

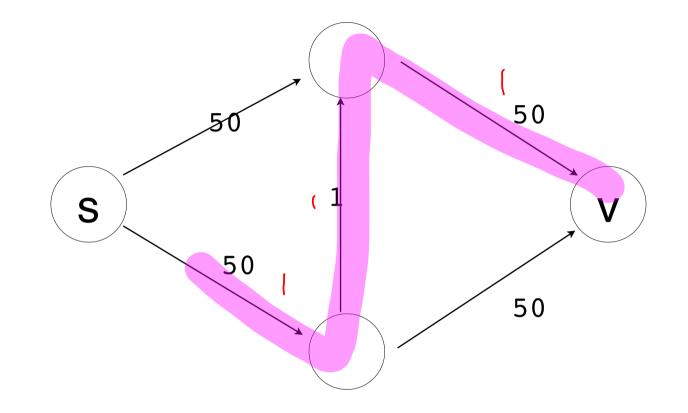
abhi shelat

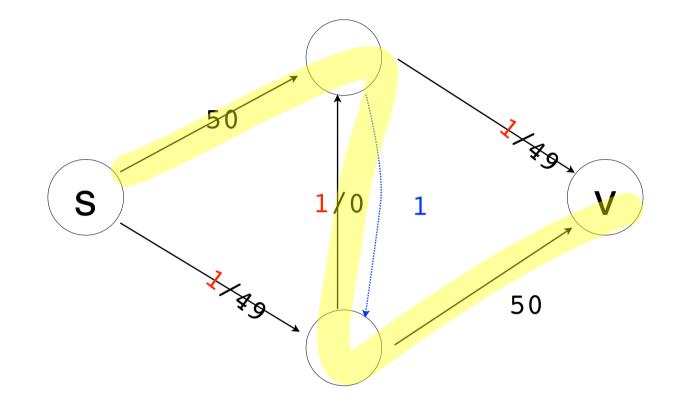
userid:

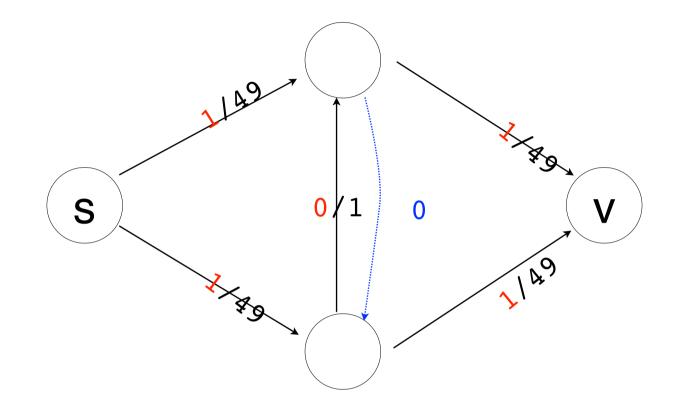
 (\mathbf{i}) What are the 2 restrictions on a flow f: flow constraint iN(x) = OUT(x)(2) capacity containt f(e) < c(e)

What is the value of a flow |f| : |f| = OUT(s) - IN(S) $\sum_{u \in V} f(s, u) - \sum_{u \in V} f(u, s)$

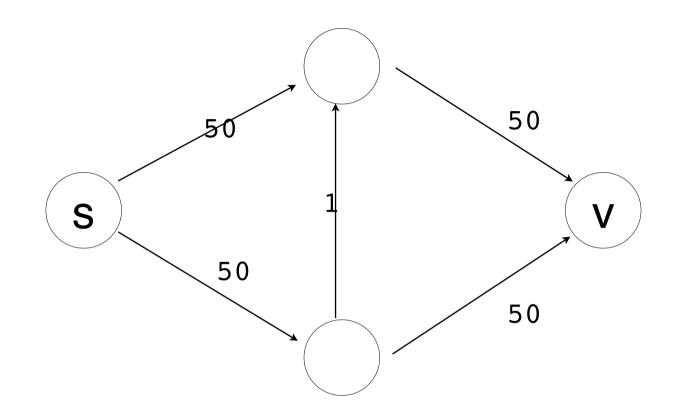
How does the Ford-Fulkerson algorithm work?







root of the problem

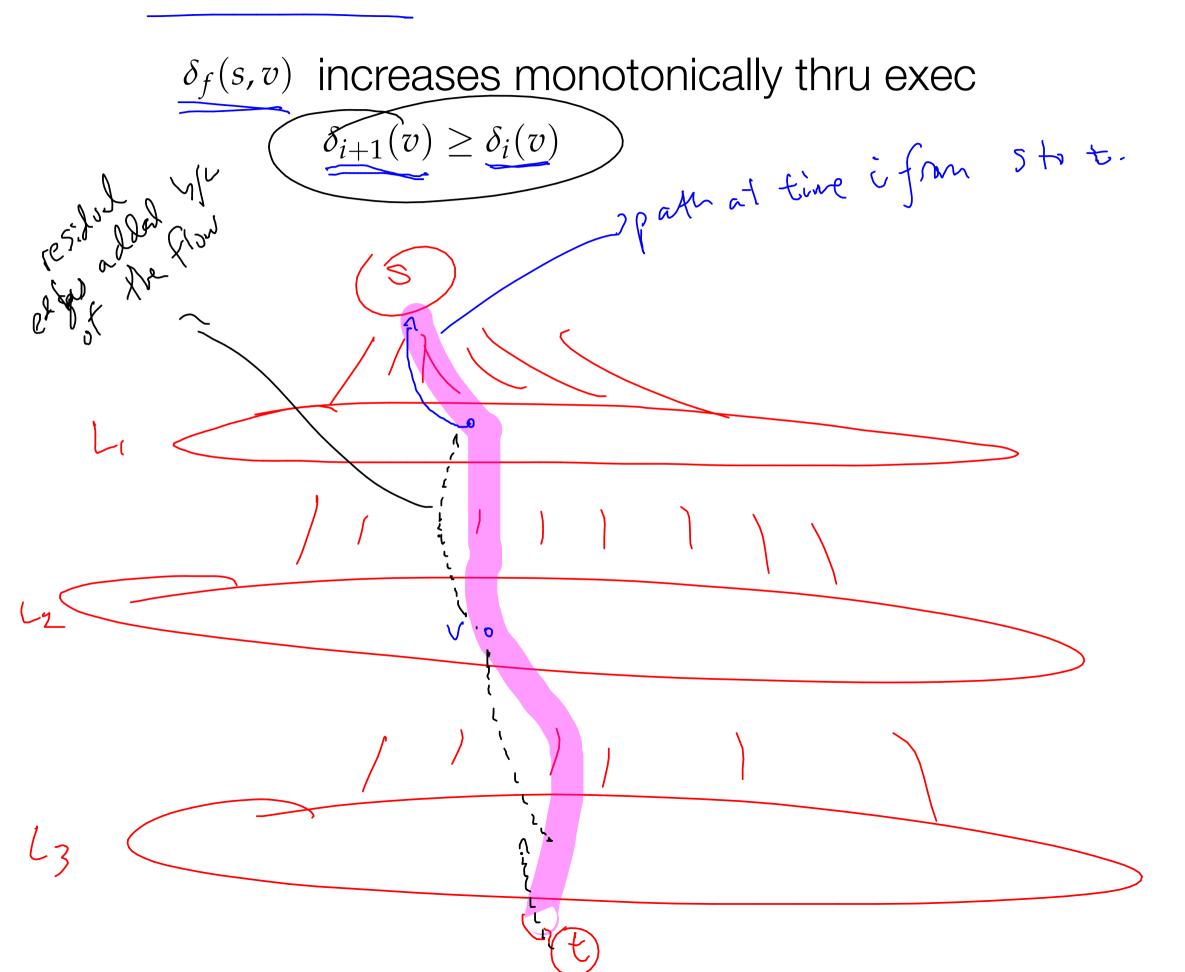


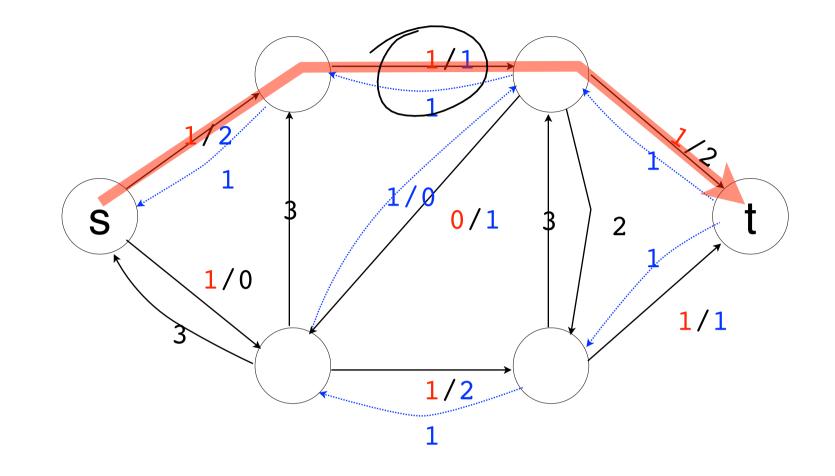
Edmonds-Karp 2

choose path with fewest edges first.

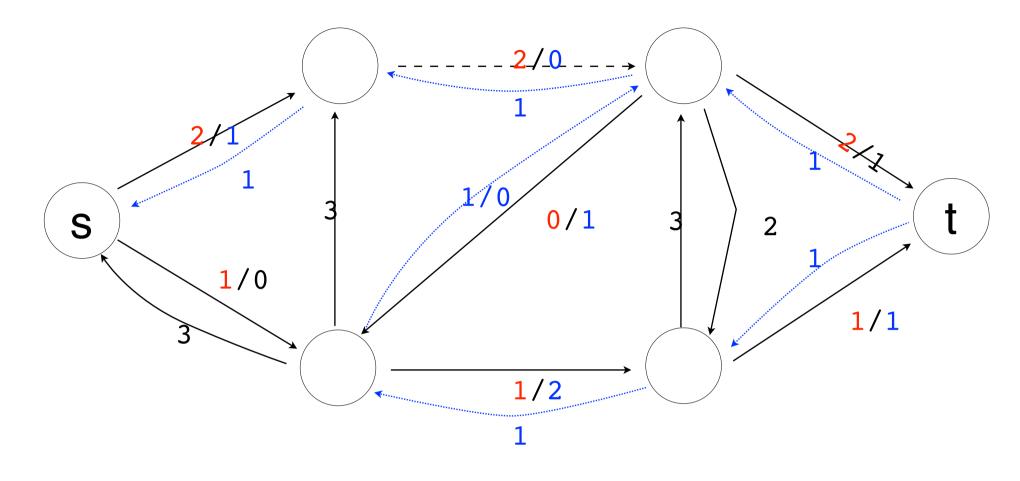
 $\delta_f(s,v)$: In Gf, min # of edges on a path from s to v.

Observation

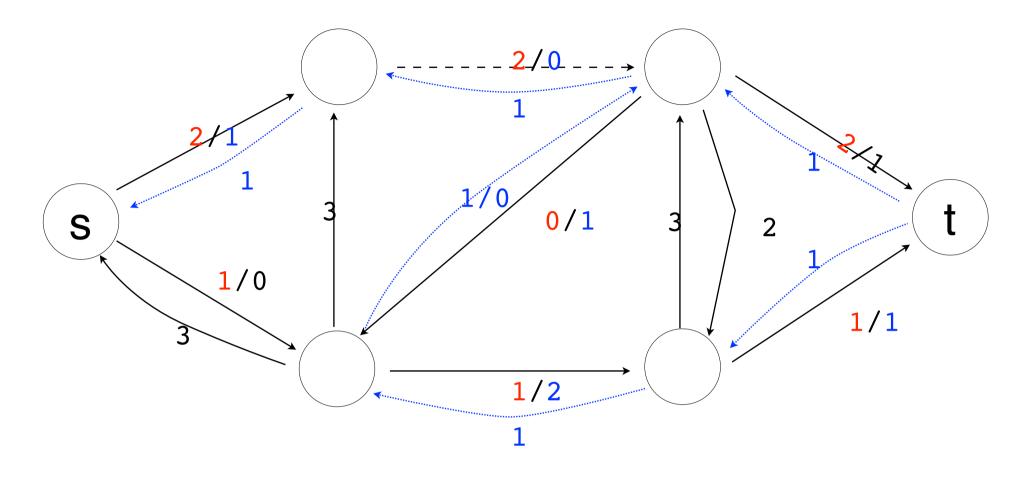




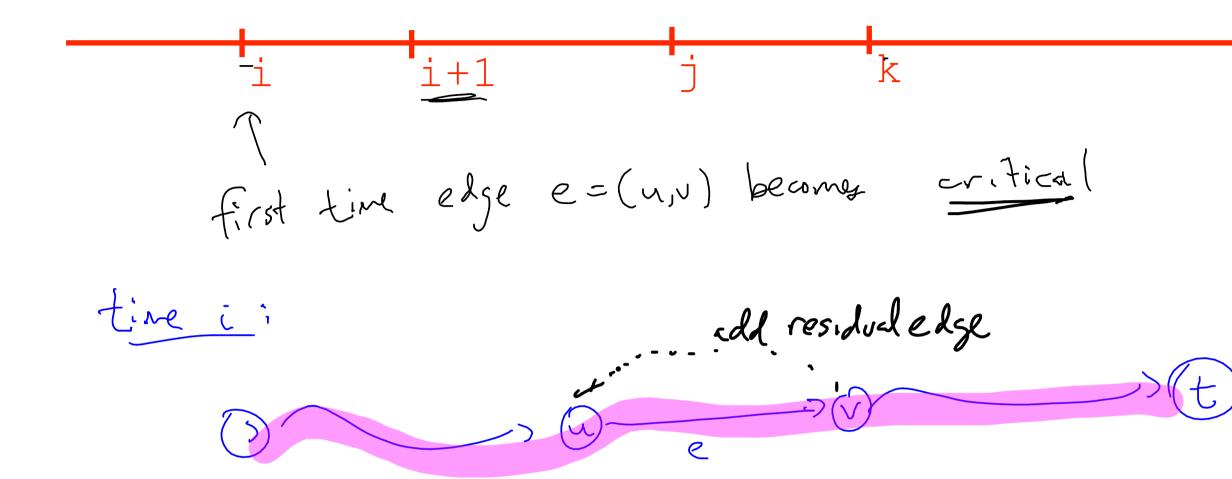
for every augmenting path, some edge is critical.



critical edges are removed in next residual graph.

