
abhi shelat

http://kitsunenoir.com/blogimages/bloc-matches.jpg
check procedure:
randomly pick 50 matches and light them if one fails, reject the box.
if all succeed, accept it.

## Pr that test fails

three cases to consider:
9.91165302141833906737674969 6883601495412210270643283767 8927852568890730299973273935 $87632943101698342 \mathrm{E}-30$
0.0000000000000000000000000000099
9.91165302141833906737674969 6883601495412210270643283767 8927852568890730299973273935 $87632943101698342 \mathrm{E}-30$
0.0000000000000000000000000000099

# 9.91165302141833906737674969 6883601495412210270643283767 8927852568890730299973273935 $87632943101698342 \mathrm{E}-30$ 

0.0000000000000000000000000000099
pr of royal flush:

$$
1.53908 \mathrm{E}-6
$$

## pr that you...

$0.102 \%$
0.128\%
0.045\%
0.307\%
0.074\%

$$
\begin{aligned}
& \text { Using random coins } \\
& \text { can help overcome } \\
& \text { adversarial behavior }
\end{aligned}
$$

## Using random coins

 can also simplify an> algorithm

## Fingerprinting

Alice


## Fingerprinting



## Fingerprinting


if $\mathrm{A}=\mathrm{B}$, then

## Fingerprinting


if $A \neq B$, then
there are certainly infinitely many


## lemma:

 \# of prime divisors of $x<\log (x)$
## Easy to pick primes

```
import java.io.*;
import java.math.*;
import java.util.*;
public class pr {
    public static void main(String args[]) {
                BigInteger prime = new BigInteger(128,80,new Random());
                System.out.println("prime is " +prime);
    }
}
abhis-MacBook-Pro:hw abhi\$ java pr prime is 194320298558336431416620955357714454897
abhis-MacBook-Pro:hw abhi\$ java pr
prime is 250932337219632799561119530768795821559
abhis-MacBook-Pro:hw abhi\$ java pr
prime is 208446315596042010374903390602426953283
abhis-MacBook-Pro:hw abhi\$ java pr
prime is 277692390735250370111358788148532452689
abhis-MacBook-Pro:hw abhi\$ java pr
prime is 178745644948876658400223198257146073499
```

pr of false match:

# example params 



Compute $h_{B} \leftarrow B \bmod p$ If $h_{A}=h_{B}$ Output EQUAL
pattern

## corpus

A squabble between a group fighting spam and a Dutch company that hosts Web sites said to be sending spam has escalated into one of the largest computer attacks on the Internet, causing widespread congestion and jamming crucial infrastructure around the world. Millions of ordinary Internet users have experienced delays in services like Netflix or could not reach a particular Web site for a short time.

## string matching

## pattern

## corpus

## string matching

brute force:


```
for (int i = 0, j=0; i < n-m; i++) {
        while (j < m && t[i+j] == p[j]) { j++; }
    if (j == m) return i;
}
return -1;
```


## simple algorithm

## aaaaaaaaaaaaaaaaa aaaaaab

brute force worst case:

## simple algorithm

## aaaaaaaaaaaaaaaaa <br> aaaaaab aaaaaab

brute force worst case:

## simple algorithm

## aaaaaaaaaaaaaaaaa aaaaaab aaaaaab aaaaaab

brute force worst case:

KMP algorithm

## abcdabcdabcdefh abcdabhi

# abcdabcdabcdefh abcdabhi 

## KMP sliding rule

given that $P[1 \ldots . . q]$ matches $T[j . . . j+q]$, but a mismatch occurs at $j+q+1$, then:
given that $P[1 \ldots . . q]$ matches $T[j . . . j+q]$, but a mismatch occurs at $j+q+1$, then:
find the longest prefix $\mathrm{P}[1 \ldots \mathrm{i}]$ of $\mathrm{P}[1 \ldots \mathrm{q}]$ that is also a suffix of $\mathrm{P}[1 \ldots \mathrm{q}]$
slide (q-i) so that $\mathrm{P}[1 \ldots \mathrm{i}]$ matches $\mathrm{T}[\mathrm{j}+(\mathrm{q}-\mathrm{i}), \ldots]$

$$
\mathbf{X}^{0} \mathbf{y}^{2} \mathbf{X}_{\mathbf{X}}^{\mathbf{y}} \mathbf{Y}^{4} \mathbf{y}^{5} \mathbf{X}^{6} \mathbf{Y}^{6} \mathbf{X}^{7} \mathbf{Y}^{8} \mathbf{X}^{9} \mathbf{X}^{10}
$$

$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
x y x y y x y x y x
0 0120123431

$$
\begin{aligned}
& \text { new idea for } \\
& \text { string match }
\end{aligned}
$$

## string matching

pick random t-bit prime
compute $\mathrm{h}=$ pattern mod prime
for $i=1 . . . n$
compute $h_{i}=$ next corpus $c_{i}$ mod prime if $h_{i}=h$, output match

What is the probability of a false match at the first position?

