
L23
4800

12.2.2016

abhi shelat

http://kitsunenoir.com/blogimages/bloc-matches.jpg

http://kitsunenoir.com/blogimages/bloc-matches.jpg

check procedure:

check procedure:
randomly pick 50 matches and light them
if one fails, reject the box.
if all succeed, accept it.

Pr that test fails
three cases to consider:

Pr of failure for n=100
9.91165302141833906737674969
6883601495412210270643283767
8927852568890730299973273935

87632943101698342E-30

0.0000000000000000000000000000099

9.91165302141833906737674969
6883601495412210270643283767
8927852568890730299973273935

87632943101698342E-30

0.0000000000000000000000000000099

9.91165302141833906737674969
6883601495412210270643283767
8927852568890730299973273935

87632943101698342E-30

pr of royal flush:
1.53908E-6

0.0000000000000000000000000000099

pr that you...

Age in 1990 Total U.S. White Male White Female Black Male Black Female

20 0.102% 0.128% 0.045% 0.307% 0.074%

Using random coins
can help overcome
adversarial behavior

Using random coins
can also simplify an

algorithm

Disk Disk

Fingerprinting

Alice Bob

Disk Disk

Fingerprinting

Alice Bob
pick prime p

A B

Disk Disk

A mod p

B mod p

Fingerprinting

Alice Bobpick prime p

A B

send p,

compare with
if A=B, then

Disk Disk

A mod p

B mod p

Fingerprinting

Alice Bobpick prime p

A B

send p,

compare with
if A≠B, then

number of primes

number of primes
there are certainly infinitely many

: # of primes < x

lemma:
of prime divisors of x < log(x)

import java.io.*;
import java.math.*;
import java.util.*;

public class pr {
 public static void main(String args[]) {

 BigInteger prime = new BigInteger(128,80,new Random());
 System.out.println("prime is " +prime);

 }
}

Easy to pick primes

abhis-MacBook-Pro:hw abhi$ java pr
prime is 194320298558336431416620955357714454897
abhis-MacBook-Pro:hw abhi$ java pr
prime is 250932337219632799561119530768795821559
abhis-MacBook-Pro:hw abhi$ java pr
prime is 208446315596042010374903390602426953283
abhis-MacBook-Pro:hw abhi$ java pr
prime is 277692390735250370111358788148532452689
abhis-MacBook-Pro:hw abhi$ java pr
prime is 178745644948876658400223198257146073499

pr of false match:

Disk Disk

example params
Alice Bobrandomly pick 64bit prime p

A B

send p, hA=A mod p

Compute hB←B mod p
If hA = hB Output EQUAL

A squabble between a group fighting spam and a

Dutch company that hosts Web sites said to be

sending spam has escalated into one of the

largest computer attacks on the Internet,

causing widespread congestion and jamming

crucial infrastructure around the world.

Millions of ordinary Internet users have

experienced delays in services like Netflix or

could not reach a particular Web site for a

short time.

However, for the Internet engineers who run

string matching
pattern corpus

string matching
pattern corpus

string matching
brute force:

for (int i = 0, j=0; i < n-m; i++) {
while (j < m && t[i+j] == p[j]) { j++; }
if (j == m) return i;

}
return -1;

.......

simple algorithm

aaaaaaaaaaaaaaaaa
aaaaaab

brute force worst case:

simple algorithm

aaaaaaaaaaaaaaaaa
aaaaaab

brute force worst case:

aaaaaab
aaaaaab

simple algorithm

aaaaaaaaaaaaaaaaa
aaaaaab

brute force worst case:

aaaaaab
aaaaaab

aaaaaab
aaaaaab

KMP algorithm

abcdabcdabcdefh
abcdabhi

KMP algorithm

abcdabcdabcdefh
abcdabhi

KMP sliding rule
given that P[1....q] matches T[j...j+q],
but a mismatch occurs at j+q+1, then:

KMP sliding rule
given that P[1....q] matches T[j...j+q],
but a mismatch occurs at j+q+1, then:

find the longest prefix P[1…i] of P[1...q]
that is also a suffix of P[1...q]

slide (q-i) so that P[1...i] matches T[j+(q-i),…]

abcdabhi

x y x y y x y x y x x
0 1 2 3 4 5 6 7 8 9 10

x y x y y x y x y x x
0 0 1 2 0 1 2 3 4 3 1

0 1 2 3 4 5 6 7 8 9 10

new idea for
string match

string matching
pick random t-bit prime

compute h = pattern mod prime

for i=1...n

compute hi = next corpus ci mod prime

if hi == h, output match

pick an 128-bit prime p
What is the probability of a false match at the first position?

pr of any mismatch:

string matching example
pattern Text

31415926535897931226535

string matching example
pattern Text

31415926535897931226535

Given that 31415 mod 17 = 16,
How can I compute 14159 mod 17?

Hint: 10000 mod 17 = 4

public static int search(String p, String t) {
int M = p.length();
int N = t.length();
int dM = 1, h1 = 0, h2 = 0;
int q = pickRandomPrime();
int d = 256; // radix
for (int j = 1; j < M; j++) // precompute d^M % q

dM = (d * dM) % q;

for (int j = 0; j < M; j++) {
h1 = (h1*d + p.charAt(j)) % q; // hash of pattern
h2 = (h2*d + t.charAt(j)) % q; // hash of text

}
if (h1 == h2) return i - M; // match found

for (int i = M; j < N; i++) {
h2 = (h2 - t.charAt(i-M)*dM) % q; // remove high order digit
h2 = (h2*d + t.charAt(i)) % q; // insert low order digit
if (h1 == h2) return i - M; // match found

}
return -1; // not found

}

june 1942
jn-25b

CMDR EDWARD T LAYTON
(FLEET INTELLIGENCE OFFICER)

LT CMDR JOSEPH ROCHEFORT
(COMBAT INTELLIGENCE UNIT)

MOD-EXP

MOD-EXP

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

MOD-EXP

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

1

MOD-EXP

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

1

El Gamal Encryption
Gen:

Enc(PK,m):

Dec:

El Gamal Encryption
Gen:

Enc(PK,m)

Dec(c1,c2,SK)

Pick random x. Output PK=gx, SK=x.

El Gamal Encryption
Gen:

Enc(PK,m)

Dec(c1,c2,SK)

Pick random x. Output PK=gx, SK=x.

Pick random r. Output (gr, grx * m)

Why is it secure?

(ga, gb, gab)

(ga, gb, gc)

Let (a,b,c) be random exponents chosen from [1,p-1]

prime is 231296301110587643185539076631487886933

138749806886971954258390257046961909653
31452755071926799571280233927674281572

133736374056450903289119980699400519818

183723924387941476267731169861280539751

prime is 325806627588550431010947035380006792141

263788312045705026395665799012729562167
232351424716312897042950264984304468335

93298786459176480146160445046926050732

194375326202773113445261188688424185897