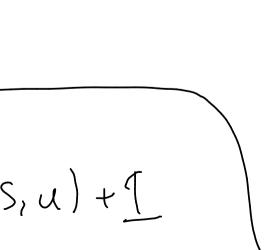


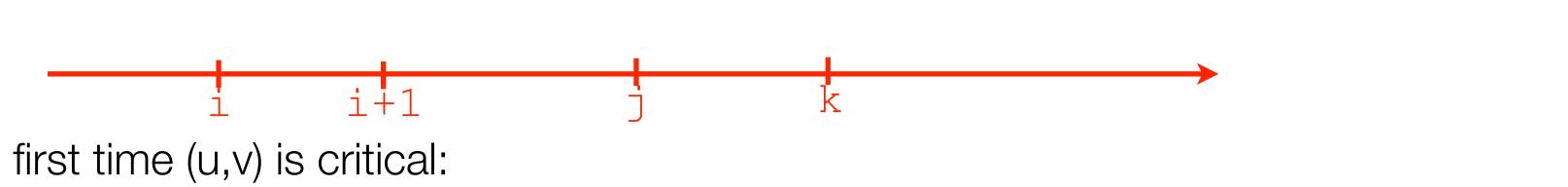
key idea: how many times can an edge be critical?

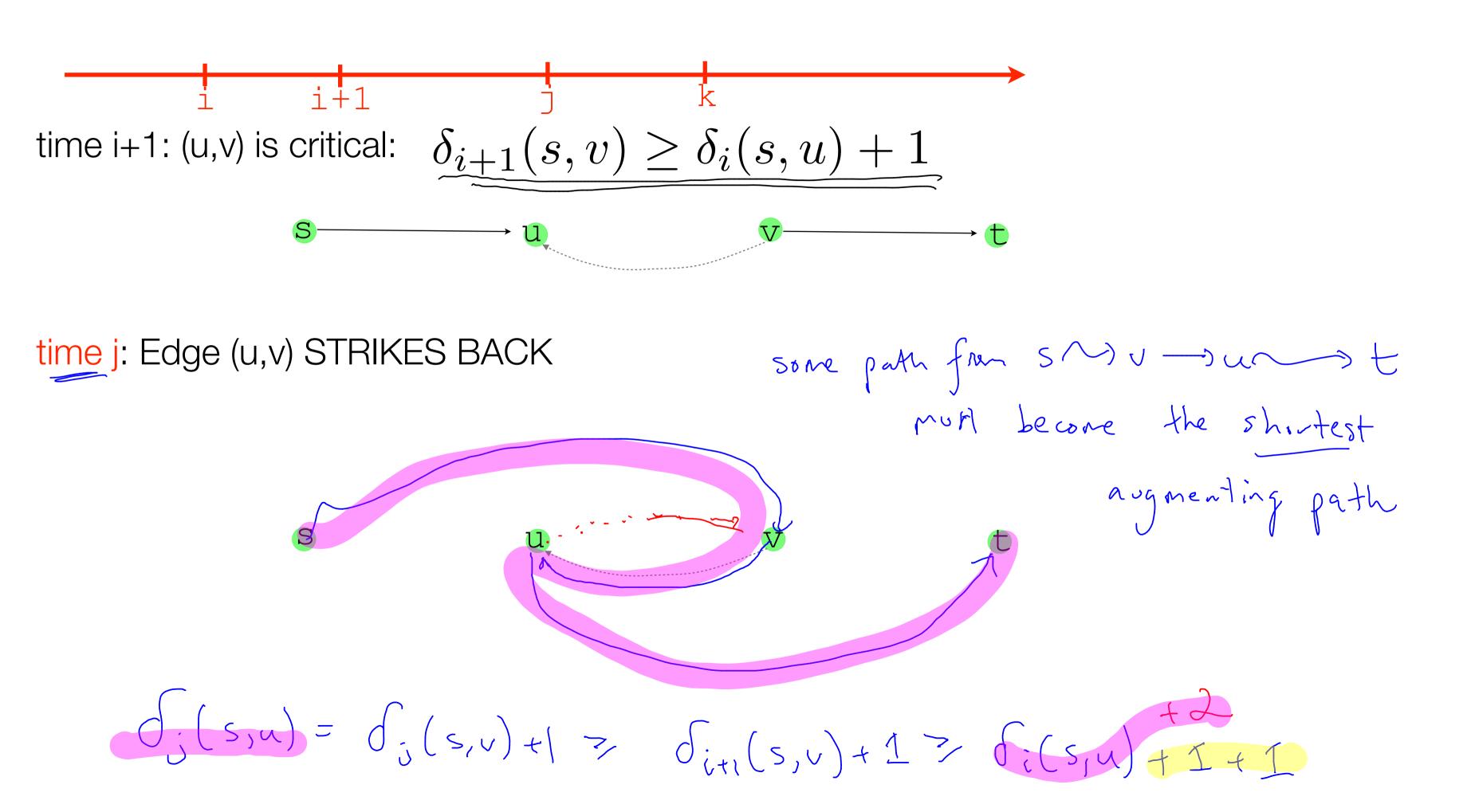


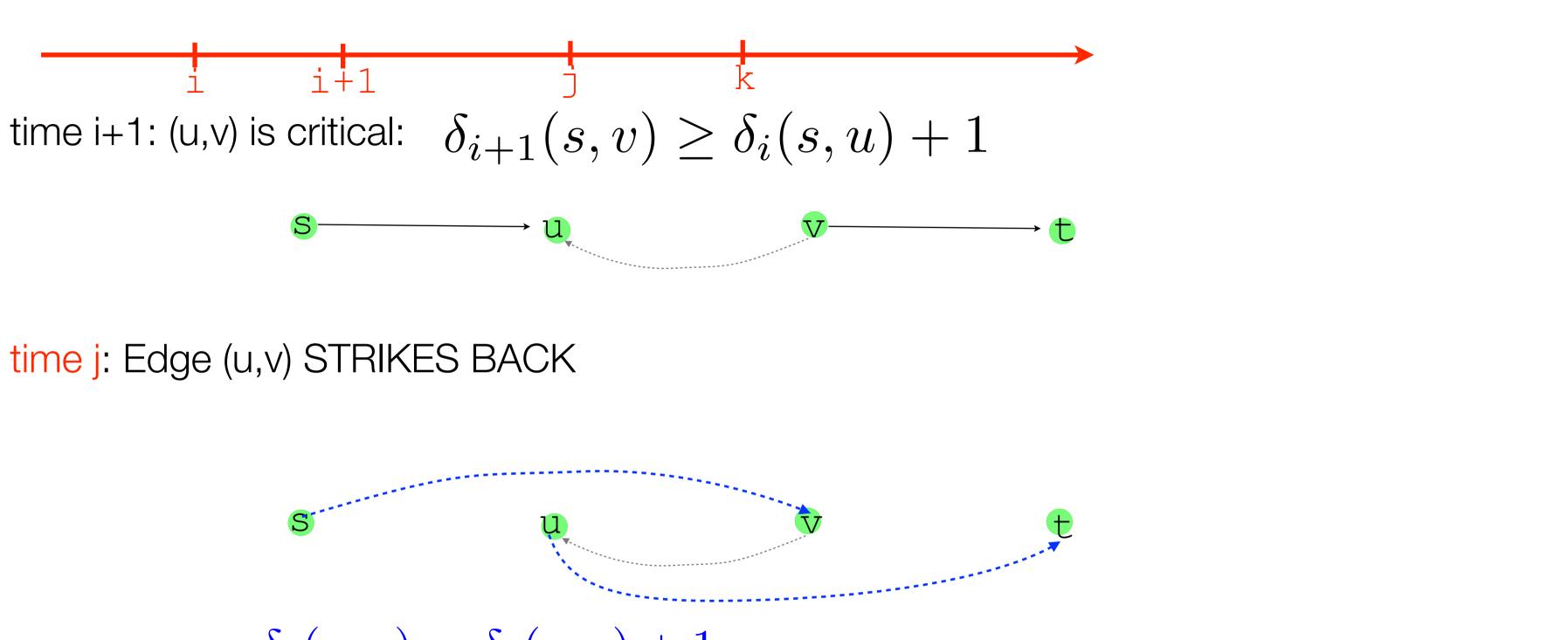
 $\delta_{i}(s,v) = \delta_{i}(s,u) + 1$

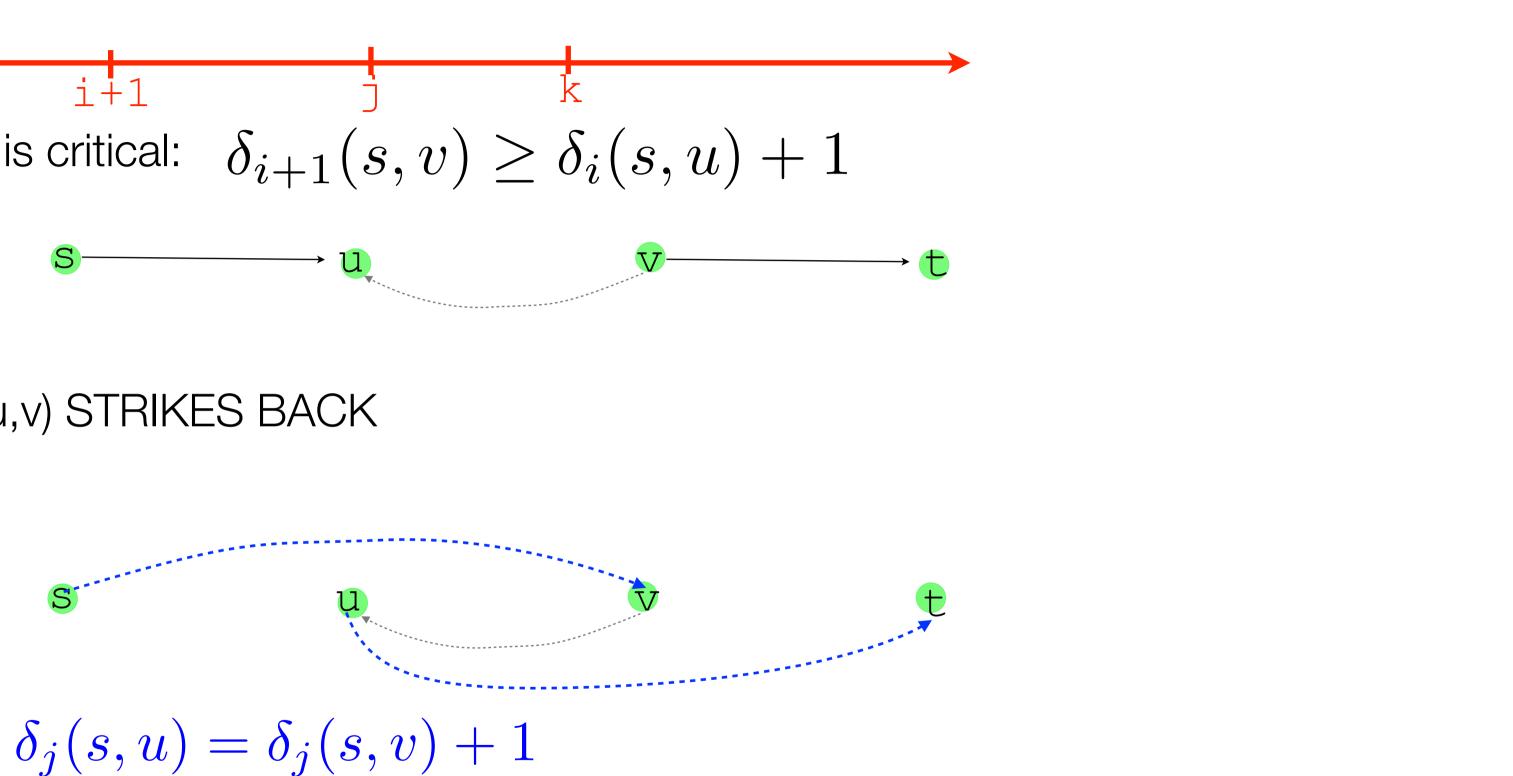
 $f_{i+1}(s,v) \neq f_i(s,v) = f_i(s,v) + 1$

