
11.22 .2016
abhi shelat

zero-sum games

zero-sum games

COLIN

zero-sum games

COLIN

ROWENA

zero-sum games

COLIN

zero-sum games

colin

her strategy first:

zero-sum games

colin

her strategy first:

$$
\left(r_{1}, r_{2}\right) \quad \min \left\{3 r_{1}-2 r_{2},-r_{1}+r_{2}\right\}
$$

zero-sum games

colin

 her strategy first:

$$
\begin{gathered}
\mathfrak{Z} \times 7 \\
z \leq 3 r_{1}-2 r_{2} \\
z \leq-r_{1}+2 r_{2} \\
r_{1}+r_{2}=1 \\
r_{1}, r_{2} \geq 0
\end{gathered}
$$

zero-sum games

colin

 his strategy first:

$$
\left(c_{1}, c_{2}\right)
$$

zero-sum games

colin

 his strategy first:
pick $\left(c_{1}, c_{2}\right)$ so as to $\min \max \left\{3 c_{1}-c_{2},-2 c_{1}+c_{2}\right\}$

zero-sum games

colin

 his strategy first:

$$
\begin{aligned}
\min w & \\
-3 c_{1}+c_{2}+w & \geq 0 \\
2 c_{1}-c_{2}+w & \geq 0 \\
c_{1}+c_{2} & =1 \\
c_{1}, c_{2} & \geq 0
\end{aligned}
$$

zero-sum games

$$
\begin{aligned}
-3 r_{1}+2 r_{2}+z & \leq 0 \\
r_{1}-r_{2}+z & \leq 0 \\
r_{1}+r_{2} & =1 \\
r_{1}, r_{2} & \geq 0
\end{aligned}
$$

zero-sum games

zero-sum games

	colin	
	$2 / 7$	
	$5 / 7$	
rowena	3	-1
$4 / 7$	-2	1

value of the game is : $1 / 7$
$\max _{x} \min _{y} \sum_{i, j} G_{i j} x_{i} y_{j}=\min _{y} \max _{x} \sum_{i, j} G_{i j} x_{i} y_{j}$

Colin

Rowena

Welcome to the
cdd and cddplus Homepage

Last update: May 15, 2015

Currently, the C-library version cddlib of cdd packages is the only one being updated, while standalone codes cdd and cddplus are still useful. To know what cdd, cddplus and cddlib are, please read
cddplus readme
cddlib readme
Manuals (html version):
cdd/cdd+ manual
cddlib manual
Get source codes:
cdd/cddpuls directory click here
cdd package cdd-061 a.tar.gz
cddplus package cdd+-077a.tar.gz (to be compled with g++4.1. With more recent g++, try
patch) NEW. With g++ 3.1, use cdd+-077.tar.gz
cddlib package cddlib-094h.tar.gz NEW
To know the implementation:
"The double description revisited" gzipped ps file
To learn the fundamental concepts of Convex Hull, Vornonoi, Delaunay, etc.:
"Polyhedral Computation FAQ" (still experimental) html version or pdf file
Links to cdd/cdd+/cddlib users and more. NEW

standard form

$\max _{x} \sum x_{i} c_{i}$

$$
\sum a_{i j} x_{i} \leq b_{i}
$$

$$
x_{i} \geq 0
$$

getting to standard form

$$
\underset{\substack{\operatorname{X}}}{\min _{\substack{ }} a_{i j} x_{i} \leq b_{i}} \underset{x_{i} \geq 0}{ } \mathcal{X}_{\boldsymbol{i}} C_{i}
$$

getting to standard form

$$
\begin{aligned}
& \underset{\mathcal{X}}{\boldsymbol{m a x}} \sum_{\boldsymbol{\chi}} \mathcal{X}_{\boldsymbol{i}} C_{i} \\
& \sum a_{i j} x_{i} \geq b_{i} \\
& x_{i} \geq 0
\end{aligned}
$$

getting to standard form

$$
\begin{aligned}
& \underset{\mathcal{X}}{\boldsymbol{n a x}^{\boldsymbol{a}}} \sum_{\boldsymbol{i}} \mathcal{X}_{\boldsymbol{i}} \\
& \sum a_{i j} x_{i}=b_{i} \\
& x_{i} \geq 0
\end{aligned}
$$

getting to standard form

$$
\max _{x} \sum x_{i} c_{i}
$$

(non-negative)
ie, what if there is
no constraint
on x ?

