
11.8.2016
abhi shelat

Each has preferences over the other group

Unstable Matching

Unstable Matching

Unstable Matching

Stable Matching

Stable

matching has
many practical
applications

Figure 1 Applicants and 1st Year Positions in The Match, 1952-2014

	Matched		
Applicant Type	2013 Graduates	Prior Year Graduates ${ }^{1}$	Total
CMG	2571	74	2645
IMG	146	353	499
USMG	23	2	25
TOTAL	2740	429	3169

与Ш限氯 TECHNOLOGY AND DESIGN

Established in collaboration with MIT

Definition: matchings

$$
\left.\begin{array}{ll}
M=\left\{m_{1} m_{2} \ldots\right. & \left.m_{n}\right\} \\
W=\left\{s_{1} \ldots\right. & s_{n}
\end{array}\right\}
$$

$S=\left\{\left(m_{i}, s_{j}\right)\right\}$ such that each m and each w appear in exactly one pair in S.

Definition: matchings

$$
\begin{gathered}
M=\left\{m_{1}, \ldots, m_{n}\right\} \\
W=\left\{\underline{w_{1}, \ldots, w_{n}}\right\} \\
S=\left\{\left(m_{i_{1}}, w_{j_{1}}\right), \ldots,\left(m_{i_{k}}, w_{i_{k}}\right)\right\}
\end{gathered}
$$

Each $\mathrm{m}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{i}}\right)$ appears only one in a pairing. A matching is perfect if every m_{i} appears.

preferences

Definition: preferences

$$
\begin{aligned}
& M=\left\{m_{1}, \ldots, m_{n}\right\} \\
& w_{i} c_{m_{1}} w_{j} \quad \text { "miprefers } w_{j} \text { to } w_{i} "
\end{aligned}
$$

Example: preferences

$$
M=\left\{m_{1}, \ldots, m_{n}\right\}
$$

m_{i} has a preference relation $\prec_{m_{i}}$

Def: instability

is an unmatched pair (m, w) such that m prefers w to its current match w^{\prime} w prefers m to its current match m '

$$
\begin{aligned}
& \text { Def: instability } \\
& \text { 皆 }{ }^{\circ} \\
& s=\left\{\left(\mathrm{O}_{\mathrm{o}}^{\mathrm{E}} \mathrm{E}\right)(\mathrm{O})\right\} \\
& \text { (\% ○) }\left(m^{2}, w^{*}\right) \notin S \\
& w^{\prime} \prec_{m^{*}} w^{*} \\
& \overline{m^{\prime} \prec_{w^{*}} m^{*}}
\end{aligned}
$$

$M^{=(\tan)}$
 is a stable matching if

No unmatched pair (s^{*}, r^{*}) prefer each other to their partners in M

Example 2

-O 目

Prove: for every input

\%	O (
- ㅇ․․․․	
\square^{-1}	

there exists a stable matching.
proposal algorithm

- stat with everyone unmatched
while there is an unmatched suitor S
Let r be highest rankal revieven that S hasn't proposed to S proposes a math with r
if r is unmatched or rismatdel to $\left(s^{\prime}, r\right)$ and $S^{\prime}=_{r} S$ break the match $(s), r)$ \& create the match (s, r)

```
StableMatch( }M,W,\mp@subsup{\prec}{m}{\prime},\mp@subsup{\prec}{w}{}
```

1 Initialize all m, w to be free
2 while $\exists \operatorname{FREE}(m)$ and hasn't proposed to all W
3 do Pick such an m

10 return Set of pairs

S

			Gros				
	๑）				θ		5
				θ		θ	8
					Q°		Q．
	∞	\Leftrightarrow	国國路	0	4	En	0

S
R

S

R

－－\％				（1）娄 䍖			
－	\sim	［	\bigcirc	－	\because	－	＊
（1）	－	＂	（t）	（3）	－	\％	－
回	\％	（	$\stackrel{\square}{5}$	\％	\％	\％	\because
－	＊	－	，	\％	\％	b	\％

s
R

S
R

○田回

－

S
R

S

S

$\xrightarrow{(2)}$

Proposal algorithm ends

Proposal algorithm ends

$O\left(n^{2}\right)$ steps

each m proposes at most once to each w. each m proposes at most n times.
size ϕ (M) is at most n.
output is a matching
Each m only appears at most once in the output.
By lines 6 and g, when a math is added to potential outport, both parties are unmatchal at the time of match by lines 2,5 and /ar 8 .

```
StableMatch( }M,W,\mp@subsup{\prec}{m}{\prime},\mp@subsup{\prec}{w}{}
```

1 Initialize all m, w to be free
2 while $\exists \operatorname{rree}(m)$ and hasn't proposed to all W
3 do Pick such an m

```
StableMatch( }M,W,\mp@subsup{\prec}{m}{\prime},\mp@subsup{\prec}{w}{}
```

1 Initialize all m, w to be free
2 while $\exists \operatorname{rree}(m)$ and hasn't proposed to all W
3 do Pick such an m