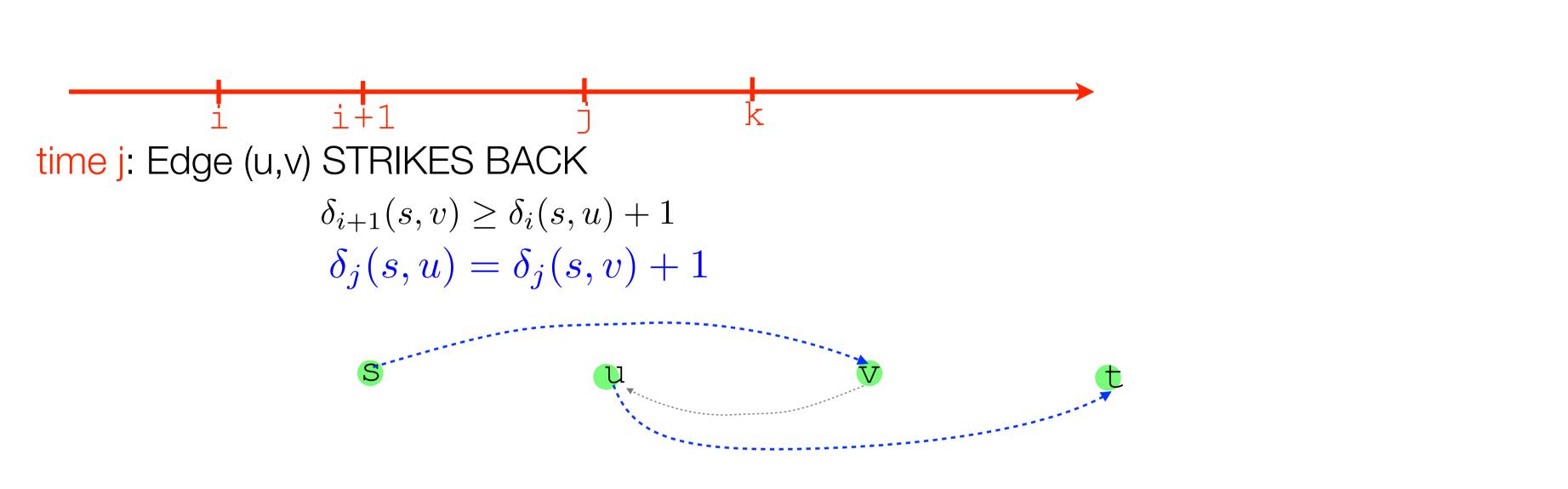


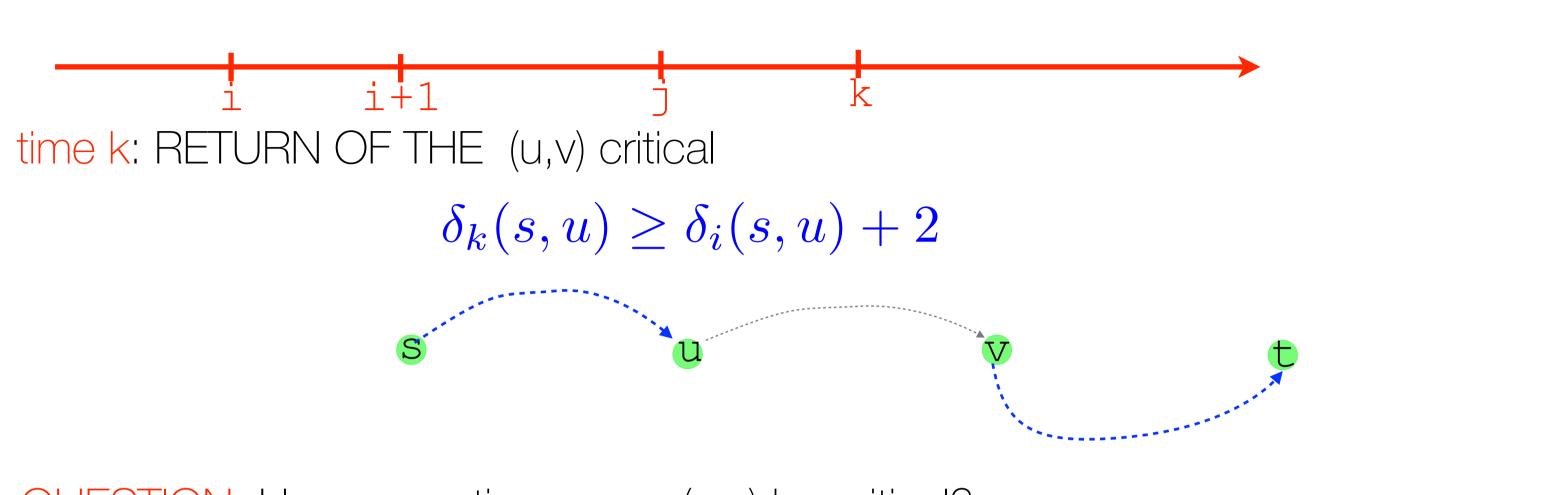












QUESTION: How many times can (u,v) be critical?

Z because On(S,u) is always at most V-1.

VNV edge critical only times. edges. there are only -O(EV)ergo, total # of augmenting paths: time to find an augmenting path: $\bigcirc (\sqsubseteq + \cup)$ total running time of E-K algorithm:

PUSH-RELABEL

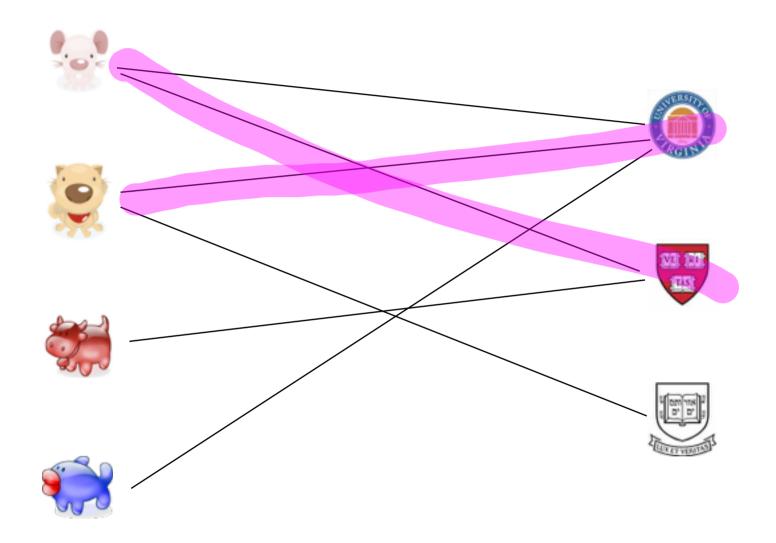
FASTER PUSH-RELABEL () ()

Golberg Rao = $O(E \min \frac{2}{2}V^2), E'^2 \log(\frac{v^2}{E}) - \log(u))$

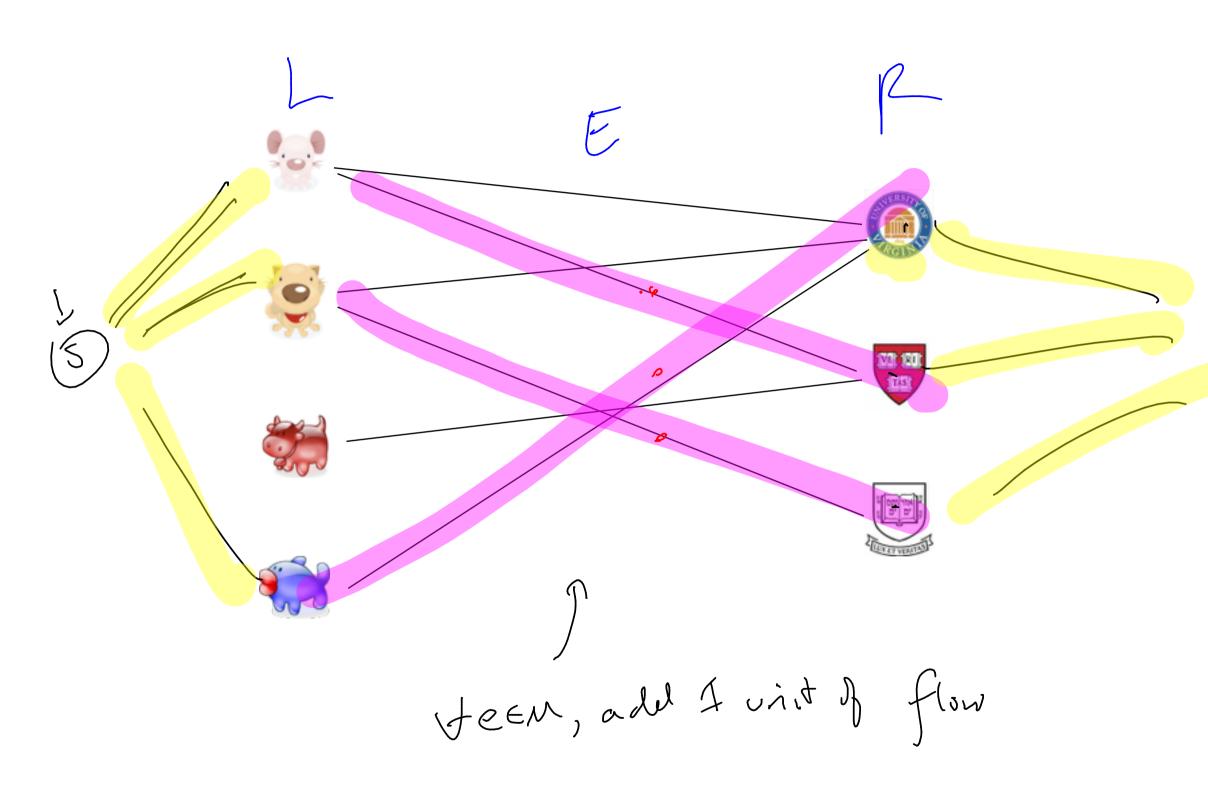
max ob atos edge

Bipartite

maximum bipartite matching



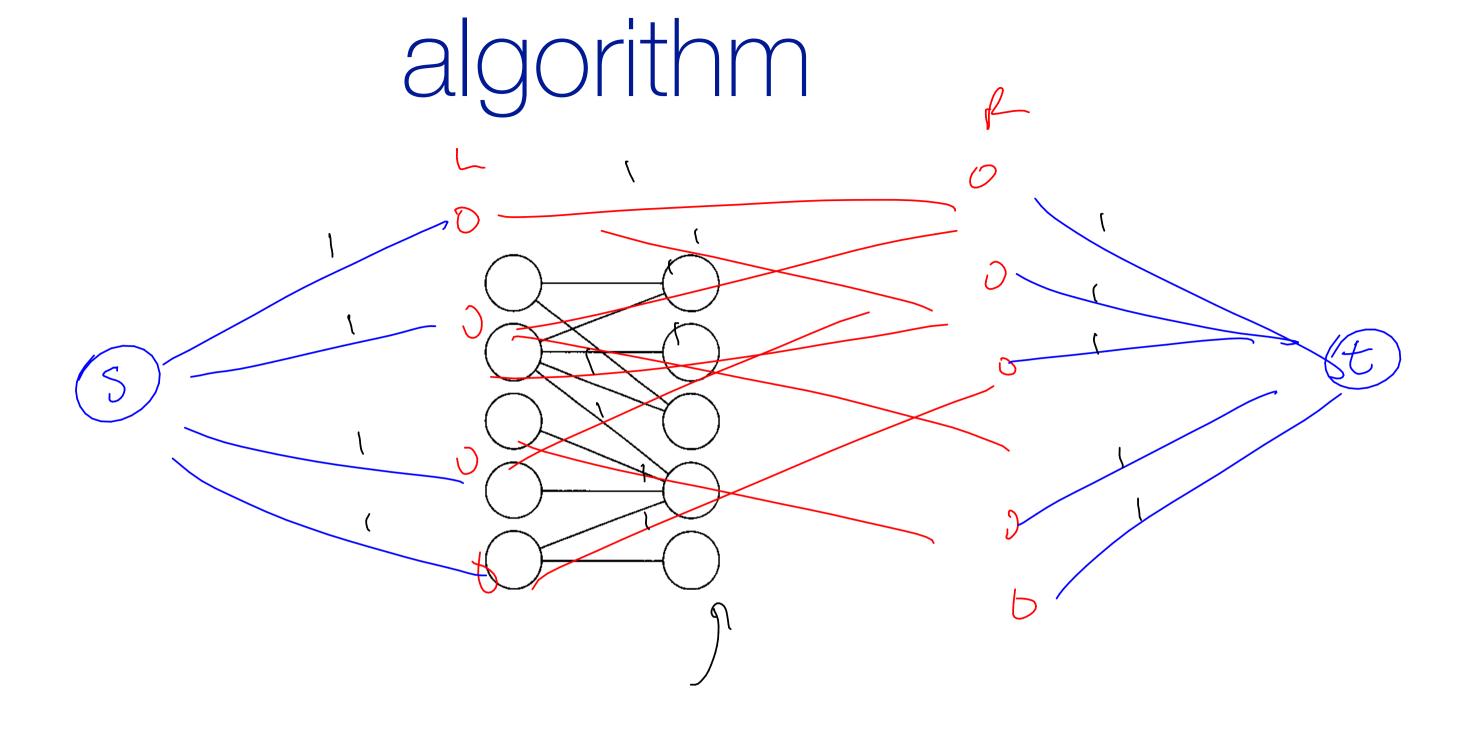
maximum bipartite matching



P

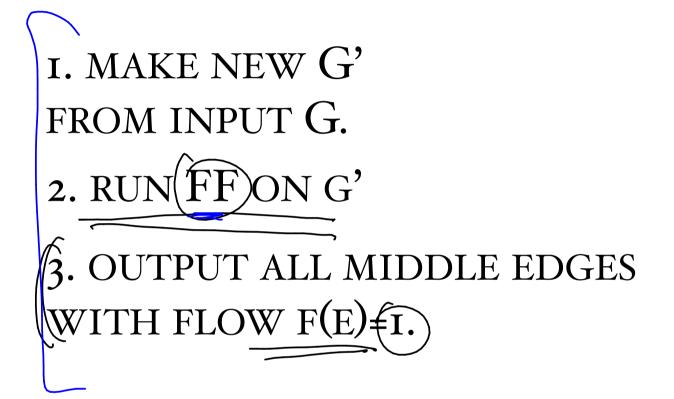
bipartite matching

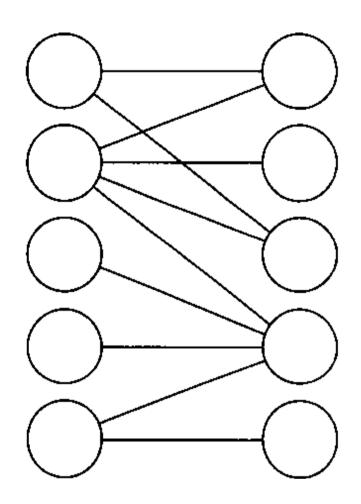
problem: given a bipartite graph, G=(L, F, E), al E are botween Land R "largest" Find a subset MEE such that each node occurs at most one in M, Further Find the largest such M.



G= (V= LS,tSVLVH, E as about) W

algorithm





correctness

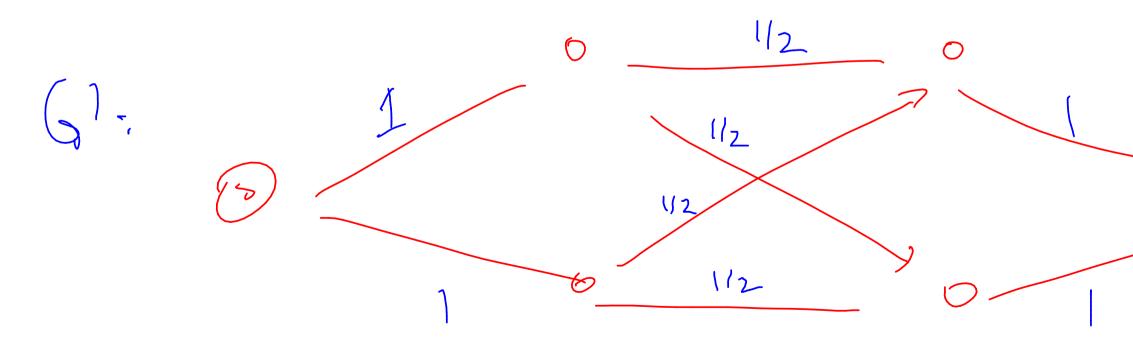
IF \underline{G} HAS A MATCHING OF SIZE K, THEN (\underline{G}) has a max flow of K. Prof. : Given a mailding of size K, construct a flow f which arrigns I unit b flow to each CEM, and I with flow from O show that f is a value flow.

