

abhi shelat

Explain how to find a minimum spanning tree:

(Try to just recall from memory, to test how much you understood. Then, look at your notes if you need to.)

Explain why your method works: —

Give 2-3 sentences explaining at a high level.

Max flow

Min Cut

example

$\uparrow \land \land \land$

capacity constraint: (1) $-(e) \leq c(e)$

flow constraint: The any $v \in V - \tilde{z}_{s,t}$ in flow(v) = out flow(v) $\sum_{u \in V} f(u,v) \simeq \sum_{w \in V} f(v,w)$ $|f| = \sum_{u \in V} f(s, u) - Z f(w, s)$

example

Residual graphs

$$G_{f} = (V, E_{f}) \quad \text{unit} \quad a \quad flow \quad f$$
same set of verticity

$$If an \quad edge \quad e = (u, v) \quad hors \quad f(e) = 0$$

$$E_{S} \quad \text{contains the edge } (U, v) \quad with$$

$$ANO \quad \text{it contains the edge } (v, u) \quad w$$

(* special cases)

n new capacity c(e)-f(e) with capacity f(e)+((viu)

example residual graph

why residual graphs ?

augmenting paths

Def: A path from s to t in G.f.

Ford-Fulkerson

 $\begin{array}{ll} \text{initialize} & f(u,v) \leftarrow 0 \ \forall u,v \\ \text{while exists an augmenting path } \underline{p} \text{ in } & G_f \\ \text{augment } f \text{ with } & \underline{c_f(p)} = \min_{(u,v) \in p} c_f(u,v) \end{array}$

Ford-Fulkerson

 $\begin{array}{ll} \text{initialize} & f(u,v) \leftarrow 0 \ \forall u,v \\ \text{while exists an augmenting path p in G_f \\ \text{augment f with $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$ } \end{array}$

time to find an augmenting path: $\bigcirc (\sqsubseteq + \lor)$

number of iterations of while loop: \Box

My dog the algorithm work correctly ??,

O(E|f|)

IITS Defotacut: Partition of Vinto S,7 s.t. SES LET

cost of a cut:

 $\frac{||S,T||}{||S,T||} = \sum_{u \in S} \sum_{v \in T} C(u_v)$

lemma: [MinCut] for any f, (S, T) $|f| \leq ||S_iT||$

for any f, (S, T) it holds that $|f| \leq ||S, T||$ flow/capacity

 $||S_{i}\bar{i}| = 5$

for any f,(S,T) it holds that $|f| \leq ||S,T||$ flow/capacity

$$\begin{array}{l} \text{Main point} \\ \text{for any } f_{*}(\underline{S},\underline{T}) \text{ it holds that } |f| \leq ||\underline{S},\underline{T}|| \\ \text{for any } f_{*}(\underline{S},\underline{T}) \text{ it holds that } |f| \leq ||\underline{S},\underline{T}|| \\ \text{folds: Gons: An any flow } f_{*} \\ \text{-} & |f| = \sum_{v \in V} f(\underline{s},\underline{v}) - \sum_{w \in V} f(w,\underline{s}) \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 1: ARI } O_{*} \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 2: Split } f(u_{1}u_{1}) = O \\ \text{hy conservation of } f(u_{1}u_{2}) \\ \text{for all the nodes } u \in S - \frac{5}{2}s^{3}, we have \\ \overline{Step 2: Split it up} \\ = \sum_{u \in S} \left[\sum_{v \in T} f(u_{1}v_{v}) + \sum_{v \in S} f(u_{1}u_{v}) - \sum_{w \in S} f(u_{1}u_{v}) - \sum_{v \in T} f(u_{1}u_{v}) \right] \\ = \sum_{u \in S} \left[\sum_{v \in T} f(u_{1}v_{v}) + \sum_{v \in S} f(u_{1}v_{v}) - \sum_{w \in S} f(u_{1}u_{v}) - \sum_{w \in S} f(u_{1}u_{v}) \right] \\ = \sum_{u \in S} \left[\sum_{v \in T} f(u_{1}v_{v}) + \sum_{v \in S} f(u_{1}v_{v}) - \sum_{w \in S} f(u_{1}v_{v}) - \sum_{w \in S} f(u_{1}u_{v}) - \sum_{w \in S} f(u_{1}u_{v}) \right] \\ \end{array}$$

