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What are the 2 restrictions on a flow f:

What is the value of a flow |f| :

How does the Ford-Fulkerson algorithm work?
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Edmonds-Karp 2
choose path with fewest edges first.

� f (s, v) :



� f (s, v)

�i+1(v) � �i(v)

increases monotonically thru exec
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for every augmenting path, some edge is critical.
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critical edges are removed in next residual graph.
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key idea: how many times can an edge be critical?

s t
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first time (u,v) is critical:
i i+1 j k



i i+1 j k

s u v t

time j: Edge (u,v) STRIKES BACK

s u v t

time i+1: (u,v) is critical: �i+1(s, v) � �i(s, u) + 1



i i+1 j k

s u v t

�j(s, u) = �j(s, v) + 1

time i+1: (u,v) is critical:

s u v t

�i+1(s, v) � �i(s, u) + 1

time j: Edge (u,v) STRIKES BACK



i i+1 j k
time j: Edge (u,v) STRIKES BACK

s u v t

�j(s, u) = �j(s, v) + 1
�i+1(s, v) � �i(s, u) + 1



i i+1 j k
time k: RETURN OF THE  (u,v) critical 

s u v t

�k(s, u) � �i(s, u) + 2

QUESTION: How many times can  (u,v) be critical? 



edge critical only                    times.
there are only                           edges.

ergo, total # of augmenting paths: 

time to find an augmenting path: 

total running time of E-K algorithm:
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Bipartite 



maximum bipartite matching



maximum bipartite matching



bipartite matching

problem:



Chapter 7 Network Flow

& The Problem

One of our original goals i a developing the Maximum-Flow Problem was to

be able to solve the Bipartite Matching Problem, and we now show how to

do this. Recall that a bipartite graph G = (V, E) is an undirected graph whose

node set can be partitioned as V = X U Y, with the property that every edge

e E E has one end in X anJ the other end in Y. A matching M in G is a subset

of the edges M C E such that each node appears in at most one edge in M.

The Bipartite Matching Prcblem is that of finding a matching in G of largest

possible size.

0 Designing the Algorithm

The graph defining a matching problem is undirected, while flow networks are

directed; but it is actually riot difficult to use an algorithm for the Maximum-

Flow Problem to find a ma imum matching.

Beginning with the graph G in an instance of the Bipartite Matching

Problem, we construct a flow network G' as shown in Figure 7.9. First we

direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node

in Y to t. Finally, we give each edge in G' a capacity of 1.

We now compute a maximum s-t flow in this network G'. We will discover

that the value of this maxn mum is equal to the size of the maximum matching

in G. Moreover, our analysis will show how one can use the flow itself to

recover the matching.

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities
equal to 1.
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algorithm
1. MAKE NEW G’
FROM INPUT G.
2. RUN FF ON G’

3. OUTPUT ALL MIDDLE EDGES
WITH FLOW F(E)=1.



correctness
IF G HAS A MATCHING OF SIZE K, THEN



correctness
IF G’ HAS A FLOW OF K, THEN



integrality theorem
IF CAPACITIES ARE ALL INTEGRAL, THEN 



correctness
IF G’ HAS A FLOW OF K, THEN G HAS K-MATCHING.



running time
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1. Compute max flow 
2. Remove all edges with f(e) = 0. 
3. Walk from s. 

1. If you reach a node you have visited before, 
erase flow along path 

2. If you reach t, add this path to your set, 
erase flow along path.





analysis
IF G HAS K DISJOINT PATHS, THEN 



analysis
IF G’ HAS A FLOW OF K, THEN 
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baseball elimination

W L Left A P N M
ATL 83 71 8 - 1 6 1

PHL 80 79 3 1 - 0 2

NY 78 78 6 6 0 - 0

MONT 77 82 3 1 2 0 -

Against



baseball elimination

W L Left N B Bo T D
NY 75 59 28 3 8 7 3
BAL 71 63 28 3 2 7 4
BOS 69 66 27 8 2
TOR 63 72 27 7 7
DET 49 86 27 3 4

Against



ny-ba
ny-bo
ny-to

ba-bo
ba-to

bo-to
W L Left N B Bo T D

NY 75 59 28 3 8 7 3

BAL 71 63 28 3 2 7 4

BOS 69 66 27 8 2

TOR 63 72 27 7 7

DET 49 86 27 3 4
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We have a 
group of 

suitors and 
reviewers
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2>1>3

1>3>2

1>3>2

1>2>2

3>2>1

2>3>1

Each has 
preferences 

over the 
other group
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We seek a 
stable 

matching 
between 
the two
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Unstable Matching
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Unstable Matching

G1 prefers 2 to 3

B2 prefers 
1 to 2



Stable Matching



Stable 
matching has 
many practical 
applications



 About the NRMP
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 Figure 1 Applicants and 1st Year Positions in The Match, 1952 - 2014

The National Resident Matching Program (NRMP) is a 
private, not-for-profit corporation established in 1952 to 
optimize the rank-ordered choices of applicants and 
program directors. The NRMP is not an application 
processing service; rather, it provides an impartial venue 
for matching applicants' and programs' preferences for 
each other consistently.