(a) capacity constraint

(6) flow constraint (conservation)

(Snu) and (unt) for every $C = (u, v) \in M$.

correctness IF G'HAS A FLOW OF K, THEN (7 has a matching of size K. Consider al edges in 6' between Land R & f(e)=1. Add c to M. => [M] = K, so G has a K-matching,



G'has a flow of

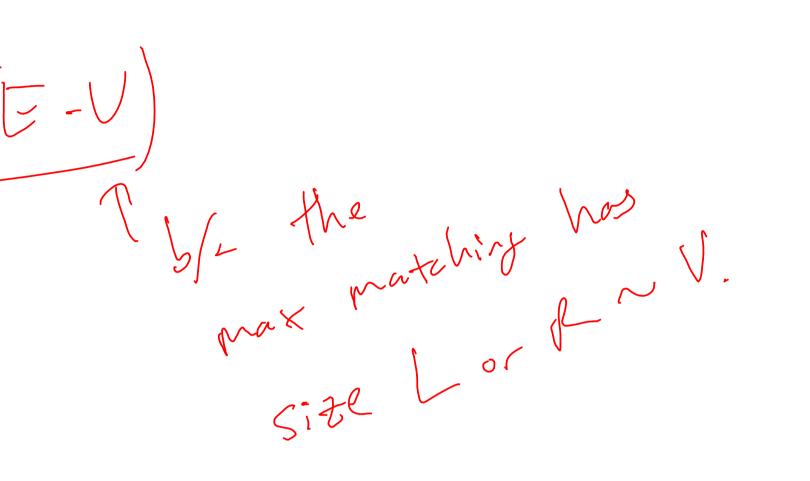
integrality theorem IF CAPACITIES ARE ALL INTEGRAL, THEN IF returns an integral flow. Prof: By induction. Base case: C start, FF has an integral flow (D) Spse tour after i iterations. On iteration i, flow is integral, so residud capacities on all edges are integral. Ff finds an augmenting Path f, and the min capacity edge will therefore be integral. -) flow remains integral on iteration i.e.t.

correctness

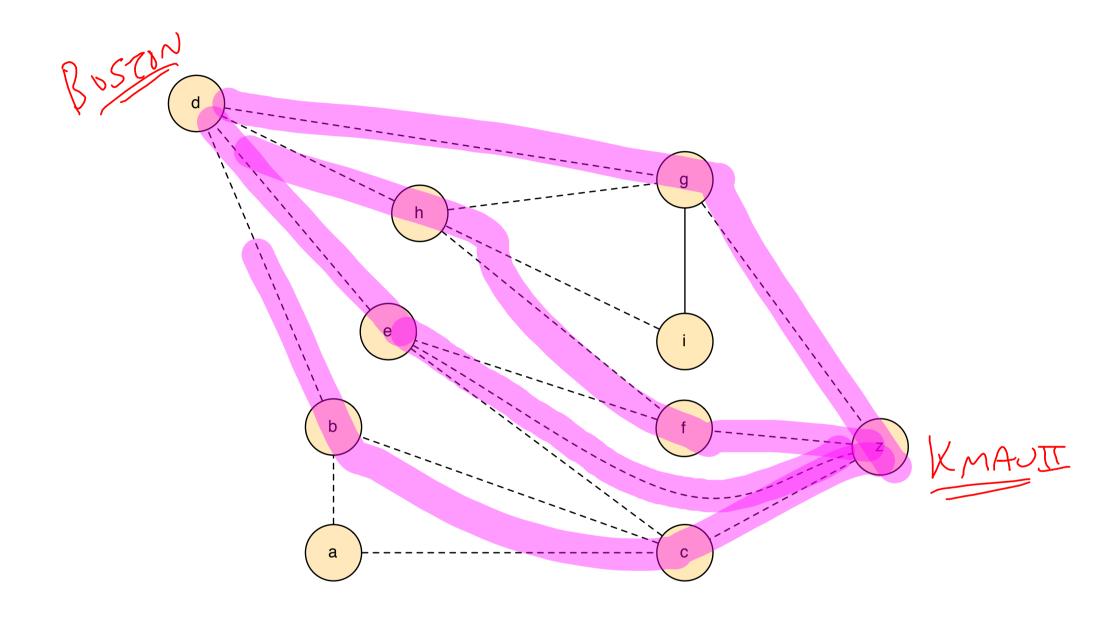
HAS A FLOW OF K, THEN G HAS K-MATCHING.

B/c 6' has integral capacities, the FF returns an integral flow. 2very edge has either f(e)=0 or f(e)=1. Set M to be all edges blue L and F = f(e) = f. Can be at most K by MIN-CUT theorem. Each node appears at most once in M by the conservation constraint,

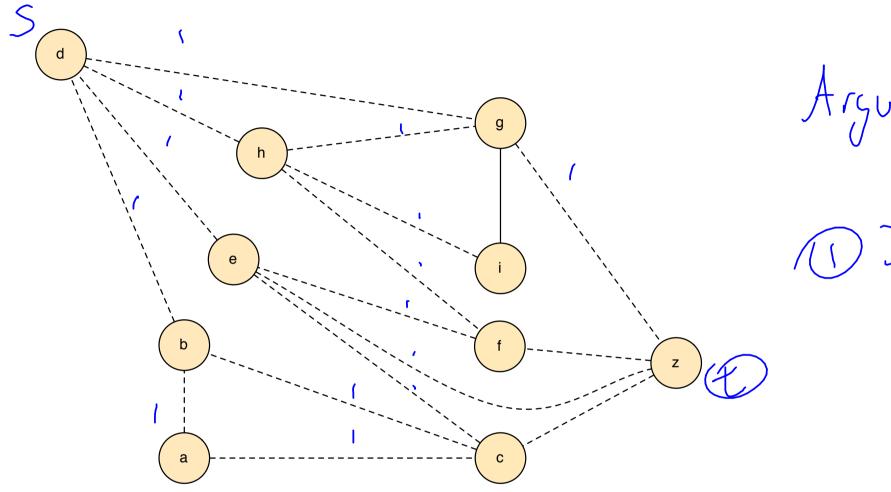
running time $O(E(f)) \sim O(E-V)$



edge-disjoint paths



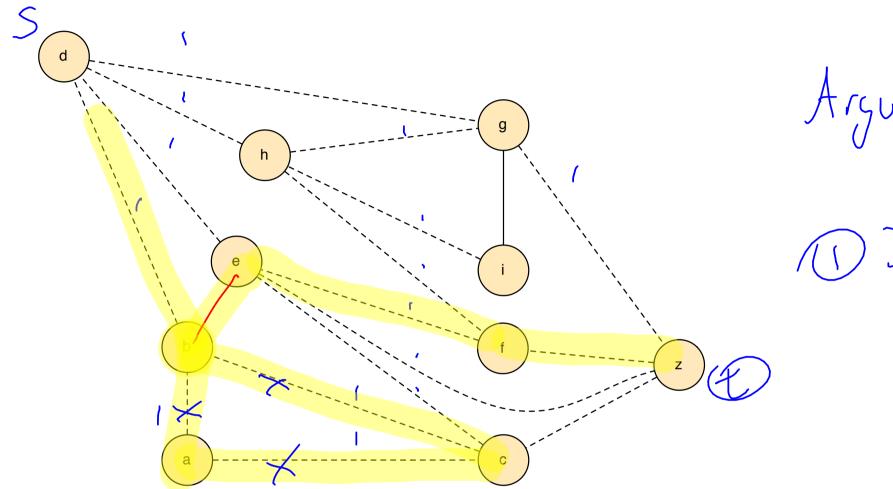
algorithm



If 6 has a K-maxflow
Oby Integratity, f(e) = 20 or 3 => 6 has K edge disjoint
F K edge disjoint paths among all pathsHe edges with f(e) = 1.

Argue that this is correct MIF G has K elge disjount paths =) (g has a K MAX FLOW

algorithm

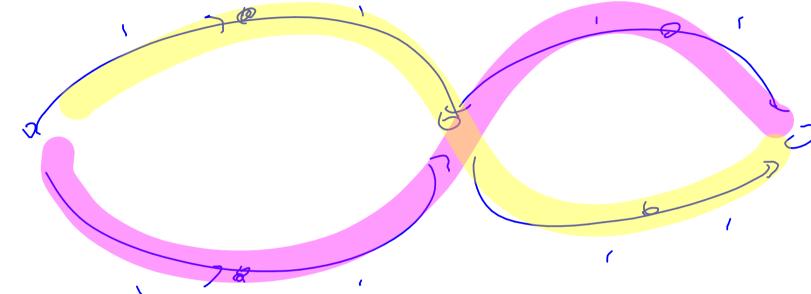


If 6 has a K-marflaw
Oby Integratity, f(e) = 20 or 3 => 6 has K edge disjoint
J K edge disjoint paths among all pathsthe edges with f(e) = 1.

Argue that this is correct MIF 6 has K elge disjount paths =) (g has a K MAX FLOW

- 1. Compute max flow
- 2. Remove all edges with f(e) = 0.
- 3. Walk from s.
 - 1. If you reach a node you have visited before, erase flow along path
- ____2. If you reach t, add this path to your set, erase flow along path.

