

shelat
16f-4800
sep 202016

$$
\begin{aligned}
& \left.T(n)=\frac{7}{a} T\left(n / \frac{2}{b}\right)+\frac{O\left(n^{2}\right.}{f}\right) \\
& \text { (1) } n^{\log _{2} 7}
\end{aligned}
$$

$$
\begin{aligned}
& \text { cax (ayties } \\
& T(n)=\theta\left(n^{\log _{2} 7}\right)
\end{aligned}
$$

$$
T(n)=7 T\left(\frac{n}{2}\right)+1
$$

$f_{f=1} \underline{O\left(\log _{2 k}{ }^{7}-\epsilon\right)}$ so case 1 applies.
example:

$$
\begin{aligned}
& T(n)=\underset{a}{a}\left(\frac{\left.1 \frac{14}{17} n\right)+\underline{24}}{\frac{b}{b}}\right. \\
& T\left(\frac{n}{1 P_{14}}\right) \quad O(1) \\
& f(n)=24 \text { is that } O\left(n^{\log _{17 / 14} I}\right)=O\left(n^{0}\right)=O(1) \\
& \begin{array}{l}
\text { case } 2 \text { appliog, } \\
b / c
\end{array} \quad \theta\left(n_{n 0=1}^{\log 1+14} \cdot \log (n)\right)=\theta(\log (n)) \\
& \text { fisk in } \theta\left(n^{\log _{6} n}\right)=\theta(1)
\end{aligned}
$$

$$
o(1)
$$

U゙

$$
\begin{aligned}
& T(n)=2 T(\sqrt{n})+\lg n \\
& \underset{n^{1 / 8}}{\log _{j}^{1 / 4}\left(n^{1 / 2}\right)} \xrightarrow[n^{1 / 2} \sum^{n} \ln ^{n / 2} \lg \left(n^{1 / 2}\right)]{ } \\
& \lg n \\
& \frac{1}{2} \lg (n)+\frac{1}{2} \lg (n)=\underline{\lg (n)} \\
& =\lg (n) \\
& \begin{array}{l}
\text { houmany } \\
\text { levol, }
\end{array} \\
& \text { leach } 1 \text { leves. } \\
& L \quad n^{\frac{1}{2^{L}}}=2 \Rightarrow L=\log \log (r)
\end{aligned}
$$

$$
\begin{gathered}
T(n)=2 T(\sqrt{n})+\lg n \\
T(n)=O(\log n \cdot \log \log (n))
\end{gathered}
$$

$$
\begin{aligned}
& T(\underline{n})=2 T(\underline{\sqrt{n}})+\lg _{\underline{l}\left(2^{m}\right)}^{n} T T\left(2^{m}\right)=T(n) \\
& T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+\underline{c_{n}} \\
& S(m)=2 \underline{S(m / 2)}+c \cdot m \\
& S(m)=\theta(m \cdot \log m) \text { by case } 2 \text { of masters. } \\
& T(n)=\theta(\log (n) \cdot \log (\log (n))) \\
& S(m / 2)=T\left(2^{m / 2}\right) \\
& T(m)=2 T\left(\frac{m}{2}+13\right)+\rho
\end{aligned}
$$

divide

\& conquer

$$
2
$$

examples

merge-sort (A, p, r)
if $p<r$ ($n+r) / 2\rfloor$
merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)
$\frac{\operatorname{MERGE}(A[1 . . n], m)}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

merge-sort (A, p, r)
if $p<r$ ($p+r) / 2\rfloor$
merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)
$\frac{\operatorname{MERGE}(A[1 . . n], m)}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; \quad j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

5	2	4	7


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
    merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

$\frac{\operatorname{MERGE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
$i \leftarrow 1 ; j \leftarrow m+$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

merge-sort (A, p, r)
if $p<r$

$$
q \leftarrow\lfloor(p+r) / 2\rfloor
$$

$$
\text { merge-sort }(A, p, q)
$$

$$
\text { merge-sort }(A, q+1, r)
$$

$$
\text { merge }(A, p, q, r)
$$

$\operatorname{MERGE}(A[1 . . n], m)$:
$i \leftarrow 1 ; j \leftarrow m+1$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$ else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