H-representation begin

```
24 13 rational
0 0 0 0 0 0 1/2 5/12 1/3 1/4 1/6 1/12 -1
0 0 0 0 0 7/22 5/22 5/33 1/11 1/22 1/66 0 -1
0 0 0 0 0 7/44 1/11 1/22 1/55 1/220 0 0 -1
0 0 0 0 14/99 7/99 1/33 1/99 1/495 0 0 0 -1
0}0007/99 7/264 1/132 1/792 0 0 0 0 -1
0 0 0 1/11 1/33 1/132 1/924 0 0 0 0 0 -1
0 0 0 1/22 1/99 1/792 0 0 0 0 0 0 -1
0}01/11 1/55 1/495 0 0 0 0 0 0 0 -1
0 0 1/22 1/220 0 0 0 0 0 0 0 0 -1
0 1/6 1/66 0 0 0 0 0 0 0 0 0 -1
0 1/12 0 0 0 0 0 0 0 0 0 0 -1
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
-1
011000000000000
0011000000000000
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
00000100000000
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0000000000100000
000000000010000
0 0 0 0 0 0 0 0 0 0 1 0 0
000000000000010
end
maximize
00000000000 0 0 0 1
```

```
*cdd LP Result
*cdd input file : 12.ine (24 x 13)
*LP solver: Dual Simplex
*LP status: a dual pair (x, y) of optimal solutions found.
*maximization is chosen.
*Objective function is
    0 + 0 X[1] + 0 X[2] + 0 X[3] + 0 X[4] +
    0 X[5] + 0 X[6] + 0 X[7] + 0 X[8] + 0 X[9] +
    0 X[10] + 0 X[11] + 1 X[12]
*LP status: a dual pair (x, y) of optimal solutions found.
begin
    primal solution
    1 : 280/1643
    2 : 4217/14787
    3 : 130/477
    4 : 280/1643
    5 : 120/1643
    6 : 140/4929
    7 : 0
    8: 0
    9: 0
    10: 0
    11 : 0
    12 : 70/4929
    dual_solution
    24 : 383/29574
    21 : 599/73935
    20: 74/14787
    22 : 1003/98580
    23: 173/14787
    1 : 74/4929
    3 : 99/1643
    5 : 264/1643
    7 : 462/1643
    9: 1540/4929
    11 : 280/1643
    12 : 70/4929
    optimal_value : 70/4929
end
*number of pivot operations = 8
*Computation starts at Tue Apr 19 12:54:03 2016
* terminates at Tue Apr 19 12:54:03 2016
*Total processor time = 0 seconds
* = 0h 0m 0s
closing the file 12.lps
closing the file 12.ddl
```


how to "evaluate" an lp

$\max c^{T} \vec{x}$

$$
\begin{array}{r}
A \vec{x} \leq \vec{b} \\
\vec{x} \geq 0
\end{array}
$$

definitions

feasible point:

vertex:

neighbor of vertex v :
simplex
init:
while do:

$$
\begin{aligned}
\max 2 x_{1}+5 x_{2} & \\
2 x_{1}-x_{2} & \leq 4 \\
x_{1}+2 x_{2} & \leq 9 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\max 2 x_{1}+5 x_{2} & \\
2 x_{1}-x_{2} & \leq 4 \\
x_{1}+2 x_{2} & \leq 9 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

$$
y_{1}=x_{1}, y_{2}=3+x_{1}-x_{2}
$$

$$
\begin{array}{r}
\max 7 y_{1}-5 y_{2}+15 \\
y_{1}+y_{2} \leq 7 \\
3 y_{1}-2 y_{2} \leq 3 \\
y_{2} \geq 0 \\
y_{1} \geq 0 \\
-y_{1}+y_{2} \leq 3
\end{array}
$$

$$
\begin{aligned}
\max 7 y_{1}-5 y_{2}+15 & \\
y_{1}+y_{2} & \leq 7 \\
3 y_{1}-2 y_{2} & \leq 3 \\
y_{2} & \geq 0 \\
y_{1} & \geq 0 \\
-y_{1}+y_{2} & \leq 3
\end{aligned}
$$

$$
z_{1}=3-3 y_{1}+2 y_{2}, z_{2}=y_{2}
$$

$$
\begin{aligned}
& \max 22-\frac{7}{3} z_{1}-\frac{1}{3} z_{2} \\
&-\frac{1}{3} z_{2}+\frac{5}{3} z_{2} \leq 6 \\
& z_{1} \geq 0 \\
& z_{2} \geq 0 \\
& \frac{1}{3} z_{1}-\frac{2}{3} z_{2} \leq 1 \\
& \frac{1}{3} z_{1}+\frac{1}{3} z_{2} \leq 4
\end{aligned}
$$

$$
\begin{array}{rr}
\max 22-\frac{7}{3} z_{1}-\frac{1}{3} z_{2} & \\
-\frac{1}{3} z_{2}+\frac{5}{3} z_{2} \leq 6 & z_{1}=3-3 y_{1}+2 y_{2}, z_{2}=y_{2} \\
z_{1} \geq 0 & y_{1}=x_{1}, y_{2}=3+x_{1}-x_{2} \\
z_{2} \geq 0 & \\
\frac{1}{3} z_{1}-\frac{2}{3} z_{2} \leq 1 & \\
\frac{1}{3} z_{1}+\frac{1}{3} z_{2} \leq 4 &
\end{array}
$$

Optimality

$\max 2 x_{1}+5 x_{2}$

$$
\begin{aligned}
2 x_{1}-x_{2} & \leq 4 \\
x_{1}+2 x_{2} & \leq 9 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

simplex

simple fact: origin is optimal if and only if

initial vertex
no solution?
run time