edges with fie)=1

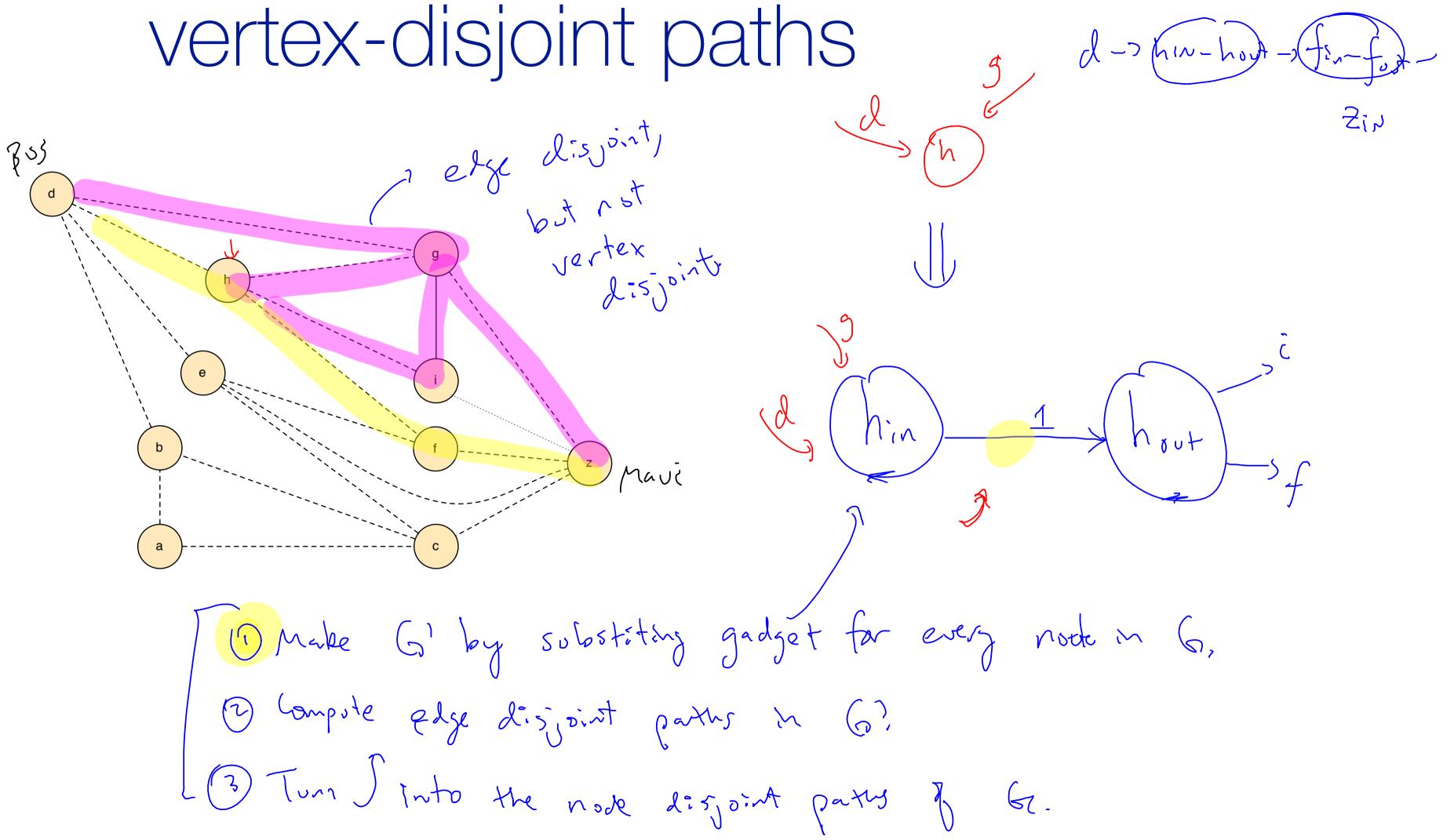


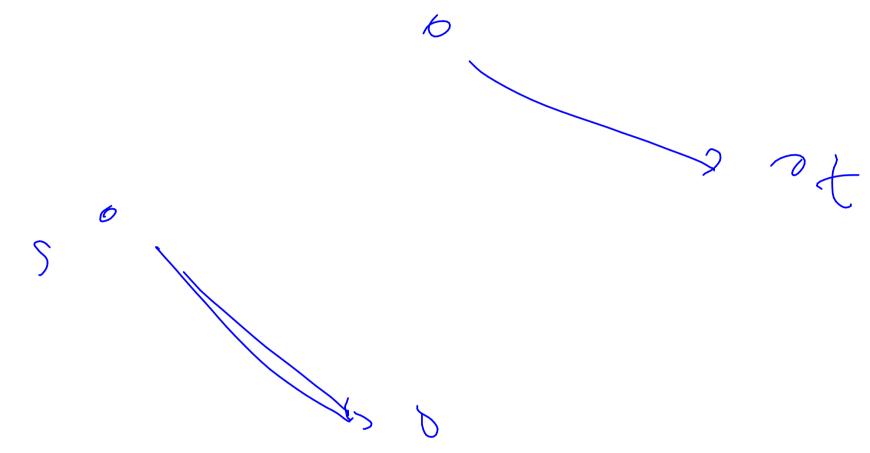
analysis

IF G HAS K DISJOINT PATHS, THEN

analysis

G' HAS A FLOW OF K, THEN



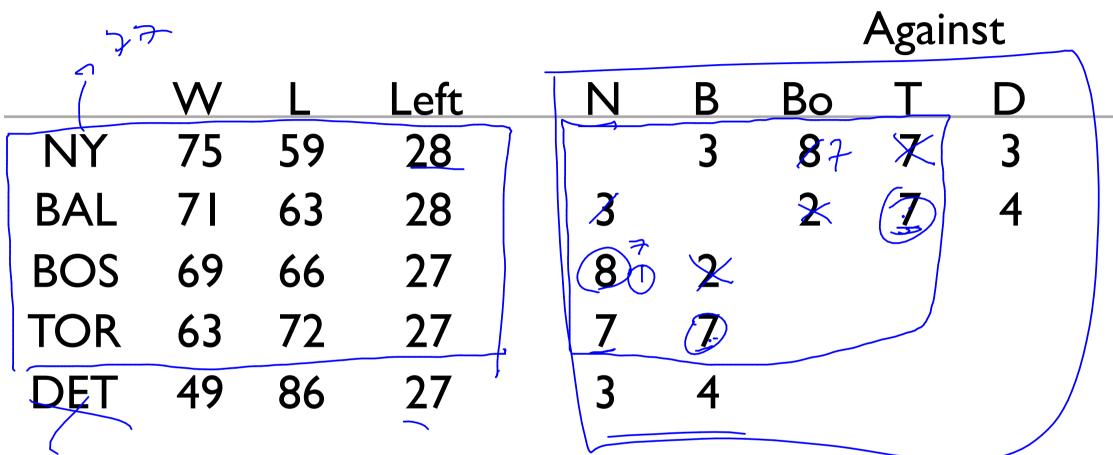


baseball elimination

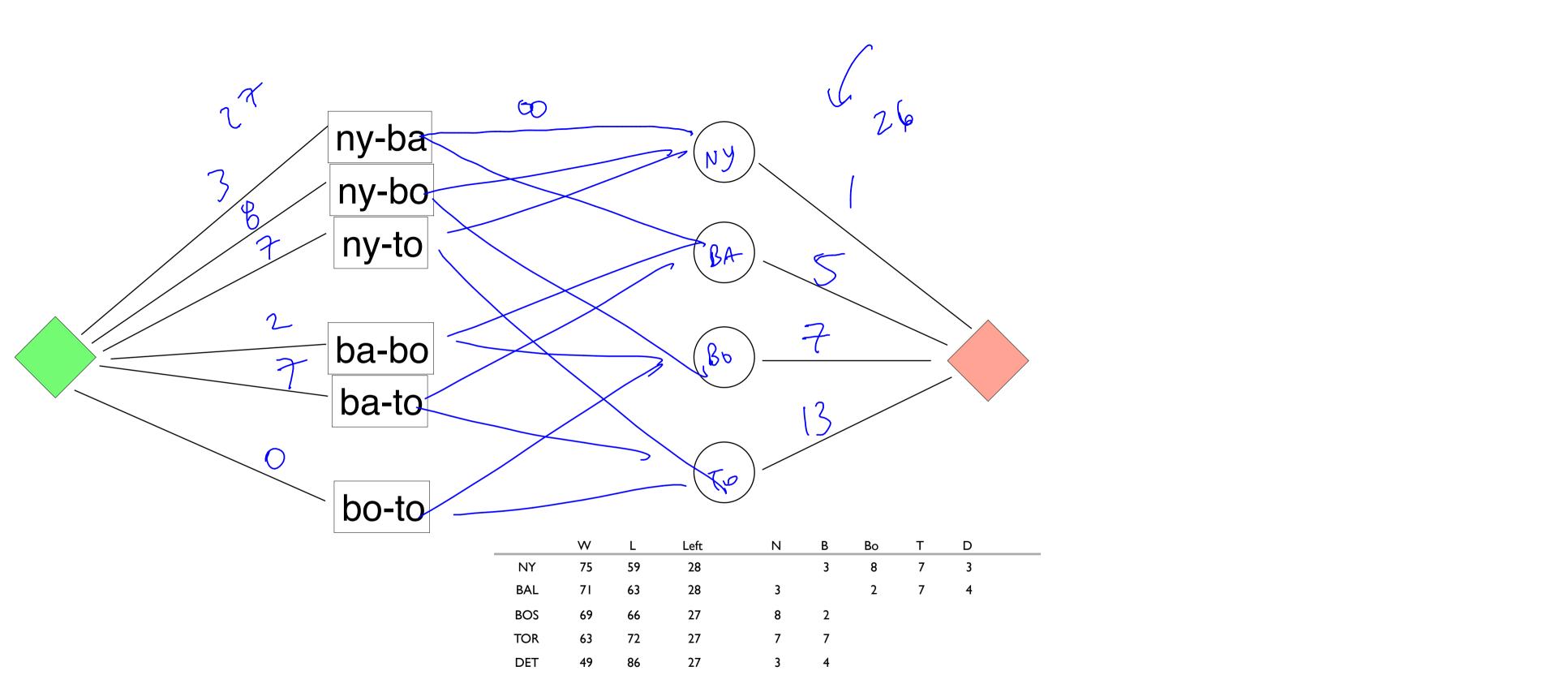
Against

	W	L	Left	Α	Ρ	Ν	Μ
ATL	83	71	8	-	Ι	6	Ι
PHL	80	79	3	I	-	0	2
NY	78	78	6	6	0	-	0
MONT	77	82	3	I	2	0	-

baseball elimination

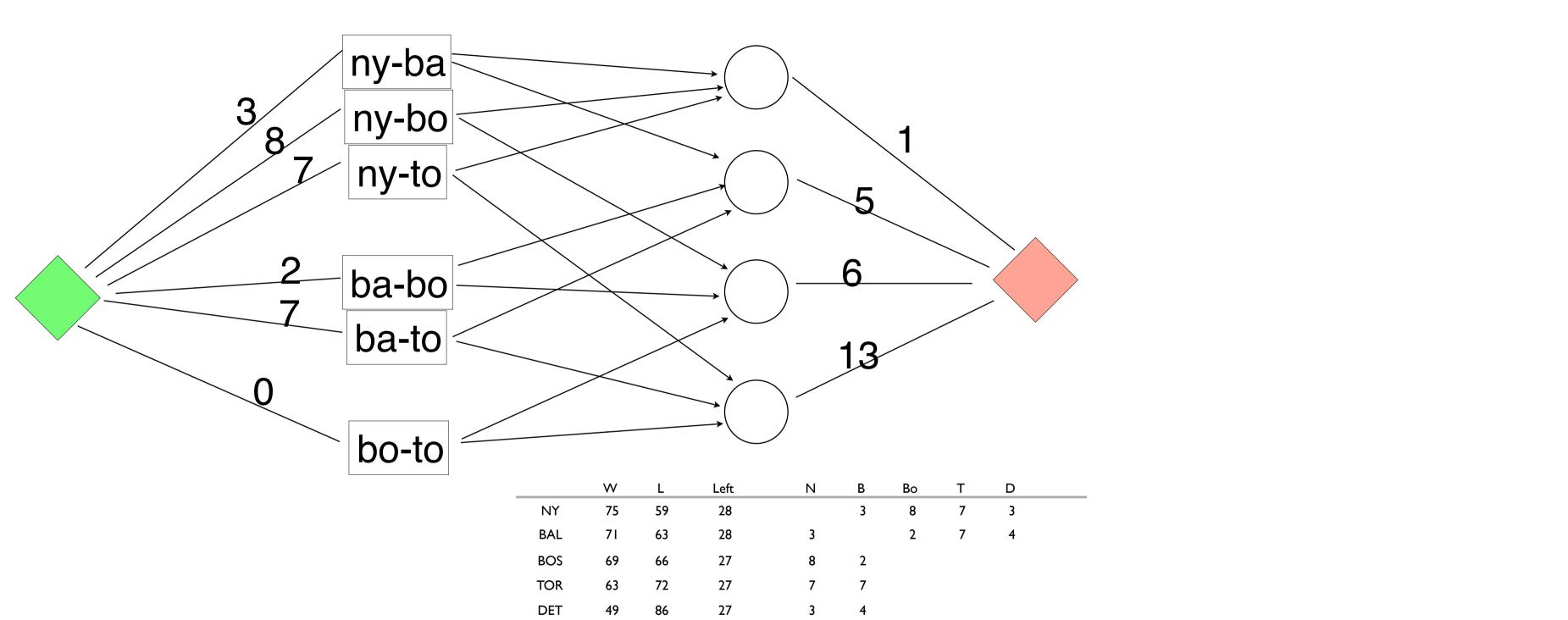


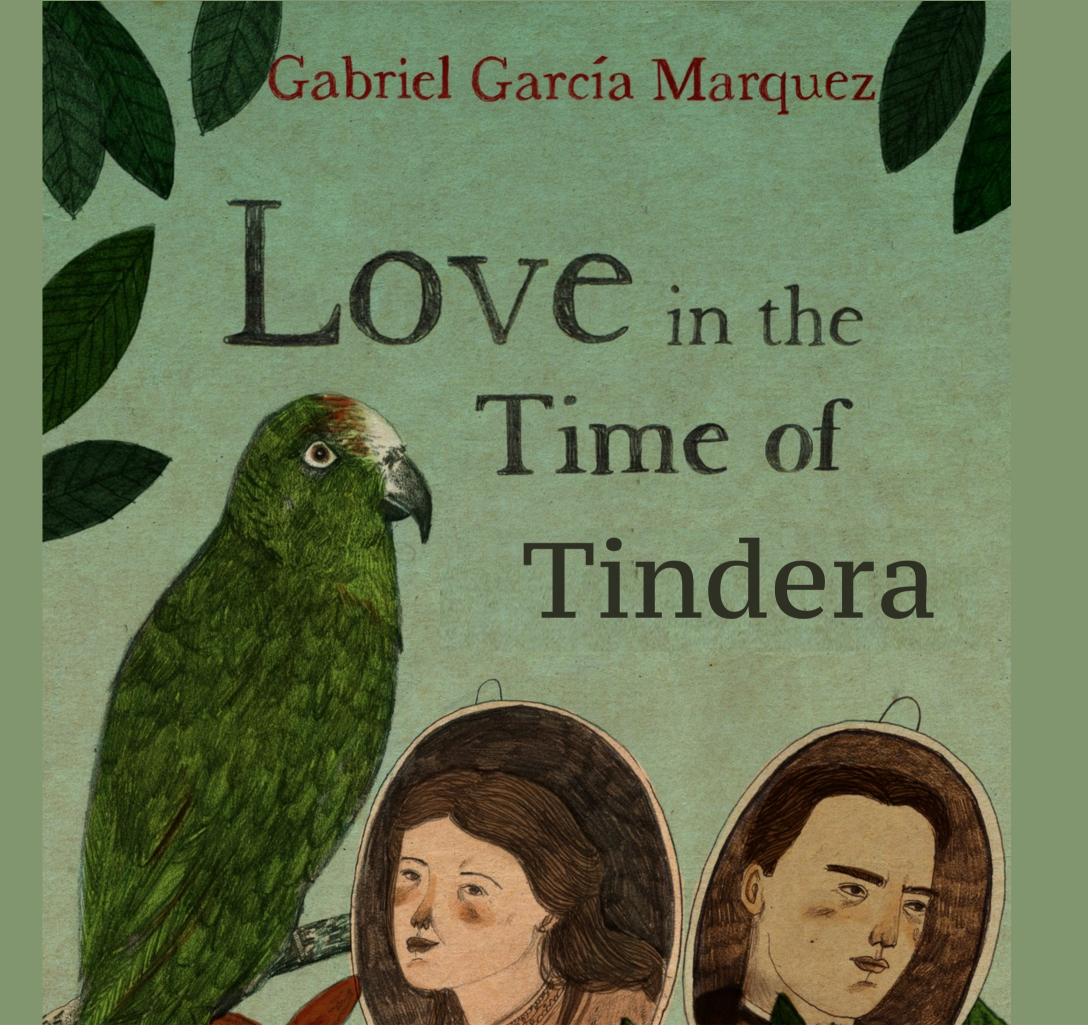
76.25 ZDS S



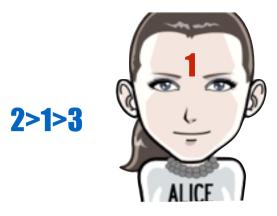


	W	L	Left	N	В	Во	Т	D
NY	75	59	28		3	8	7	3
BAL	71	63	28	3		2	7	4
BOS	69	66	27	8	2			
TOR	63	72	27	7	7			
DET	49	86	27	3	4			





We have a group of suitors and reviewers



2>3>1

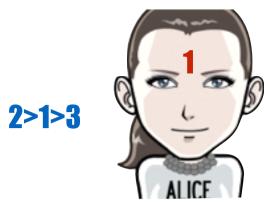
1>3>2

Each has preferences over the other group

1>3>2

1>2>2

3>2>1



2>3>1

1>3>2

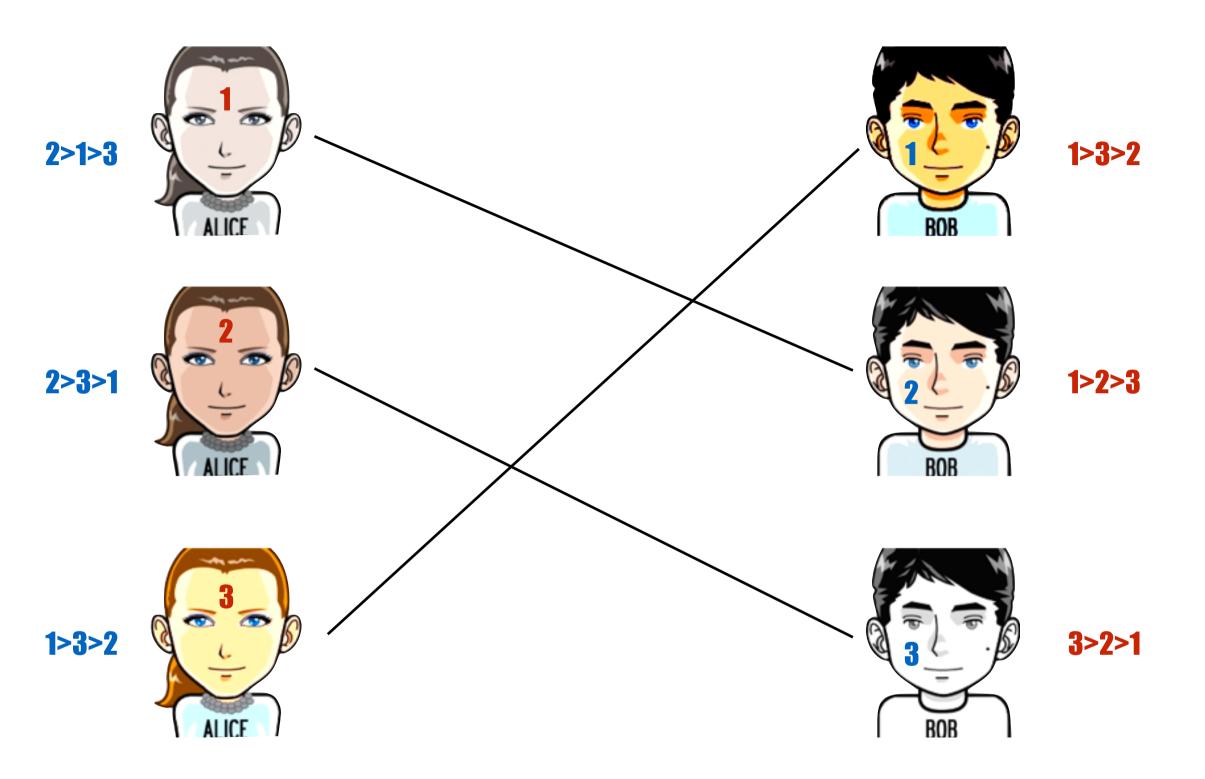
