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check procedure:



check procedure:
randomly pick 50 matches and light them
if one fails, reject the box.
if all succeed, accept it.



Pr that test fails
three cases to consider:





Pr of failure for n=100
9.91165302141833906737674969
6883601495412210270643283767
8927852568890730299973273935

87632943101698342E-30

0.0000000000000000000000000000099
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9.91165302141833906737674969
6883601495412210270643283767
8927852568890730299973273935

87632943101698342E-30

pr of royal flush:
1.53908E-6

0.0000000000000000000000000000099



pr that you...

Age in 1990 Total U.S. White Male White Female Black Male Black Female 

20 0.102% 0.128% 0.045% 0.307% 0.074%



Using random coins 
can help overcome 
adversarial behavior



Using random coins 
can also simplify an 

algorithm



Disk Disk

Fingerprinting

Alice Bob



Disk Disk

Fingerprinting

Alice Bob
pick prime p

A B



Disk Disk

A mod p

B mod p

Fingerprinting

Alice Bobpick prime p

A B

send p,

compare with 
if A=B, then



Disk Disk

A mod p

B mod p

Fingerprinting

Alice Bobpick prime p

A B

send p,

compare with 
if A≠B, then



number of primes



number of primes
there are certainly infinitely many

: # of primes < x



lemma: 
# of prime divisors of x < log(x)



import java.io.*; 
import java.math.*; 
import java.util.*; 

public class pr { 
   public static void main(String args[]) { 

      BigInteger prime = new BigInteger(128,80,new Random()); 
      System.out.println("prime is " +prime); 

   } 
} 

Easy to pick primes

abhis-MacBook-Pro:hw abhi$ java pr 
prime is 194320298558336431416620955357714454897 
abhis-MacBook-Pro:hw abhi$ java pr 
prime is 250932337219632799561119530768795821559 
abhis-MacBook-Pro:hw abhi$ java pr 
prime is 208446315596042010374903390602426953283 
abhis-MacBook-Pro:hw abhi$ java pr 
prime is 277692390735250370111358788148532452689 
abhis-MacBook-Pro:hw abhi$ java pr 
prime is 178745644948876658400223198257146073499



pr of false match:



Disk Disk

example params
Alice Bobrandomly pick 64bit prime p

A B

send p, hA=A mod p

Compute hB←B mod p 
If hA = hB Output EQUAL 



A squabble between a group fighting spam and a 

Dutch company that hosts Web sites said to be 

sending spam has escalated into one of the 

largest computer attacks on the Internet, 

causing widespread congestion and jamming 

crucial infrastructure around the world. 

Millions of ordinary Internet users have 

experienced delays in services like Netflix or 

could not reach a particular Web site for a 

short time.

However, for the Internet engineers who run 

string matching
pattern corpus



string matching
pattern corpus



string matching
brute force:

for (int i = 0, j=0; i < n-m; i++) { 
while (j < m && t[i+j] == p[j]) { j++; } 
if (j == m) return i; 

} 
return -1;

.......



simple algorithm

aaaaaaaaaaaaaaaaa
aaaaaab

brute force worst case:



simple algorithm
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simple algorithm

aaaaaaaaaaaaaaaaa
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brute force worst case:

aaaaaab
aaaaaab

aaaaaab
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KMP algorithm

abcdabcdabcdefh
abcdabhi



KMP algorithm

abcdabcdabcdefh
abcdabhi



KMP sliding rule
given that P[1....q] matches T[j...j+q], 
but a mismatch occurs at j+q+1, then:



KMP sliding rule
given that P[1....q] matches T[j...j+q], 
but a mismatch occurs at j+q+1, then:

find the longest prefix P[1…i] of P[1...q] 
that is also a suffix of P[1...q]

slide (q-i) so that P[1...i] matches T[j+(q-i),…]

abcdabhi



x y x y y x y x y x x 
0 1 2 3 4 5 6 7 8 9 10



x y x y y x y x y x x 
0  0  1  2  0  1  2  3  4  3  1

0 1 2 3 4 5 6 7 8 9 10



new idea for 
string match



string matching
pick random t-bit prime

compute h = pattern mod prime

for i=1...n

compute hi = next corpus ci mod prime

if hi == h, output match



pick an 128-bit prime p
What is the probability of a false match at the first position?



pr of any mismatch:



string matching example
pattern Text

31415926535897931226535



string matching example
pattern Text

31415926535897931226535

Given that 31415 mod 17 = 16,  
How can I compute 14159 mod 17?

Hint: 10000 mod 17 = 4 



public static int search(String p, String t) {
int M = p.length();
int N = t.length();
int dM = 1, h1 = 0, h2 = 0;
int q = pickRandomPrime();
int d = 256; // radix
for (int j = 1; j < M; j++) // precompute d^M % q

dM = (d * dM) % q;

for (int j = 0; j < M; j++) {
h1 = (h1*d + p.charAt(j)) % q; // hash of pattern
h2 = (h2*d + t.charAt(j)) % q; // hash of text

}
if (h1 == h2) return i - M; // match found

for (int i = M; j < N; i++) {
h2 = (h2 - t.charAt(i-M)*dM) % q; // remove high order digit
h2 = (h2*d + t.charAt(i)) % q; // insert low order digit
if (h1 == h2) return i - M; // match found

}
return -1; // not found

} 
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MOD-EXP

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7
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El Gamal Encryption
Gen:

Enc(PK,m):

Dec:



El Gamal Encryption
Gen:

Enc(PK,m)

Dec(c1,c2,SK)

Pick random x. Output PK=gx, SK=x.



El Gamal Encryption
Gen:

Enc(PK,m)

Dec(c1,c2,SK)

Pick random x. Output PK=gx, SK=x.

Pick random r. Output (gr, grx * m)



Why is it secure?

(ga, gb, gab)

(ga, gb, gc)

Let (a,b,c) be random exponents chosen from [1,p-1]



prime is 231296301110587643185539076631487886933 

138749806886971954258390257046961909653 
31452755071926799571280233927674281572 

133736374056450903289119980699400519818 

183723924387941476267731169861280539751



prime is 325806627588550431010947035380006792141 

263788312045705026395665799012729562167 
232351424716312897042950264984304468335 

93298786459176480146160445046926050732 

194375326202773113445261188688424185897 