## pr of any mismatch:

pattern Text
26535
314159265358979312
pattern Text
26535
314159265358979312
Given that $31415 \bmod 17=16$, How can I compute 14159 mod 17?

Hint: $10000 \bmod 17=4$

```
public static int search(String p, String t) {
    int M = p.length();
    int N = t.length();
    int dM = 1, h1 = 0, h2 = 0;
    int q = pickRandomPrime();
    int d = 256; // radix
    for (int j = 1; j < M; j++) // precompute d^M % q
        dM = (d * dM) % q;
    for (int j = 0; j < M; j++) {
        h1 = (h1*d + p.charAt(j)) % q; // hash of pattern
        h2 = (h2*d + t.charAt(j)) % q; // hash of text
    }
    if (h1 == h2) return i - M; // match found
    for (int i = M; j < N; i++) {
        h2 = (h2 - t.charAt(i-M)*dM) % q; // remove high order digit
        h2 = (h2*d + t.charAt(i)) % q; // insert low order digit
        if (h1 == h2) return i - M; // match found
    }
    return -1; // not found
}
```

$$
\begin{gathered}
\text { june } 1942 \\
\text { jn-25b }
\end{gathered}
$$

CMDR EDWARD T LAYTON
(FLEET INTELLIGENCE OFFICER)

LT CMDR JOSEPH ROCHEFORT
(COMBAT INTELLIGENCE UNIT)


## MOD-EXP

$$
(a, x, n) \rightarrow a^{x} \bmod n
$$

## MOD-EXP

$$
\begin{aligned}
(a, x, n) & \rightarrow a^{x} \bmod n \\
a^{x} \bmod n & =\prod_{i=0}^{\ell} x_{i} a^{2^{i}} \bmod n
\end{aligned}
$$

## MOD-EXP

$$
(a, x, n) \rightarrow a^{x} \bmod n
$$

Algorithm 2: ModularExponentiation $(a, x, n)$
Input: $a, x \in[1, n]$
$1 r \leftarrow 1$
2 while $x>0$ do
3 if $x$ is odd then
$\llcorner r \leftarrow r \cdot a \bmod n$
$5 \quad x \leftarrow\lfloor x / 2\rfloor$
$6 \quad a \leftarrow a^{2} \bmod n$
7 Return $r$

## MOD-EXP

$$
\begin{aligned}
(a, x, n) \rightarrow & a^{x} \bmod n \\
& a^{x} \bmod n=\prod_{i=0}^{\ell} x_{i} a^{2^{i}} \bmod n
\end{aligned}
$$

Algorithm 2: ModularExponentiation $(a, x, n)$
Input: $a, x \in[1, n]$
$1 p \longleftarrow 1$
2 while $x>0$ do
3 if $x$ is odd then
$\llcorner r \leftarrow r \cdot a \bmod n$
$x \leftarrow\lfloor x / 2\rfloor$
$6 \quad a \leftarrow a^{2} \bmod n$
7 Return $r$

## El Gamal Encryption

Gen:

Enc(PK,m):

Dec:

## El Gamal Encryption

Gen:
Pick random x . Output $\mathrm{PK}=\mathrm{g}^{\mathrm{x}}, \mathrm{SK}=\mathrm{x}$.

Enc(PK,m)
$\operatorname{Dec}\left(\mathrm{c}_{1}, \mathrm{C}_{2}, \mathrm{SK}\right)$

## El Gamal Encryption

Gen:

Enc(PK,m)

Pick random $x$. Output $P K=g^{x}$, $S K=x$.

Pick random r. Output ( $g^{r}$, $g^{\text {r* * }}$ m)
$\operatorname{Dec}\left(\mathrm{c}_{1}, \mathrm{C}_{2}, \mathrm{SK}\right)$

# Why is it secure? 

Let $(a, b, c)$ be random exponents chosen from [1,p-1]

$$
\begin{aligned}
& \left(g^{a}, g^{b}, g^{a b}\right) \\
& \left(g^{a}, g^{b}, g^{c}\right)
\end{aligned}
$$

138749806886971954258390257046961909653 31452755071926799571280233927674281572

133736374056450903289119980699400519818
183723924387941476267731169861280539751
prime is 325806627588550431010947035380006792141
263788312045705026395665799012729562167 232351424716312897042950264984304468335

93298786459176480146160445046926050732
194375326202773113445261188688424185897

