LY

What does the FFT take as input?
polynomial in coeff form

What does the FFT do?
changes to point - wise form Evaluate, the polynomial of degree ant at a points

FFT

$$
\text { input: } \begin{aligned}
& a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} \\
& \underline{A(x)})=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{\underline{n-1}}
\end{aligned}
$$

output: evaluate polynomial A at (any) n different points. \rightarrow roots of unity

$A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$

$$
\begin{aligned}
A(x)= & \underline{a_{0}}+a_{1} x+\underline{a_{2}} x^{2}+\cdots+a_{n-1} x^{n-1} \\
= & \frac{a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{n-2} x^{n-2}}{+a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\cdots+a_{n-1} x^{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
= & a_{0}+a_{2} x^{2}+\underline{a}_{4} x^{4}+\cdots+a_{n-2} x^{n-2} \\
& +a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A_{e}(x)}{A_{o}(x)}=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{(n-2) / 2} \\
& x^{(n-2) / 2}
\end{aligned}
$$

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{n-2} x^{n-2} \\
& +a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n} x^{(n-2) / 2} \\
& A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{(n-2) / 2}
\end{aligned}
$$

$A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

suppose we had already had eval of Ae, Ao on $\{4,9,16,25\}$
$\frac{\widehat{A_{e}(4)}}{A_{e}(\underline{9})} \underbrace{A_{0}(9)}_{A_{0}(4)}$
$\begin{array}{ll}A_{e}(\underline{9}) & A_{0}(9) \\ A_{e}(16) & A_{0}(16)\end{array}$
$A_{e} \overline{(\underline{25})} A_{0} \overline{(25)}$

$$
\begin{aligned}
A(2) & =A_{e}\left(2^{2}\right)+2 \cdot A_{0}\left(2^{2}\right) \\
& =A_{e}(4)+2 \cdot A_{0}(4) \\
A(-2) & =A_{e}(4)+(-2) \cdot A_{0}(4)
\end{aligned}
$$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

suppose we had already had eval of Ae,Ao on $\{4,9,16,25\}$
$A_{e}(4) \quad A_{0}(4)$
$A_{e}(9) \quad A_{0}(9)$
$A_{e}(16) A_{0}(16)$
$A_{e}(25)$
$A_{0}(25)$ Then we could compute 8 terms:

$$
\begin{aligned}
& A(2)=A_{e}(4)+2 A_{o}(4) \\
& A(-2)=A_{e}(4)+(-2) A_{o}(4) \\
& A(3)=A_{e}(9)+3 A_{o}(9) \\
& A(-3)=A_{e}(9)+(-3) A_{o}(9) \\
& \ldots \mathrm{A}(4), \mathrm{A}(-4), \mathrm{A}(5), \mathrm{A}(-5)
\end{aligned}
$$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$
Evaluates degree n poly on the $\mathrm{n}^{\text {th }}$ roots of unity

Roots of unity

$$
x^{n}=1
$$

should have n solutions
what are they?

$$
e^{2 \pi i}=1
$$

$$
x^{n}=1
$$

the n solutions are:
consider $\quad\left\{\underline{1}, e^{2 \pi i / n}, e^{2 \pi i 2 / n}, e^{2 \pi i 3 / n}, \ldots, e^{2 \pi i(n-1) / n}\right\}$

$$
\left[e^{2 \pi i \cdot j \cdot m}\right]^{n}=\left(\underline{e}^{2 \pi i}\right)^{(j) \cdot n \cdot n}=1^{j}=1
$$

$$
x^{n}=1
$$

the n solutions are:
consider $\quad e^{2 \pi i j / n} \quad$ for $\mathrm{j}=\mathrm{O}, \mathrm{I}, 2,3, \ldots, \mathrm{n}-\mathrm{I}$

$$
\left[e^{(2 \pi i / n) j}\right]^{n}=\left[e^{(2 \pi i / n) n}\right]^{j}=\left[e^{2 \pi i}\right]^{j}=1^{j}
$$

$e^{2 \pi i j / n}=\omega_{j}, n$ is an $n^{\text {th }}$ root of unity
$\omega_{0, n}, \omega_{2, n}, \ldots, \omega_{n-1, n}$

What is this number?

$e^{2 \pi} \dot{j} / \underline{n}=\omega_{j, n}$ is an nt root of unity

What is this number?