Let $w \in W$ be highest-ranked to whom m has not yet proposed if $\operatorname{FREE}(w)$
then Make a new pair (m, w)
elseif $\left(m^{\prime}, w\right)$ is paired and $m^{\prime} \prec_{w} m$
do Break pair $\left(m^{\prime}, w\right)$ and make m^{\prime} free
Make pair (m, w)
return Set of pairs
output is perfect
$|\mu|=n$. Because
\Rightarrow if there is an unmatchal suitor
\Rightarrow I an unmatched reviewer.
(so alg has not terminated yA)

output is perfect

if $\exists m$ who is free, then
$\exists w$ who has not been asked
output is stable
Proof: By contradiction. Spse output is not stake. There exists an unmatched pair $\left(m^{*}, w^{*}\right)$ such that $\omega<m_{k} w^{*}$ and $m<w_{*} m^{*}$. and $\left(m^{*}, w\right)\left(m, w^{*}\right) \in M$
output is stable
spae not. $\exists\left(m^{*}, w\right),\left(m, w^{*}\right) \in S \quad w \prec_{m^{*}} w^{*} \underline{\prec_{w^{*}} m^{*}}$
Consider the moment when w^{*} is matchal with my and the moment when m^{*} is matched with w.
(1) m^{*} must have proposed to w laot. Bot we know that m^{*} preferreal ω^{*} to w. And by the algorithm, this means that m proposal to ω^{*} before proposing to w.
(2) What happened when m^{*} proposed to $w^{*} ? ?$? $\left(m^{*}, w^{*}\right)$ was made but then at some point $\left(m, \omega^{*}\right)$ was made
or (b) w* was c'ready matched to m 'and $m *$ _w* m^{\prime}
$m^{*}<_{w *} m$ which contradicts above.

output is stable

spse not. $\exists\left(m^{*}, w\right),\left(m, w^{*}\right) \in S \quad w \prec_{m^{*}} w^{*} m \prec_{w^{*}} m^{*}$
m* last proposal was to w
but $\quad w \prec_{m^{*}} w^{*}$ and so m^{*} must have already asked w^{*}
and must have been rejected by $m^{*} \prec_{w^{*}} m^{\prime}$
then either $\quad m^{\prime} \prec_{w^{*}} m \quad$ or $\quad m^{\prime}=m$
which contradicts assumption $\overline{m \prec_{w^{*}}} m^{*}$

Proposer wins

Proposer wins

Remarkable theorem
w is valid for m : if J a stable matching S such that $(n, w) \in S$. best (m) : best (m) is valid for m and there is N_{1} valid w^{*} such that best $(m) \Lambda_{m} w^{*}$

The: G-S returns the match $\{(m$, bert $(m n))\}$. $\left(\begin{array}{l}\text { proposes optimal match) } \\ \text { suitor }\end{array}\right.$

GS is Suitor-optimal.
Proof: Suppose that 65 did not rectum the $S^{*}=\{(m$, best $(m)\}$.
It returned $S \neq S^{*}$. i.e, there is some m, ${ }^{(a)} w=$ bes (m).
So r tor oe find $\rightarrow S t$
(M, ω)
(a) $\omega^{\prime}<_{m} \omega b / c$
$\omega=$ best (n)
$\left(m^{\prime \prime}, w^{\prime}\right)$
(b) $m^{\prime}<_{w} m$
why??
since (M, w) was valid match,
w must prefer m
Conclusion: S was not stable b/e of (m, w).
\Rightarrow contradiction, to the underlined sentence.

GS matching vs R-opt

S 1	S 2	S 3	S 4	R 1	R 2	R 3	R 4
		S 1	S 1	S 1	S 1		
	S 2	S 2	S 2	S 2			
	S 3	S 3	S 3	S 3			
	S 4	S 4	S 4	S 4			

S1	S2	S3	S4	R1	R2	R3	R4
$0 \cdot \%$	0	\%禹	-3	E)	(10)	國	$\frac{\text { Tras }}{\text { T }}$
R1	R1	R1	R1	S1	S1	S1	S1
R2	R2	R2	R2	S2	S2	S2	S2
R3	R3	R3	R3	S3	S3	S3	S3
R4	R4	R4	R4	S4	S4	S4	S4

S1	S2	S3	S4	R1	R2	R3	R4
$0 \cdot 0$	0	*)	-38	E)	(10)	國	$\frac{\text { dxas }}{T}$
R1)	R1	R1	R1	S1	S1	S1	S1
R2	R2	R2	R2	S2	S2	S2	S2
R3	R3	R3	R3	S3	S3	S3	S3
R4	R4	R4	R4	S4	S4	S4	S4

Not honest					
S1	S2	S3	R1	R2	R3
O\%	\%	*	O	팞.	包
R2	R1	R1	S1	S2	S2
R1	R2	R3	S2	S1	S3
R3	R3	R2	S3	S3	S1

"MATCH

Guns and butter

$\max x+y$

$$
\begin{aligned}
4 x-y & \leq 8 \\
2 x+y & \leq 10 \\
5 x-2 y & \geq-2 \\
x, y & \geq 0
\end{aligned}
$$

Certificate of optimality

$\max x+y$

$$
\begin{aligned}
4 x-y & \leq 8 \\
2 x+y & \leq 10 \\
5 x-2 y & \geq-2 \\
x, y & \geq 0
\end{aligned}
$$