We seek a stable matching

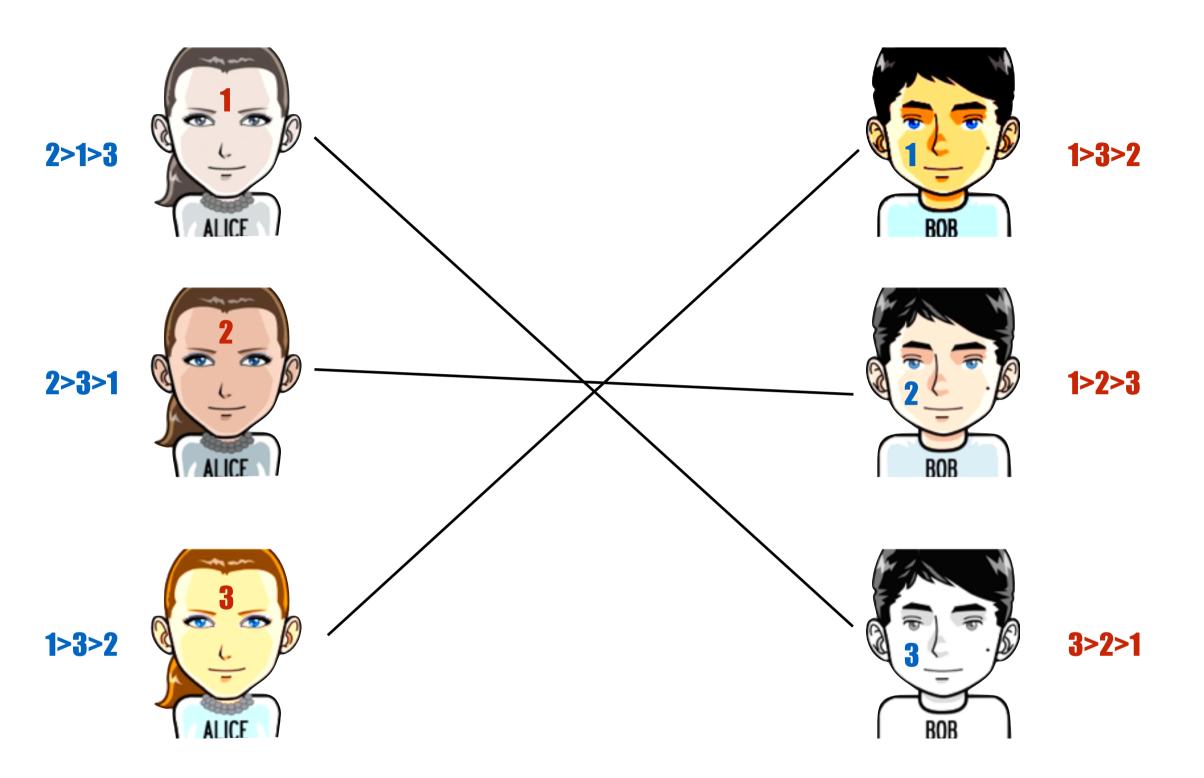
between the two

1>3>2

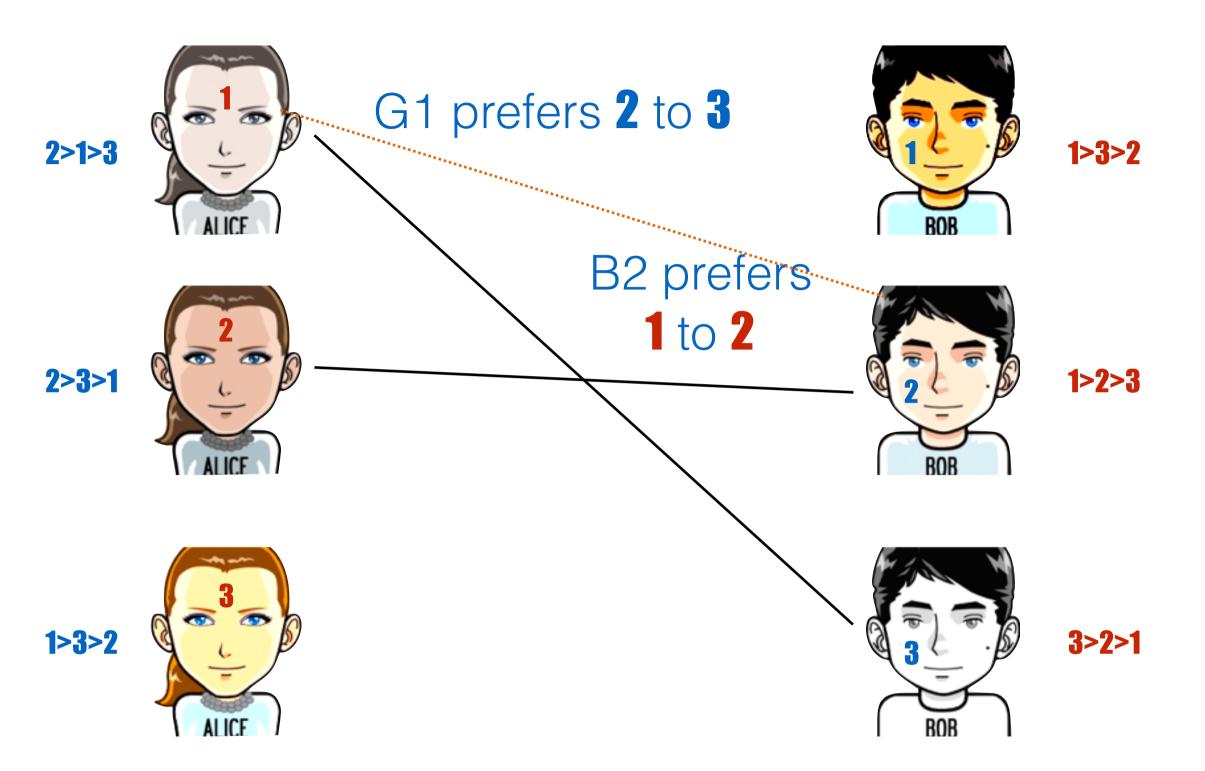
1>2>2

3>2>1





Unstable Matching



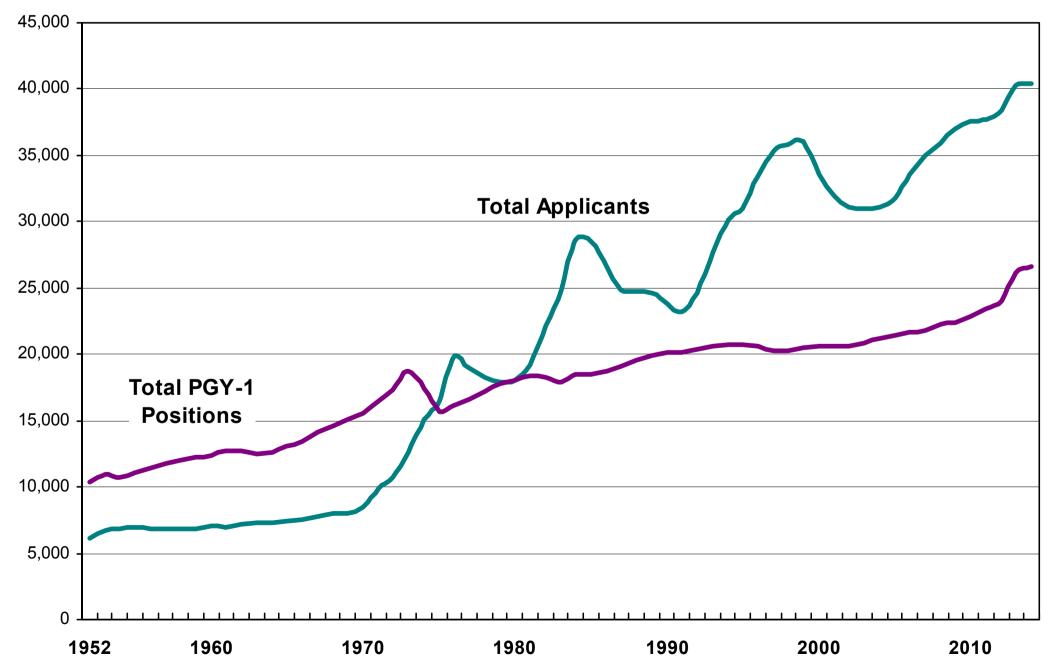
Unstable Matching

Stable Matching

Stable matching has many practical applications

Figure 1

Applicants and 1st Year Positions in The Match, 1952 - 2014



40394

29671

	Matched				
Applicant Type	2013 Graduates	Prior Year Graduates ¹	Total		
CMG	2571	74	2645		
IMG	146	353	499		
USMG	23	2	25		
TOTAL	2740	429	3169		

Established in collaboration with MIT

University of Virginia Chi Omega Bid Day 2012

Definition: matchings

M=

W=

S=

Definition: matchings

$$M = \{m_1, \dots, m_n\}$$
$$W = \{w_1, \dots, w_n\}$$
$$S = \{(m_{i_1}, w_{j_1}), \dots, (m_{i_k}, w_{i_k})\}$$

Each m_i (w_i) appears only one in a pairing. A matching is perfect if every m_i appears.