 \mathcal{I}

A property to remember For any f, (S, T) it holds that $|f| \le ||S, T||$

proof:

Edges in S contribute 0 to |f|.

for any f, (S, T) it holds that $|f| \leq ||S, T||$ (finishing proof)

$$\sum_{u \in S} \left[\sum_{v \in T} f(u, v) + \sum_{v \notin S} f(u, v) - \sum_{w \in T} f(w, u) - \sum_{w \in S} f$$

(v, u)

Thm: max flow = min cut

$$\max_{f} |f| = \min_{S,T} ||S,T|$$

If f is a max flow, then G_f has no augmenting paths.

Define the set
$$S = Zu | \exists a path p in Gf from"all nodes that one can s$$

 $n s \rightarrow u s whether that <math>C_f(p) 70$ still "reach" from s" d (b) te V-S b/c ow there would still be an augmenting path in Gg.

Thm: max flow = min cut $\max_{f} |f| = \min_{S,T} ||S,T|| \qquad \text{(continued)}$ (1) C(u, v) = 0 for any uses and $v \in T$. =) f(u, v) = C(u, v)If the capacity on this edge was 70, O V then V would be in S!! b/2 we could reach it from <u>S</u>

E f(VIU)=0 for any UES and JET If f(v,u) =0 then there would be $5 \sim 7 \sim \frac{f=0}{2}$ a residual edge from in to u with positive capacity => u would be in S

root of the problem

Edmonds-Karp 2
choose path with fewest edges first. (Use B
$$\delta_f(s, v)$$
: smalled number of edge in -
s to v in the restrict of

$\delta_f(s, v)$ increases monotonically thru exec

$\delta_{i+1}(v) \ge \delta_i(v)$

for every augmenting path, some edge is critical.

critical edges are removed in next residual graph.

key idea: how many times can an edge be critical?

first time (u,v) is critical:

QUESTION: How many times can (u,v) be critical?

edge critical only $\frac{\sqrt{2}}{2}$ times. there are only $\boxed{2}$ edges.

ergo, total # of augmenting paths: $E \neq \sum_{i=1}^{i}$ time to find an augmenting path: O(E+U)

total running time of E-K algorithm:

 $O(E^2 \cup)$

Bipartite

maximum bipartite matching

maximum bipartite matching

bipartite matching

problem:

algorithm

algorithm

MAKE NEW G'
 FROM INPUT G.
 RUN FF ON G'

3. OUTPUT ALL MIDDLE EDGES WITH FLOW F(E)=1.

correctness

IF G HAS A MATCHING OF SIZE K, THEN

correctness

IF G' HAS A FLOW OF K, THEN

integrality theorem

IF CAPACITIES ARE ALL INTEGRAL, THEN

correctness

HAS A FLOW OF K, THEN G HAS K-MATCHING.

running time

edge-disjoint paths

algorithm

- 1. Compute max flow
- 2. Remove all edges with f(e) = 0.
- 3. Walk from s.
 - 1. If you reach a node you have visited before, erase flow along path
 - 2. If you reach t, add this path to your set, erase flow along path.

analysis

IF G HAS K DISJOINT PATHS, THEN

analysis

G' HAS A FLOW OF K, THEN

vertex-disjoint paths

baseball elimination

Against

	W	L	Left	Α	Ρ	Ν	Μ
ATL	83	71	8	-	Ι	6	I
PHL	80	79	3	Ι	-	0	2
NY	78	78	6	6	0	-	0
MONT	77	82	3	Ι	2	0	-

baseball elimination

Against

	W	L	Left	Ν	В	Bo	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				

	W	L	Left	N	В	Во	T	D
NY	75	59	28		3	8	7	3
BAL	71	63	28	3		2	7	4
BOS	69	66	27	8	2			
TOR	63	72	27	7	7			
DET	49	86	27	3	4			

	W	L	Left	N	В	Во	Т	D
NY	75	59	28		3	8	7	3
BAL	71	63	28	3		2	7	4
BOS	69	66	27	8	2			
TOR	63	72	27	7	7			
DET	49	86	27	3	4			