$e^{2 \pi i j / n}=\omega_{j, n}$ is an $\mathrm{n}^{\text {th }}$ root of unity

$e^{2 \pi \pi i \hat{j} / n}=\cos (2 \pi j / n)+i \sin (2 \pi j / n)$
$e^{2 \pi i j / n}=\omega_{j}, n$ is an $n^{\text {th }}$ root of unity

$$
\omega_{0, n}, \omega_{2, n}, \cdots, \omega_{n-1, n}
$$

Lets compute $\omega_{1,8}$

$$
\begin{aligned}
\omega_{1, b}=\frac{e^{2 \pi i \cdot 1 / 8}}{} & =\cos (2 \pi 1 / 3)+i \sin (2 \pi 1 / 3) \\
& =\cos (\pi / 4)+i \cdot \underbrace{\sin (\pi / 4)} \rightarrow \frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}
\end{aligned}
$$

Compute all 8 roots of unity

ω_{0}	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	ω_{6}	ω_{7}
I	$\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$	i	$-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$	-1		ω_{7}	

Then graph them

roots of unity

$$
x^{n}=1
$$

should have n solutions

$$
e^{2 \pi i j / n}=\cos (2 \pi j / n)+i \sin (2 \pi j / n)
$$

Squaring the $n^{\text {th }}$ roots of unity? $x^{n}=1$

 $n_{12 t}$ nout of unity

Thm: Squaring an $n^{\text {th }}$ root produces an $n / 2^{\text {th }}$ root.
example: $\quad \omega_{1,8}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)$

$$
\begin{aligned}
\omega_{1,8}^{2}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2} & =\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right)+\left(\frac{i}{\sqrt{2}}\right)^{2} \\
& =1 / 2+i-1 / 2 \\
& =i
\end{aligned}
$$

Squaring the $\mathrm{n}^{\text {th }}$ roots of unity

produces the $n / 2$ th roots of unity

Chm: Squaring an $n^{\text {th }}$ root produces an $n / 2^{\text {th }}$ root.

$$
\begin{aligned}
{\left[e^{2 \pi i 1 / n}\right]^{2} } & =e^{2 \pi i / n}=e^{2 \pi i / n / 2} \\
\left(w_{3,8}\right)^{2}=\left(\frac{-1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2} & =\frac{1}{2}-\frac{2 i}{2}+\frac{i^{2}}{2} \\
& =-i
\end{aligned}
$$

Thm: Squaring an $n^{\text {th }}$ root produces an $n / 2^{\text {th }}$ root.
$\left\{1, e^{2 \pi i(1 / n)}, e^{2 \pi i(2 / n)}, e^{2 \pi i(3 / n)}, \ldots, e^{2 \pi i(n / 2) / n}, e^{2 \pi i(n / 2+1) / n}, \ldots, e^{2 \pi i(n-1) / n}\right\}$

$5^{\text {th }}$ costs of unity

$$
\begin{aligned}
& 0 \rightarrow 0 \\
& i \rightarrow 2 \\
& 2 \rightarrow 4 \\
& 3 \rightarrow 1 \\
& 4 \rightarrow 3
\end{aligned}
$$

$$
\left(\omega_{1 / 5}\right)^{2}=(\cos (2 \pi / 5)+i \cdot \sin (2 \pi / 5))^{2}
$$

$$
=
$$

If $n=16$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

evaluate at a root of unity

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

evaluate at a root of unity

$$
\begin{aligned}
& \text { recursive vein of the ff }
\end{aligned}
$$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$
Evaluates degree n poly on the $\mathrm{n}^{\text {th }}$ roots of unity

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$

Base case if $\mathrm{n}<=2$
$\mathrm{E}[. .]<.-\mathrm{FFT}\left(\mathrm{A}_{\mathrm{e}}\right) \quad / /$ eval Ae on $\mathrm{n} / 2$ roots of unity
$\mathrm{O}[. .]<.-\mathrm{FFT}\left(\mathrm{A}_{\circ}\right) \quad / /$ eval Ao on $\mathrm{n} / 2$ roots of unity
combine results using equation:

$$
\begin{gathered}
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i, n}^{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i, n}^{2}\right) \\
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)
\end{gathered}
$$

Return n points.

a_{0}
annd

FFT(4, 1, 3, 2, 2, 3, 1, 4)

What does this function compute?