Image credits: Julia Nikolaeva

Definition: preferences

 $M = \{m_1, \ldots, m_n\}$

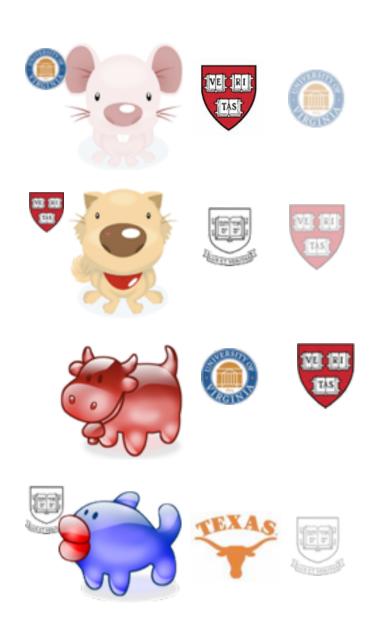


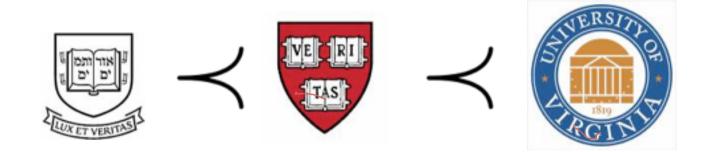
Image credits: Julia Nikolaeva

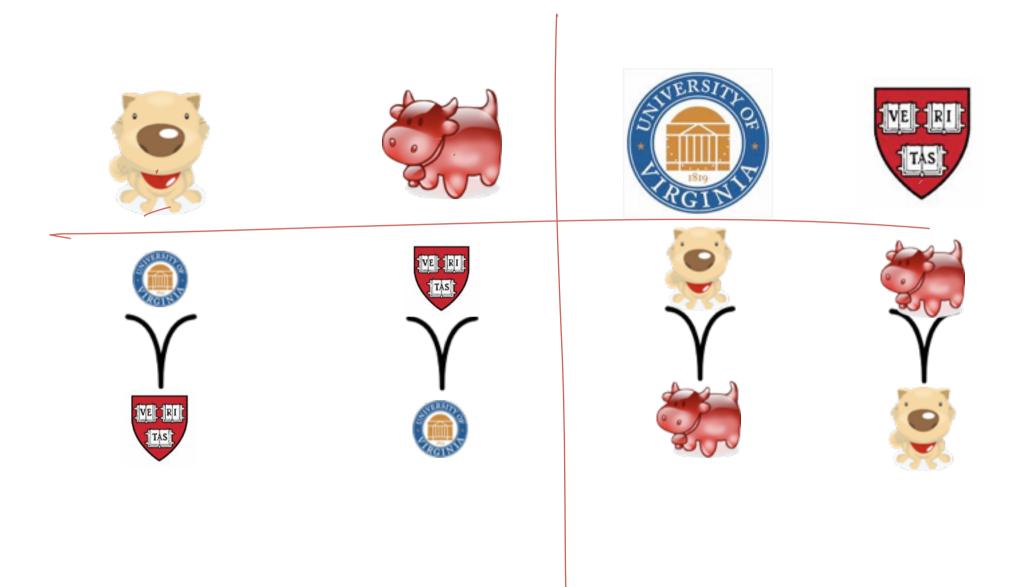
Example: preferences

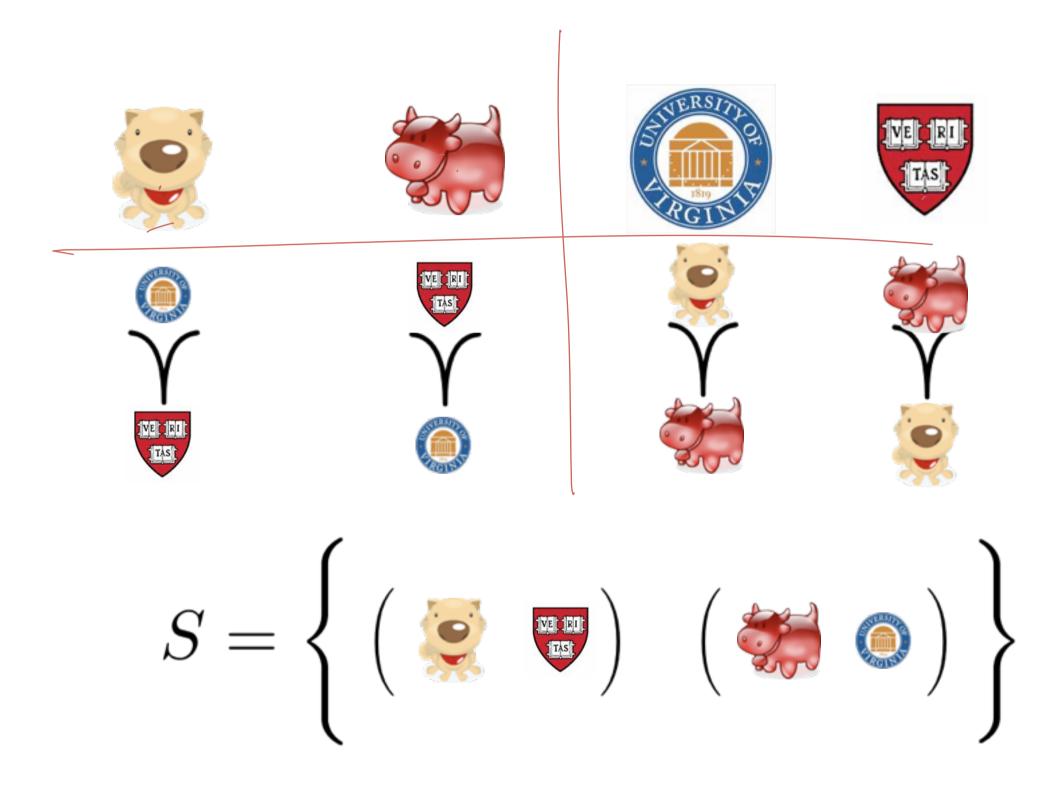
$$M = \{m_1, \ldots, m_n\}$$

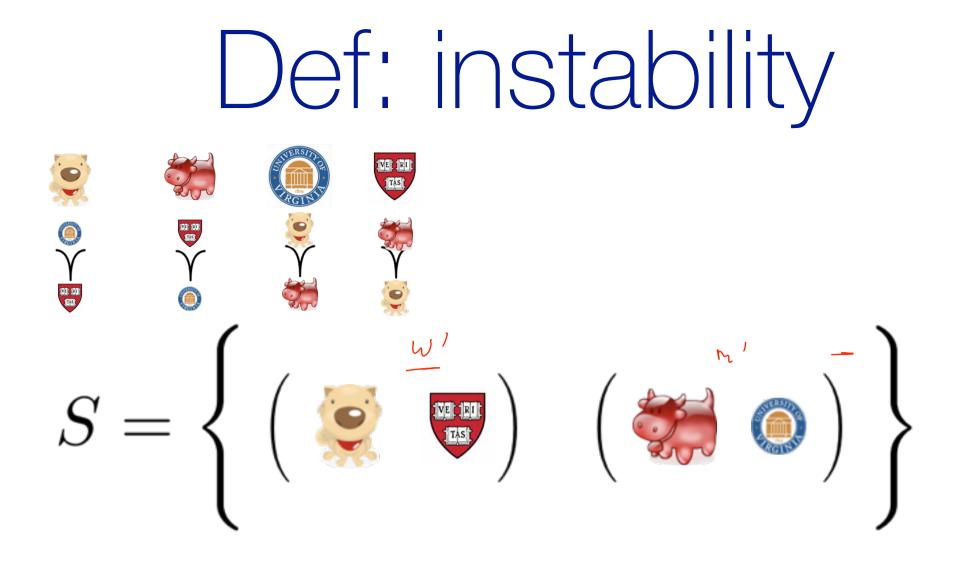
 m_i has a preference relation \prec_{m_i} on the set W

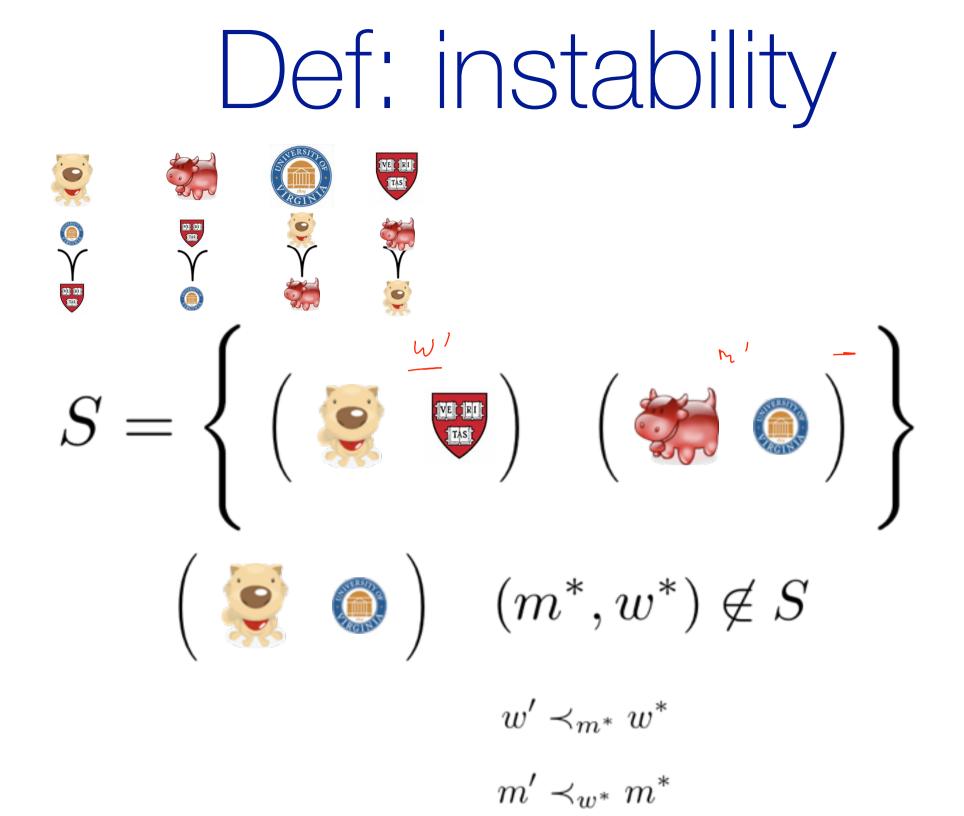
 $w_1 \prec_{m_i} w_4 \prec_{m_i} w_2 \prec_{m_i} w_8 \cdots w_n$







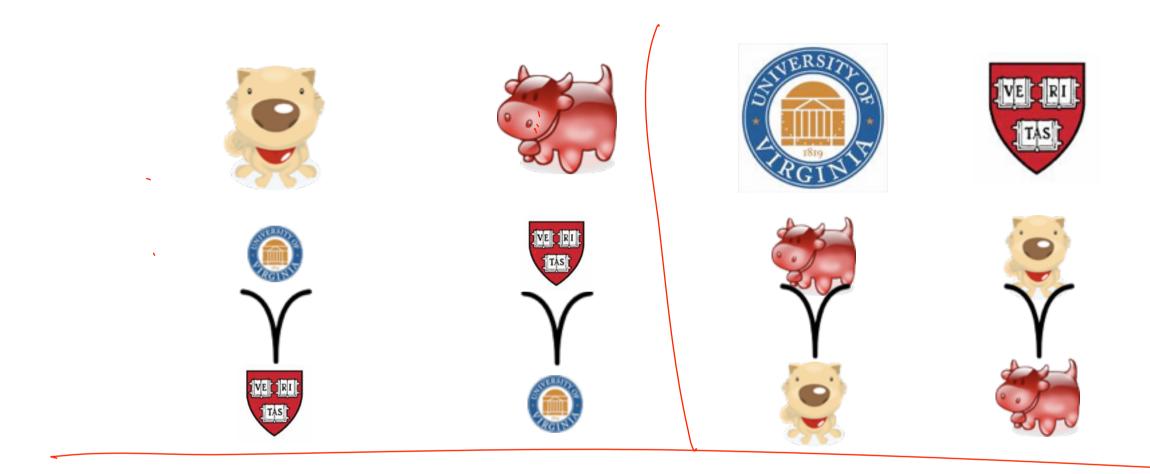


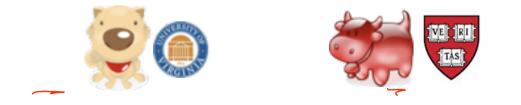


$= \{ (s_1,r_1), (s_2,r_2), \dots (s_n,r_n) \}$ is a stable matching if

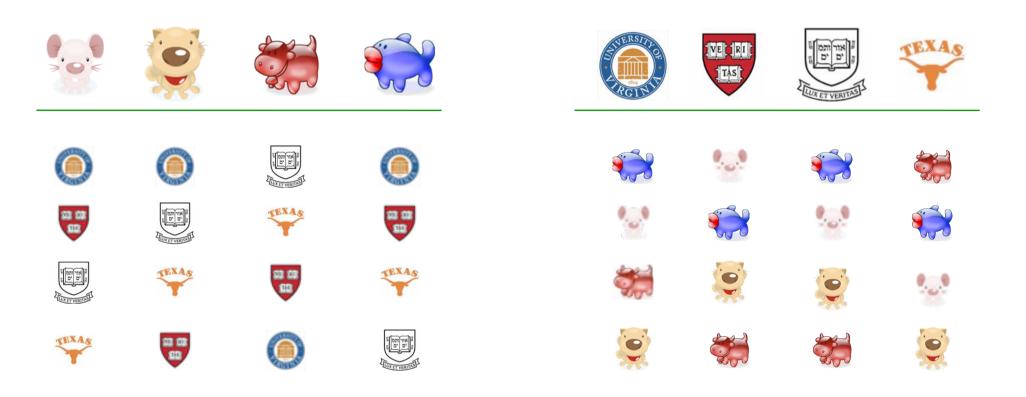
No unmatched pair (s*,r*) prefer each other to their partners in M

Example 2





Prove: for every input



there exists a stable matching.

proposal algorithm

STABLEMATCH (M, W, \prec_m, \prec_w)

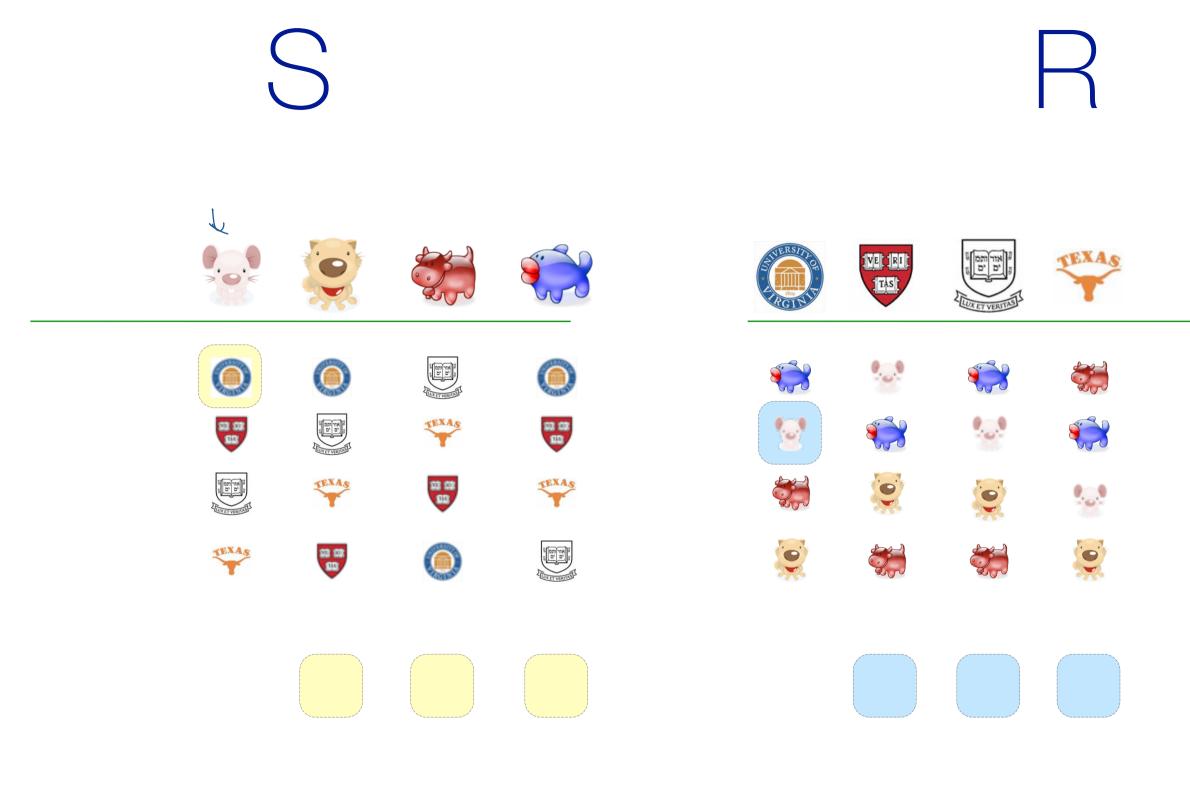
- Initialize all *m*, *w* to be FREE 1
- while $\exists FREE(m)$ and hasn't proposed to all W 2
- **do** Pick such an *m* 3
- Let $w \in W$ be highest-ranked to whom *m* has not yet proposed 4 if FREE(w)5
 - **then** Make a new pair (m, w)
 - elseif (m', w) is paired and $m' \prec_w m$
 - **do** Break pair (m', w) and make m' free
 - Make pair (m, w)
- return Set of pairs 10