The first Main Residency Match® ("the Match") was 
conducted in 1952 when 10,400 internship positions were 
available for 6,000 U.S. graduating seniors. By 1973, there 
were 19,000 positions for just over 10,000 U.S. graduating 
seniors. Following the demise of internships in 1975, the 
number of first-year post-graduate (PGY-1) positions 
dropped to 15,700. The number of PGY-1 positions 
offered gradually increased through 1994 and then began 
to decline slowly until 1998. This year saw a record-high 
26,678 PGY-1 positions offered (Figure 1),

marking the twelveth consecutive annual increase in such
positions.

The trend in the total number of applicants since 1952 is 
more dramatic, starting with 6,000 in 1952 and rising to a 
high of 36,056 in 1999. After a decline of 5,052 
applicants from 1999 to 2003, the number of applicants 
has increased each year since the 2004 Match. Applicants 
registered for the 2014 Match reached an all time high of 
40,394, an increase of 59 applicants over 2013.

For more information about the NRMP, please visit: 
www.nrmp.org. Additional data and reports for the Main 
Residency Match and the Specialties Matching Service® 
(SMS®) can be found at: www.nrmp.org/match-data. 
Instructions on how to request NRMP data also are 
provided. 

vResults and Data 2014 Main Residency Match®

29671

40394



2013 R-1 Match
Table 1: Summary of Match Results

Copyright © 2013, Canadian Resident Matching Service. All rights reserved. No part of this report may be used or reproduced in 
any form or by any means, or stored in a database or retrieval system without prior written permission of the publisher except in the

case of brief quotations embodied in critical articles and reviews.

Matched Unmatched Final Participation

Applicant Type 2013 
Graduates

Prior Year 
Graduates1 Total 2013 Graduates Prior Year 

Graduates1 Total 2013 Graduates Prior Year 
Graduates1 Total

CMG 2571 74 2645 62 40 102 2633 114 2747
IMG 146 353 499 192 1525 1717 338 1878 2216

USMG 23 2 25 10 12 22 33 14 47
TOTAL 2740 429 3169 264 1577 1841 3004 2006 5010

Keywords: Summary, match results, 1st and 2nd iteration combined, prior year, current year, unmatched, final participation

Note 1: Includes graduates from all years prior to 2013.
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Definition: matchings

M= 
W= 

S= 



Definition: matchings

Each mi(wi)appears only one in a pairing. 
A matching is perfect if every mi appears.



 Image credits: Julia Nikolaeva



Definition: preferences



 

 Image credits: Julia Nikolaeva



Example: preferences

has a preference relation
on the set W

  



 

 



 

 



Def: instability



Def: instability



No unmatched pair (s*,r*) prefer 
each other to their partners in M

M 

= { (s1,r1), (s2,r2), … (sn,rn) }

is a stable matching if



Example 2



Prove: for every input

there exists a stable 
matching.



proposal algorithm



4102 stable match ?? 2016

StableMatch(M, W,�m,�w)

1 Initialize all m, w to be free

2 while 9free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w 2 W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m0, w) is paired and m0 �w m
8 do Break pair (m0, w) and make m0 free
9 Make pair (m, w)

10 return Set of pairs

8
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Proposal algorithm ends



proposal algorithm ends

steps
each m proposes at most once to each w.
each m proposes at most n times.
size of M is n.



output is a matching
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output is perfect



output is perfect

if who is free, then  

who has not been 
asked



output is stable



9(m⇤, w), (m, w⇤) 2 S w �m⇤ w⇤ m �w⇤ m⇤

output is stable
spse not.



9(m⇤, w), (m, w⇤) 2 S w �m⇤ w⇤ m �w⇤ m⇤

m⇤ �w⇤ m0

m0 �w⇤ m

output is stable
spse not.

m* last proposal was to w
but and so m* must have already asked w*
and must have been rejected by 
then either or      m’=m
which contradicts assumption 

w �m⇤ w⇤

m �w⇤ m⇤



Proposer wins



Proposer wins



Remarkable theorem

w is valid for m:

best(m):



GS  is Suitor-optimal.



GS matching vs R-opt
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