FFT(4, 1, 3, 2, 2, 3, 1, 4)

What does this function compute?
$A(x)=$
It evaluates $4+1 x+3 x^{2}+2 x^{3}+2 x^{4}+3 x^{5}+1 x^{6}+4 x^{7}$ on the 8th roots of unity, which are

$$
A(1)=
$$

$\operatorname{FFT}(4,1,3,2,2,3,1,4)$

What does this function compute?

It evaluates $4+1 x+3 x^{2}+2 x^{3}+2 x^{4}+3 x^{5}+1 x^{6}+4 x^{7}$
on the 8th roots of unity, which are

ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	ω_{6}	ω_{7}	ω_{8}
1	$\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$	i	$\frac{-1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$	-1	$\frac{-1}{\sqrt{2}}+\frac{-i}{\sqrt{2}}$	$-i$	$\frac{1}{\sqrt{2}}+\frac{-i}{\sqrt{2}}$

FfTon

$$
A(x)=4+1 x+3 x^{2}+2 x^{3}+2 x^{4}+3 x^{5}+1 x^{6}+4 x^{7}
$$

$$
\begin{aligned}
& A_{e}(x)>4+3 x+2 x^{2}+I x^{3} \\
& A_{0}(x)=1+2 x+3 x^{2}+4 x^{3}
\end{aligned}
$$

$$
F F T(A l) \stackrel{\text { returess }}{=}\left\{\begin{array}{cccc}
1 & i & -1 & -i \\
10 & 2+2 i & 2 & 2-2 i
\end{array}\right\}
$$

4th rooks os unity are $\{1, i,-1,-i\}$

$$
f f+\left(A_{0}\right) \stackrel{\text { retures }}{=}\left\{\begin{array}{cccc}
1 & i & -1 & -i \\
10 & -2-2 i & -2 & -2+2 i
\end{array}\right\}
$$

Last step of FFT:

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta(n)=\theta(n \log n)
$$

FFT (A) now returrs

$$
\begin{align*}
& \underline{A(x)}=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \tag{10}\\
& B(x)=b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0} \tag{10}
\end{align*}
$$

$$
C A \cdot B=\begin{align*}
& \left(\begin{array}{l}
a_{3} b_{3} x^{6}+ \\
\left(a_{3} b_{2}+a_{2} b_{3}\right) x^{5}+ \\
\left(a_{3} b_{1}+a_{2} b_{2}+a_{1} b_{3}\right) x^{4}+ \\
\left(a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}\right) x^{3}+ \\
\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) x^{2}+ \\
\left(a_{1} b_{0}+a_{0} b_{1}\right) x+ \\
a_{0} b_{0}
\end{array}\right. \tag{10}
\end{align*}
$$

$$
\begin{gathered}
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{gathered}
$$

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$$
A\left(\omega_{0}\right) \quad A\left(\omega_{1}\right) \quad A\left(\omega_{2}\right) \quad \ldots . \quad A\left(\omega_{7}\right)
$$

$$
\begin{aligned}
& \underline{A(x)}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$A\left(\omega_{0}\right)$	$A\left(\omega_{1}\right)$	$A\left(\omega_{2}\right)$	\ldots	$A\left(\omega_{7}\right)$	EFT
$B\left(\omega_{0}\right)$	$B\left(\omega_{1}\right)$	$B\left(\omega_{2}\right)$	\cdots	$B\left(\omega_{7}\right)$	EET

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$A\left(\omega_{0}\right)$	$A\left(\omega_{1}\right)$	$A\left(\omega_{2}\right)$	\ldots	$A\left(\omega_{7}\right)$	EET
$B\left(\omega_{0}\right)$	$B\left(\omega_{1}\right)$	$B\left(\omega_{2}\right)$	\ldots	$B\left(\omega_{7}\right)$	EET

$\underline{C\left(\omega_{0}\right)} \quad C\left(\omega_{1}\right) \quad C\left(\omega_{2}\right) \quad \cdots . \quad C\left(\omega_{7}\right)$

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$$
\underline{C(x)}=\underline{c}_{0}+\underline{c}_{1} x+\underline{c}_{2} x^{2}+\cdots \underline{c}_{7} x^{7}
$$

application to mult

$\Theta\left(n^{\log _{2} 3}\right)$

application to mult

$T(n)=3 T(n / 2)+6 O(n)$
$\Theta\left(n^{\log _{2} 3}\right)$

Multiplying n-bit numbers

Schönhage-Strassen ${ }^{6} 71$
$O(n \log n \log \log n)$
Fürer ' 07
$O\left(n \log (n) 2^{\log ^{*}(n)}\right)$

$$
\begin{aligned}
\log \left(2^{512}\right) & =5 \\
\log \left(2^{512}\right) & =512 \\
\log (512) & =9 \\
\log (1) & =3 \ldots \\
\log (3 \ldots) & \approx 2 \\
\log (2) & =1
\end{aligned}
$$

A GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN'S LARGE INTEGER MULTIPLICATION ALGORITHM

PIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract

Schönhage-Strassen's algorithm is one of the best known algorithms for multiplying large integers. Implementing it efficiently is of utmost importance, since many other algorithms rely on it as a subroutine. We present here an improved implementation, based on the one distributed within the GMP library. The following ideas and techniques were used or tried: faster arithmetic modulo $2^{n}+1$, improved cache locality, Mersenne transforms, Chinese Remainder Reconstruction, the $\sqrt{2}$ trick, Harley's and Granlund's tricks improved tuning. We also discuss some ideas we plan to try in the future.

InTRODUCTION

Since Schönhage and Strassen have shown in 1971 how to multiply two N-bit integers in $O(N \log N \log \log N)$ time [21], several authors showed how to reduce other operations inverse, division, square root, gcd, base conversion, elementary functions - to multiplication, possibly with $\log N$ multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common practice to express complexities in terms of the cost $M(N)$ to multiply two N-bit numbers, and many researchers tried hard to get the best possible constants in front of $M(N)$ for the above-mentioned operations (see for example $[6,16]$).
Strangely, much less effort was made for decreasing the implicit constant in $M(N)$ itself, although any gain on that constant will give a similar gain on all multiplication-based operations. Some authors reported on implementations of large integer arithmetic for specific hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on the question of an optimized implementation of Schönhage-Strassen's algorithm on a classical workstation.

408.201

String matching with *

 CCTGGAGGGTGGCCCCACCGGCCGAGaCAGCGAGCATATGCAGGAAGGGCCAGGAATAAGGAAAGCAGC СТССТGACTTCCTCGCTGGTGGTTGAGTGGACCTCCCAGGCCAGTCCCGGGCCCCTCATAGGAGAGG AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCCCCCCCCGGGCAGATGCC СТGСАGGAACTCTCTGGAAGACCTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG ІІтаАТТаСаGасСtGaa

> Looking for all occurrences of

GGC*GAG* ${ }^{*} C^{*} G C$

> where I don't care what the * symbol is.

$T(n)=$ \#of lifferent to climb n stairs using rops of lor 2

$$
T(n)=\underbrace{T(n-1)}+T(n-2)
$$

Fibonaci rewrence

$$
(1.6)^{n}
$$

Stairs(n)
if $n<=1$ return 1
return Stairs(n-1) + Stairs(n-2)

Stairs(n) \quad	if $n<=1$ return 1
	ret Stairs $(n-1)+$ Stairs $(n-\Sigma<$

Stairs(2) Stairs(1) Stairs(1) Stairs(0) Stairs(1) Stairs(0)
initialize memory M
Stairs(n)

Stairs(n)
if $\mathrm{n}<=1$ then return 1
if n is in (M) return $M[n]$ answer $=$ Stairs(i-1)+ Stairs(i-2)
M[n] = answer
return answer

Stairs(n)
stair[0]=1
stair[1]=1

Stairs(n)
stair[0]=1
stair[1]=1
for $\mathrm{i}=2$ to n stair[i] = stair[i-1]+stair[i-2] return stair[i]

Dynamic
Programming

recursive structure

memoizing

wood cutting

http://snlm.files.wordpress.com/2008/08/bill-wakefield-and-carl-fie.gif

Spot price for lumber

I" $2 " 3 " 4 " 5 " 6 " 7 " 8 "$

Log cutter dilemna

input to the problem: $n,\left(p_{1}, \ldots, p_{n}\right)$

Greedy fails

$1 "$	$2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$
$1 \$$	$6 \$$	$7 \$$	$8 \$$	$10 \$$

$5^{"} \log$

Greedy "Avg" fails

$1 "$	$2 "$	$3^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$
$1 \$$	$18 \$$	$24 \$$	$36 \$$	$50 \$$	$50 \$$