6
merge-sort (A, p, r)

$$
\text { if } \begin{aligned}
p & <r \\
q & \leftarrow\lfloor(p+r) / 2\rfloor
\end{aligned}
$$

$$
\text { merge-sort }(A, p, q)
$$

merge-sort $(A, q+1, r)$
merge (A, p, q, r)

merge-sort (A, p, r)

$$
\text { if } \begin{aligned}
p & <r \\
q & \leftarrow\lfloor(p+r) / 2\rfloor
\end{aligned}
$$

$$
\text { merge-sort }(A, p, q)
$$

$$
\text { merge-sort }(A, q+1, r)
$$

$$
\text { merge }(A, p, q, r)
$$

merge-sort (A, p, r)

$$
\text { if } \begin{aligned}
p & <r \\
q & \leftarrow(p+r) / 2\rfloor
\end{aligned}
$$

merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& \quad \begin{array}{l}
q \leftarrow\lfloor(p+r) / 2\rfloor \\
\quad \text { merge-sort }(A, p, q) \longrightarrow \\
\begin{array}{l}
\text { merge-sort }(A, q+1, r) \longrightarrow T(n / 2) \\
\text { merge }(A, p, q, r)
\end{array} \\
T(n)=2 T(n / 2)
\end{array} \quad \theta(n) \\
& =\Theta(n \log n)
\end{aligned}
$$

arbitrage

9:30 AM EDG A M AAPL 167.10
 ,

12:38 PM EDT: $=$ AIG 40.58

input: array of n numbers

goal: index i, j such that i $i<j$ Which maximizes $\frac{A[j]-A[i]}{\text { profit }}$
first attempt

arbit (A [1...n $n]$)
handle base case

$$
\begin{aligned}
& \left(i ; l b t^{l}\right) \text { on the left }=\operatorname{arbit}(A[1 \ldots n / 2]) \\
& \left(i, j_{j}, b t^{t}\right) 0 \text { on the right }=\operatorname{arbil}(A[n / 2+1 \ldots n]) \\
& \left.\left(i, i, j b t^{b}\right)=\max \left(A t_{+1}^{n / 2}, n\right]\right)-\min (A[1 \ldots n / 2])
\end{aligned}
$$

// profit from a trade the ot begins \& ends on the left
return $\operatorname{Max}\left(b t^{l}, b t^{r}, \quad b t^{b}\right)$
$\xrightarrow{i l} l^{l} \quad i^{r}$,
$i^{*} v^{*}$
first attempt

$$
\begin{aligned}
& \text { arbit }(A[1 . . . n]) \\
& \text { base case if }|A|<=2 \\
& \text { lg }=\text { arbit(left }(A)) \rightarrow T(n / 2) \\
& \text { rg }=\operatorname{arbit(right(A))} T(n / 2) \\
& \text { minl }=\min (\operatorname{left}(A)) \rightarrow \theta(n) \\
& \text { maxr }=\max (r i g h t(A)) \rightarrow \theta(n) \\
& \text { return max\{maxr-minl,lg,rg\} } \theta(1) \\
& T(n)=2 T(n / 2)+\theta(n)=\theta(n \log n)
\end{aligned}
$$

first attempt: time $\Theta(n \log n)$ can we do betas?

arbit(A[1...n])
base case if $|A|<=2$
$\underline{l g}=\operatorname{arbit}(\operatorname{left}(A))$
ra $=$ arbit(right (A))
$\left.-\binom{\operatorname{minl}=\min (\operatorname{left}(A))}{\operatorname{maxr}=\max (\operatorname{right}(A))}\right) \rightarrow$ take $\theta(n)$ time. $\begin{aligned} & \text { can we figure the values out } \\ & \text { return max\{maxr-minl }\end{aligned}$ return max\{maxr-minl,lg,rg\} in less time? ??

better approach

better approach

Can we find a solution that has $T(n)=2 T(n / 2)+O(1)$?

better approach

Can we find a solution that has $T(n)=2 T(n / 2)+O(1)$?

```
minl=min(left(A))
maxr = max(right(A))
return max{maxr-minl,lg,rg}
```


second attempt

arbit+(A[1...n]) base case if $|A|<=2$

second attempt

arbit+(A[1...n])
base case if $|A|<=2$, ...

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta(1)
$$

$(\underline{l g}, \underline{m i n}, \underline{m a x l})=\underline{a r b i t(l e f t(A))}$
$($ rg, minr,maxr $)=$ arbit(right (A))
return $\max \{\max r-m i n l, l g, r g\}$,
$\rightarrow \min \{m i n l, m i n r\}$, max $\{m a x l, ~ m a x r\}$

closest pair

simple brute force approach takes

solve the large problem by
solving smaller problems and combining solutions

©
(13)

Divide \& Conquer

Divide \& Conquer

Divide \& Conquer

Divide \& Conquer

Divide \& Conquer

FACT: <=1
point per
cubby

Closest(P)

Closest(P)

Base Case: If <8 points, brute force.

