```

```
DIJkstra(G = (V,E),s)
    for all v\inV
        do }\mp@subsup{d}{u}{}\leftarrow
        \piu}\leftarrow\textrm{NIL
    ds}\leftarrow
    Q}\leftarrow\operatorname{MakEQUEUE}(V)\quad\triangleright use du as ke
    while }Q\not=
        do }u\leftarrow\operatorname{EXTRACTMIN}(Q
        for each v\in\operatorname{Adj}(u)
            do if }\mp@subsup{d}{v}{}>\mp@subsup{d}{u}{}+w(u,v
                    then }\mp@subsup{d}{v}{}\leftarrow\mp@subsup{d}{u}{}+w(u,v
                            \mp@subsup{\pi}{v}{}\leftarrowu
                            \mp@subsup{\pi}{v}{}\leftarrowu
PRIM(G=(V,E))
    Q\leftarrow\emptyset\quad\triangleright Q is a Priority Queue
    Initialize each }v\inV\mathrm{ with key }\mp@subsup{k}{v}{}\leftarrow\infty,\mp@subsup{\pi}{v}{}\leftarrow\mathrm{ NIL
    Pick a starting node r and set kr }\leftarrow
    Insert all nodes into Q with key }\mp@subsup{k}{v}{}\mathrm{ .
    while }Q\not=
        do }u\leftarrow\mathrm{ Extract-min (Q)
        for each v\in Adj(u)
    do if }v\inQ\mathrm{ and }w(u,v)<\mp@subsup{k}{v}{
            then }\mp@subsup{\pi}{v}{}\leftarrow
                            DECREASE-KEY}(Q,v,w(u,v))\quad\triangleright Sets k v \leftarroww(
```