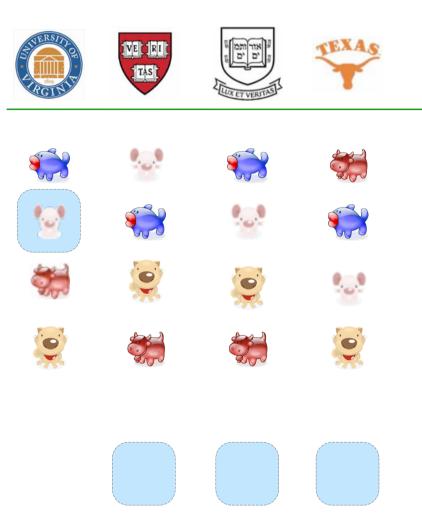
6

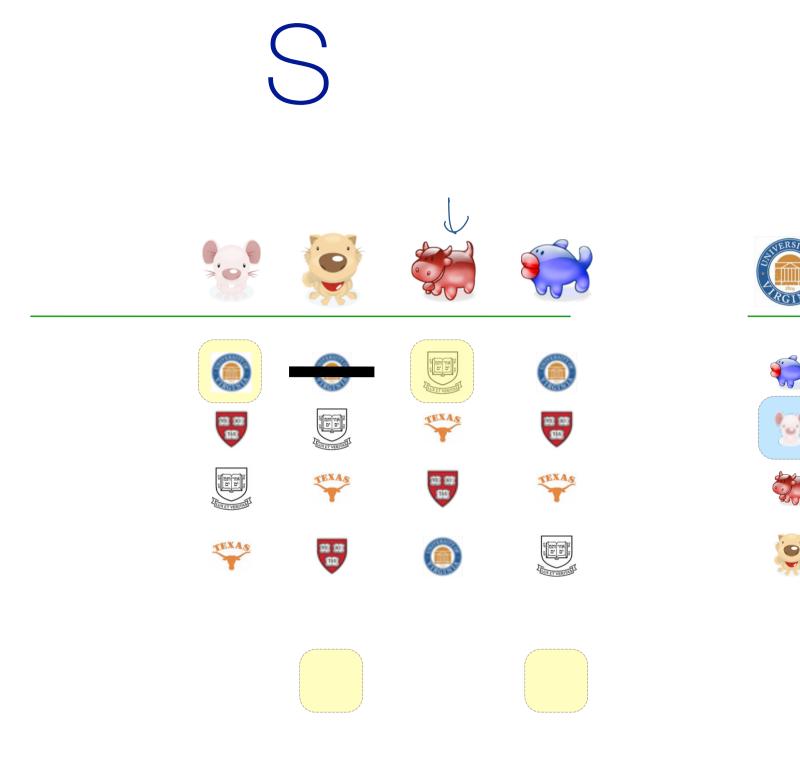
7

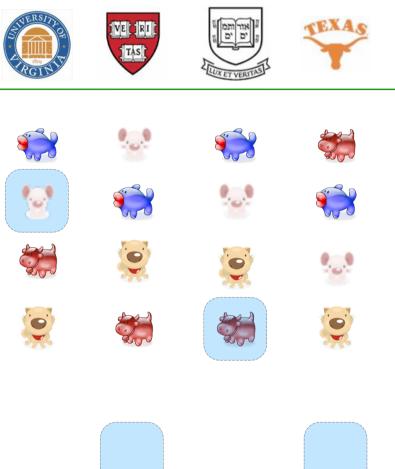
8

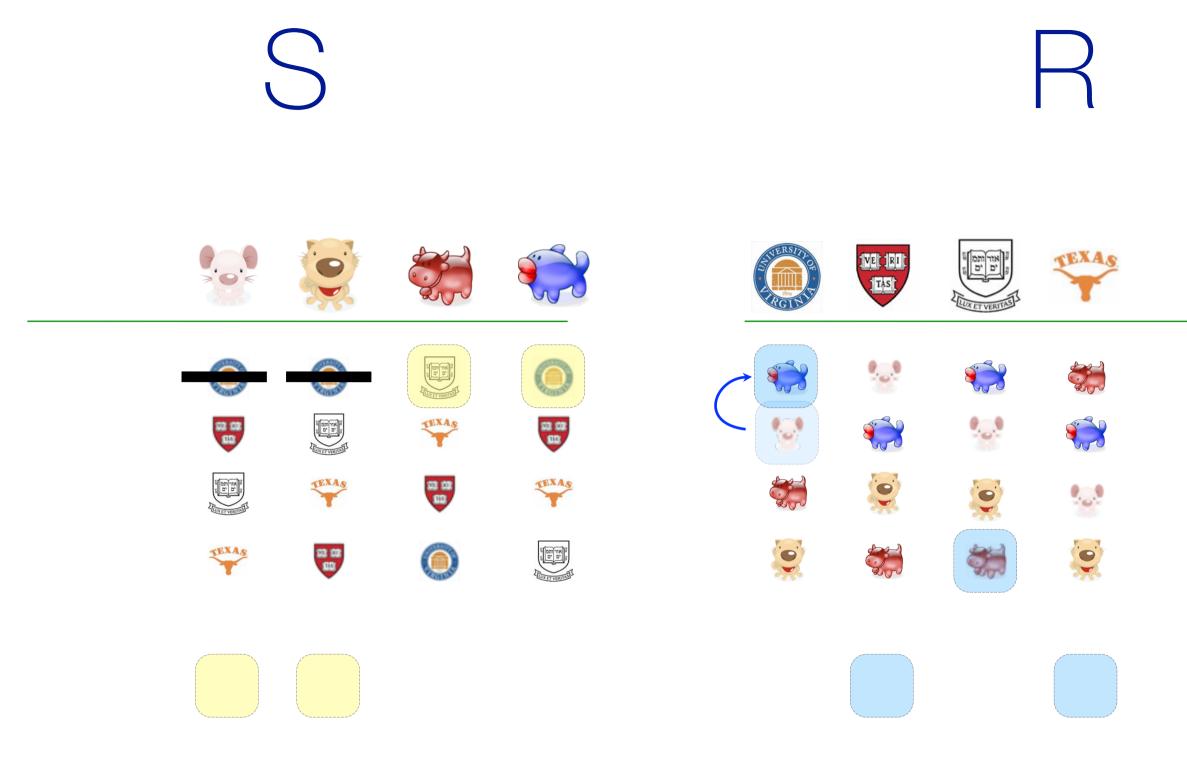
9

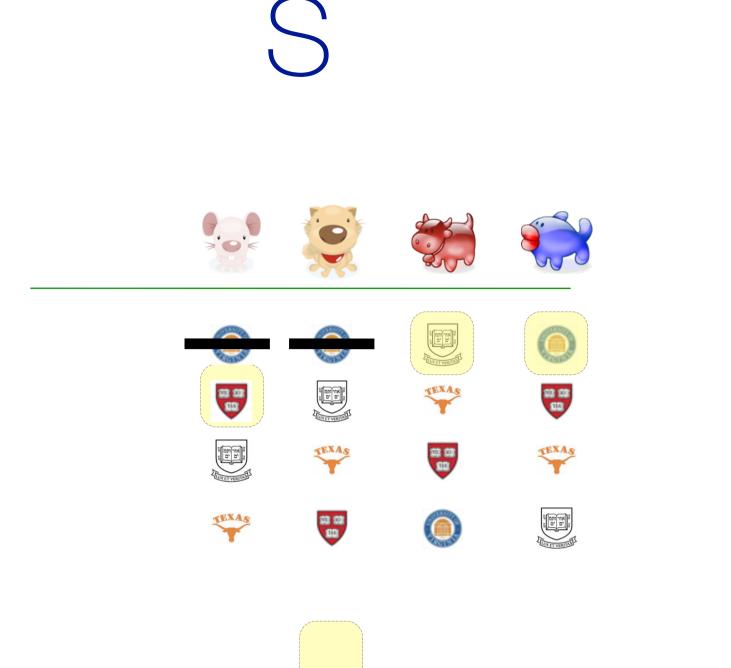


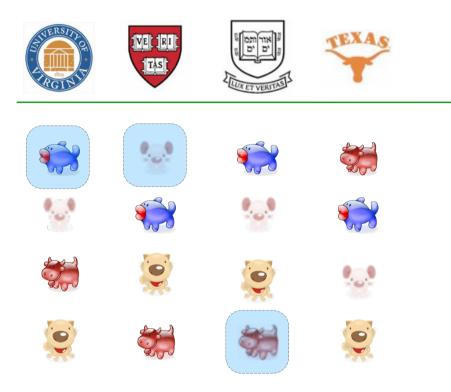


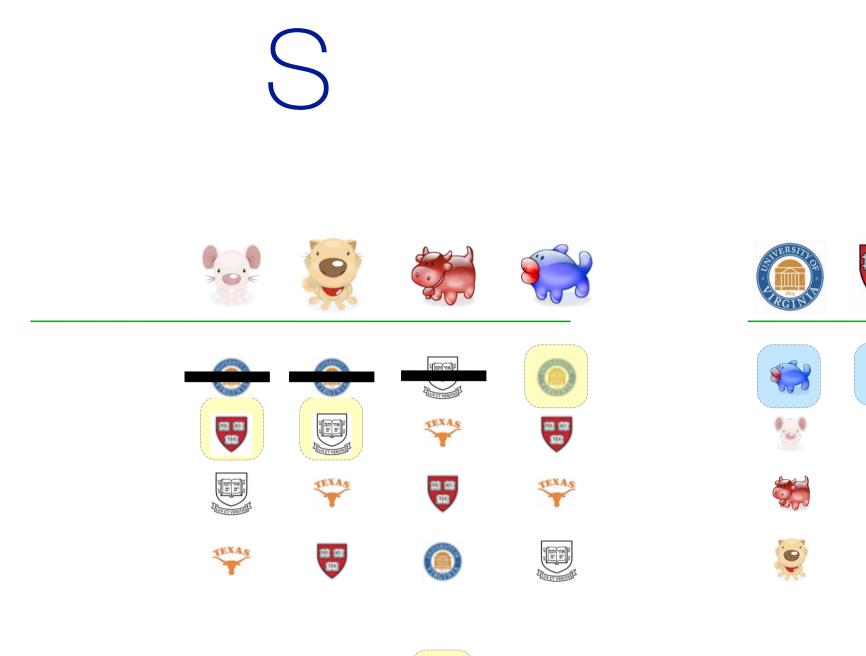


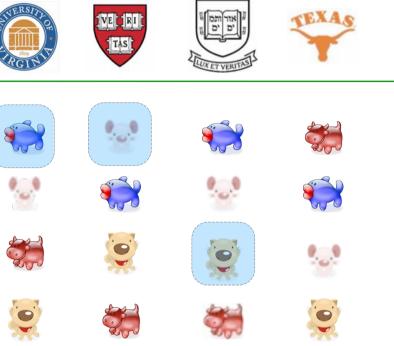














Proposal algorithm ends

proposal algorithm ends

$$O(n^2)$$
steps

each m proposes at most once to each w. each m proposes at most n times. size of M is n.

output is a matching

STABLEMATCH (M, W, \prec_m, \prec_w) Initialize all *m*, *w* to be FREE 1 while $\exists FREE(m)$ and hasn't proposed to all W 2 **do** Pick such an *m* 3 Let $w \in W$ be highest-ranked to whom *m* has not yet proposed 4 if FREE(w)5

- **then** Make a new pair (m, w)
- elseif (m', w) is paired and $m' \prec_w m$
 - **do** Break pair (m', w) and make m' free

Make pair (m, w)

return Set of pairs 10

6

7

8

9

STABLEMATCH (M, W, \prec_m, \prec_w)

- Initialize all *m*, *w* to be FREE 1
- while $\exists FREE(m)$ and hasn't proposed to all W 2
- **do** Pick such an *m* 3
- Let $w \in W$ be highest-ranked to whom *m* has not yet proposed 4 if FREE(w)5
 - **then** Make a new pair (*m*, *w*)
 - elseif (m', w) is paired and $m' \prec_w m$
 - **do** Break pair (m', w) and make m' free

Make pair (m, w)

```
return Set of pairs
10
```

6

7

8

9

output is perfect

output is perfect

if $\exists m$ who is free, then

[∃]w who has not been asked

output is stable

output is stable

spse not.

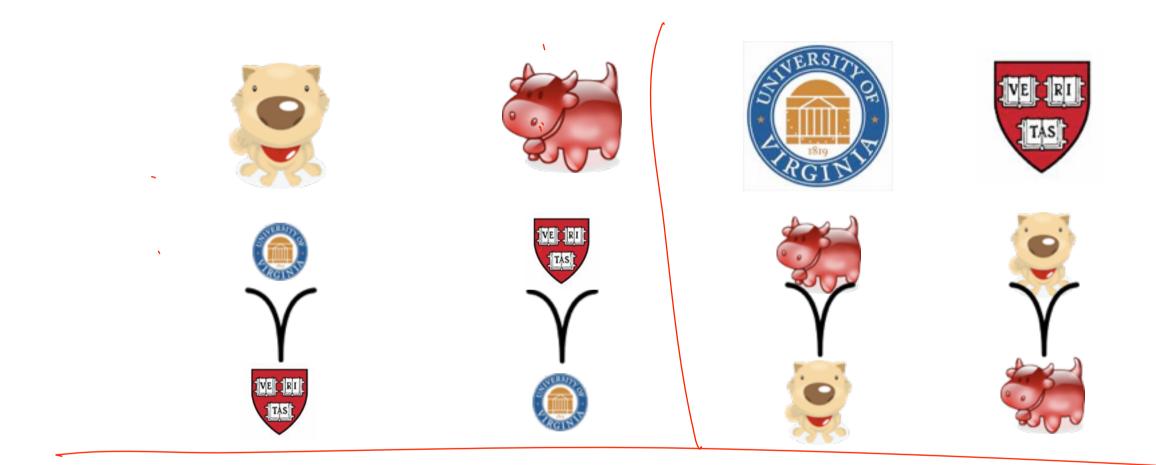
 $\exists (m^*, w), (m, w^*) \in S \qquad w \prec_{m^*} w^* \qquad m \prec_{w^*} m^*$

output is stable

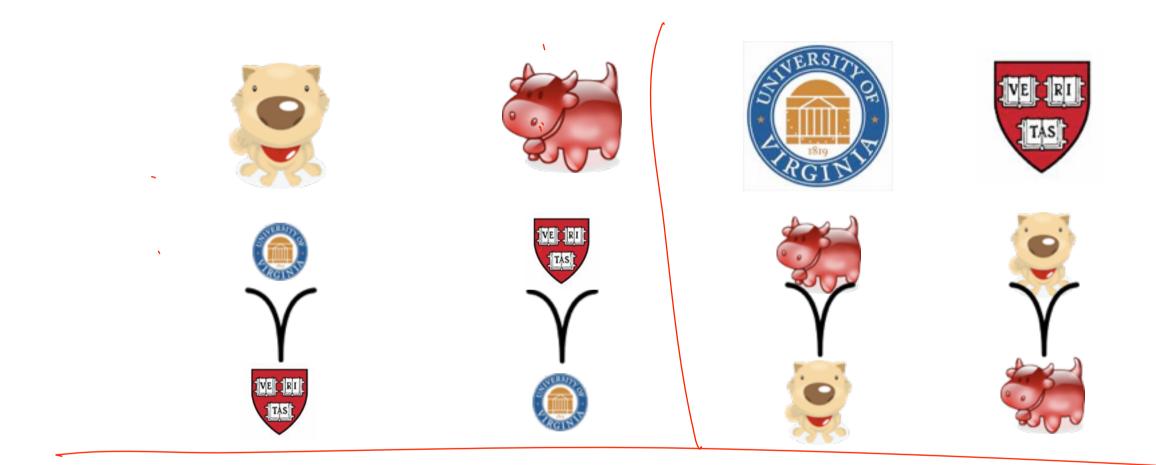
Spse not. $\exists (m^*, w), (m, w^*) \in S$ $w \prec_{m^*} w^* m \prec_{w^*} m^*$

m* last proposal was to w but $w \prec_{m^*} w^*$ and so m* must have already asked w* and must have been rejected by $m^* \prec_{w^*} m'$ then either $m' \prec_{w^*} m$ or m'=m which contradicts assumption $m \prec_{w^*} m^*$

Proposer wins



Proposer wins



Remarkable theorem

w is valid for m:

best(m):

GS is Suitor-optimal.

GS matching vs R-opt