1. Let q be the "middlle-element" of points
2. Divide P into Left, Right according to q
3. delta,r,f) $=$ MIN(Closest(Left) , Closest(Right))
4. Mohawk $=\{$ Scan P, add pts that are delta from q.x $\}$
5. For each point x in Mohawk (in y -order):

Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta
6. Return (delta,r,j)

Closest(P)

Base Case: If <8 points, brute force.
(1) Let q be the "middle-element" of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) , Closest(Right))
4. Mohawk $=\{$ Scan P, add pts that are delta from q.x \}
5. For each point x in Mohawk (in y -order):

Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is \Varangle delta
6. Return (delta,r,j)

Details: How to do step 1 ?

(14)
(1)
(7) (8)
(9)
(13)
(10)
(3)
(11)
(5)
(12)
sorted in X: 1315149107981123412 sorted in Y; 6512111031349872114
(1)

(7) (8)
(9)
(13)
(10)
sorted in X:13 15 h4 910 th 91123412

ClosestPair(P)
-Compute Sorted-in-X list SX

- Compute Sorted-in-Y list SY Closest(P,SX,SY)

Closest(P,SX,SY)

Let q be the middle-element of $S X$
Divide P into Left, Right according to q
delta,r,j $=\operatorname{MIN}\left(\right.$ Closest(Left, LX, LY) Closest(Right, RX, RY)) $\rightarrow 2 T\left(\frac{n}{2}\right)$

Mohawk $=\{$ Scan SY, add pts that are delta from q. $x\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta(n)=\theta(n \log n)
$$

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j $=$ MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from $q \cdot x\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta, r,j if any pair (x, y) is \langle delta
Return (delta,r,j) sorted in Y:: 6512111031349872114
(2)

(9)

(8)

> (10)
(5)
(12)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j $=$ MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from $\mathrm{q} \cdot \mathrm{x}$ \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x, y) is < delta
Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j $=$ MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from $\mathrm{q} \cdot \mathrm{x}$ \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta, r,j if any pair (x, y) is \langle delta
Return (delta,r,j)
sorted in X: 1315149107981123412 sorted in Y:: 6512111031349872114
(1) (9)
(13)
(2)

(4)
(3)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j $=$ MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from $\mathrm{q} \cdot \mathrm{x}$ \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x, y) is < delta
Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j $=$ MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from $\mathrm{q} \cdot \mathrm{x}$ \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta, r,j if any pair (x, y) is \langle delta
Return (delta,r,j)

Running time for Closest pair algorithm
$T(n)=$
$T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)$
@author Robert Sedgewick @author Kevin Wayne
http://algs4.cs.princeton.edu/99hull/ClosestPair.java.html
public ClosestPair(Point2D[] points) \{
int $N=$ points.length;
if ($\mathrm{N}<=1$) return;
/II sort by x-coordinate (breaking ties by y-coordinate) Point2D[] pointsByX = new Point2D[N];
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
pointsByX[i] = points[i];
Arrays.sort(pointsByX, Point2D.X_ORDER);
(II check for coincident points
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N}-1$; $\mathrm{i}++$) $\{$
if (pointsByX[i].equals(pointsByX[i+1])) \{ bestDistance $=0.0$; best1 = pointsByX[i]; best2 $=$ pointsByX[i+1]; return;
\square
// sort by y-coordinate (but not yet sorted) Point2D] pointsByY = new Point2D[N];

for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \mathrm{i}++$)

 pointsByY[i] $=$ pointsByX[i];// auxiliary array Point2D] aux = new Point2D[N]; closest(pointsByX, pointsByY, aux, $\mathrm{O}, \mathrm{N}-1$); \}

// find closest pair of points in pointsByX[lo..hi]

I/ precondition: pointsByX[lo..hi] and pointsByY[lo..hi] are the same sequence of points, sorted by x, y-coord private double closest(Point2D] pointsByX, Point2D[] pointsByY, Point2D[] aux, int lo, int hi) \{
if (hi <= lo) return Double.POSITIVE_INFINITY;

```
\Omega
    int mid = l0 + (hi - lo)/2;
    Point2D median = pointsByX[mid];
    // compute closest pair with both endpoints in left subarray or both in right subarray
    double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
    double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);
    double delta = Math.min(delta1, delta2)
    II merge back so that pointsByY[lo..hi] are sorted by y-coordinate
    merge(pointsByY, aux, lo, mid, hi);
    I/ aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate
    intM=0;
    for (int i = lo; i <= hi; i++) {
    if (Math.abs(pointsByY[i].x() - median.x()) < delta)
        aux[M++] = pointsByY[i];
    }
// compare each point to its neighbors with y-coordinate closer than delta
    for (inti=0;i<M; i++) {
    I/ a geometric packing argument shows that this loop iterates at most7 times
    for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {
        double distance = aux[i].distanceTo(aux[j]):
        if (distance < delta) {
            delta = distance;
            if (distance < bestDistance) {
            bestDistance = delta;
            best1 = aux[i]:
            best2 = aux[]]
            // StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2);
        }
        }
    }
    return delta;
}
```

