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userid:

Explain how to find a minimum spanning tree:

Explain why your method works:

(Try to just recall from memory, to test how much you 
understood.  Then, look at your notes if you need to.)

Give 2-3 sentences explaining at a high level.



Max flow
Min Cut
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flow

capacity constraint:

map from edges to numbers:

flow constraint:
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Residual graphs



example residual graph
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why residual graphs ?



augmenting paths

Def:



Ford-Fulkerson

initialize
while exists an augmenting path p in 

augment f with  
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Ford-Fulkerson

initialize
while exists an augmenting path p in 

augment f with  

time to find an augmenting path:

number of iterations of while loop:



Cuts
Def of a cut:

cost of a cut:



for any lemma: [MinCut]



for any it holds that
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for any it holds that
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Main point
for any it holds that



A property to remember
For any it holds that

proof:
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Edges in S contribute 0 to |f|.



(finishing proof)
for any it holds that
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Thm: max flow = min cut
If f is a max flow, then Gf has no augmenting paths.



Thm: max flow = min cut
(continued)



Why FF works
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Edmonds-Karp 2
choose path with fewest edges first.

� f (s, v) :



� f (s, v)

�i+1(v) � �i(v)

increases monotonically thru exec
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i i+1 j k



first time (u,v) is critical:
i i+1 j k



i i+1 j k

s u v t

time j: Edge (u,v) STRIKES BACK

s u v t

time i+1: (u,v) is critical: �i+1(s, v) � �i(s, u) + 1



i i+1 j k

s u v t

�j(s, u) = �j(s, v) + 1

time i+1: (u,v) is critical:

s u v t

�i+1(s, v) � �i(s, u) + 1

time j: Edge (u,v) STRIKES BACK



i i+1 j k
time j: Edge (u,v) STRIKES BACK

s u v t

�j(s, u) = �j(s, v) + 1
�i+1(s, v) � �i(s, u) + 1



i i+1 j k
time k: RETURN OF THE  (u,v) critical 

s u v t

�k(s, u) � �i(s, u) + 2

QUESTION: How many times can  (u,v) be critical? 



edge critical only                    times.
there are only                           edges.

ergo, total # of augmenting paths: 

time to find an augmenting path: 

total running time of E-K algorithm:



FF

EK2

PUSH-RELABEL

FASTER PUSH-RELABEL



Bipartite 



maximum bipartite matching



maximum bipartite matching



bipartite matching

problem:



Chapter 7 Network Flow

& The Problem

One of our original goals i a developing the Maximum-Flow Problem was to

be able to solve the Bipartite Matching Problem, and we now show how to

do this. Recall that a bipartite graph G = (V, E) is an undirected graph whose

node set can be partitioned as V = X U Y, with the property that every edge

e E E has one end in X anJ the other end in Y. A matching M in G is a subset

of the edges M C E such that each node appears in at most one edge in M.

The Bipartite Matching Prcblem is that of finding a matching in G of largest

possible size.

0 Designing the Algorithm

The graph defining a matching problem is undirected, while flow networks are

directed; but it is actually riot difficult to use an algorithm for the Maximum-

Flow Problem to find a ma imum matching.

Beginning with the graph G in an instance of the Bipartite Matching

Problem, we construct a flow network G' as shown in Figure 7.9. First we

direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node

in Y to t. Finally, we give each edge in G' a capacity of 1.

We now compute a maximum s-t flow in this network G'. We will discover

that the value of this maxn mum is equal to the size of the maximum matching

in G. Moreover, our analysis will show how one can use the flow itself to

recover the matching.

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities
equal to 1.
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algorithm
1. MAKE NEW G’
FROM INPUT G.
2. RUN FF ON G’

3. OUTPUT ALL MIDDLE EDGES
WITH FLOW F(E)=1.



correctness
IF G HAS A MATCHING OF SIZE K, THEN



correctness
IF G’ HAS A FLOW OF K, THEN



integrality theorem
IF CAPACITIES ARE ALL INTEGRAL, THEN 



correctness
IF G’ HAS A FLOW OF K, THEN G HAS K-MATCHING.



running time
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1. Compute max flow 
2. Remove all edges with f(e) = 0. 
3. Walk from s. 

1. If you reach a node you have visited before, 
erase flow along path 

2. If you reach t, add this path to your set, 
erase flow along path.



analysis
IF G HAS K DISJOINT PATHS, THEN 



analysis
IF G’ HAS A FLOW OF K, THEN 



f

c

d

h

b

a

e
i

g

z

vertex-disjoint paths



baseball elimination

W L Left A P N M
ATL 83 71 8 - 1 6 1

PHL 80 79 3 1 - 0 2

NY 78 78 6 6 0 - 0

MONT 77 82 3 1 2 0 -

Against



baseball elimination

W L Left N B Bo T D
NY 75 59 28 3 8 7 3
BAL 71 63 28 3 2 7 4
BOS 69 66 27 8 2
TOR 63 72 27 7 7
DET 49 86 27 3 4

Against



ny-ba
ny-bo
ny-to

ba-bo
ba-to

bo-to
W L Left N B Bo T D
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BAL 71 63 28 3 2 7 4
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DET 49 86 27 3 4
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bo-to
W L Left N B Bo T D
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