$6^{\prime \prime} \log$

Observation

Solution equation

Approach

Approach

$\operatorname{BestLogs}\left(n,\left(p_{1}, \ldots, p_{n}\right)\right)$
if $\mathrm{n}<=0$ return 0
$\operatorname{BestLogs}\left(n,\left(p_{1}, \ldots, p_{n}\right)\right)$
if $\mathrm{n}<=0$ return 0
for $i=1$ to n
$\operatorname{Best}[\mathrm{i}]=\max _{k=1 \ldots i}\left\{p_{k}+\operatorname{Best}[i-k]\right\}$
return Best[n]

The actual cuts?

```
\(\operatorname{BestLogs}\left(n,\left(p_{1}, \ldots, p_{n}\right)\right)\)
if \(\mathrm{n}<=0\) return 0
for \(i=1\) to \(n\)
    \(\operatorname{Best}[i]=\max _{k=1 \ldots i}\left\{p_{k}+\operatorname{Best}[i-k]\right\}\)
    choice[i] \(=\mathrm{k}^{*}\)
    return Best[n]
```

Matrix

$A_{1} \cdot A_{2} \cdot A_{3}$

$\left(A_{1} \cdot A_{2}\right) \cdot A_{3} \quad A_{1} \cdot\left(A_{2} \cdot A_{3}\right)$

$A_{1} \cdot A_{2} \cdot A_{3}$

$$
A_{1} \cdot A_{2} \cdot A_{3}
$$

$100 \cdot 5 \cdot 50+10 \cdot 100 \cdot 50$ operations

order matters

(for efficiency)
how many ways to compute?
$A_{1} A_{2} A_{3} \ldots A_{n}$

how many ways to compute?

$A_{1} A_{2} A_{3} \ldots A_{n}$
$A_{1} A_{2} A_{3} \ldots A_{n}$

how many ways to compute?

$A_{1} A_{2} A_{3} \ldots A_{n}$
$A_{1} A_{2} A_{3} \ldots A_{n}$
$A_{1} A_{2} A_{3} \ldots A_{n}$

how many ways to compute?

$A_{1} A_{2} A_{3} \ldots A_{n}$
$A_{1} A_{2} A_{3} \ldots A_{n}$
$A_{1} A_{2} A_{3} \ldots A_{n}$

how do we solve it?

identify smaller instances of the problem
devise method to combine solutions
small \# of different subproblems
solved them in the right order
optimal way to compute
$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$
optimal way to compute
$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$
$\mathrm{B}[1, \mathrm{n}]$
optimal way to compute
$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$
$\mathrm{B}[1, \mathrm{n}]$
$\mathrm{B}[1,1]$
$\mathrm{B}[2, \mathrm{n}]$
$R_{1} C_{1} C_{n}$

optimal way to compute

$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$
$\mathrm{B}[1, \mathrm{n}]$
$\mathrm{B}[1,1]$
$\mathrm{B}[2, \mathrm{n}]$
$\mathrm{B}[1,2]$
$\mathrm{B}[3, \mathrm{n}]$
$\mathrm{B}[1, \mathrm{n}-2]$
$\mathrm{B}[1, \mathrm{n}-1]$
$B[n-1, n]$
$B[n, n]$

$$
R_{1} C_{1} C_{n} \quad R_{1} C_{2} C_{n} \quad R_{1} C_{n-2} C_{n} \quad R_{1} C_{n-1} C_{n}
$$

$$
\begin{aligned}
& B(i, i)=1 \\
& B(1, n)=\min \{
\end{aligned}
$$

$$
\begin{aligned}
& B(i, i)=1 \\
& B(1, n)=\min \left\{\begin{array}{l}
B(1,1)+B(2, n)+r_{1} c_{1} c_{n} \\
B(1,2)+B(3, n)+r_{1} c_{2} c_{n} \\
\vdots \\
B(1, n-1)+B(n, n)+r_{1} c_{n-1} c_{n}
\end{array}\right.
\end{aligned}
$$

$B(i, j)=$

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

$B(i, j)=$

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

which order to solve?

$$
B(1,2)=
$$

6

$$
C(1,6)=\min \begin{cases}k=1 & C(1,1)+C(2,6)+r_{1} c_{1} c_{6} \\ k=2 & C(1,2)+C(3,6)+r_{1} c_{2} c_{6} \\ k=3 & C(1,3)+C(4,6)+r_{1} c_{3} c_{6} \\ k=4 & C(1,4)+C(5,6)+r_{1} c_{4} c_{6} \\ k=5 & C(1,5)+C(6,6)+r_{1} c_{5} c_{6}\end{cases}
$$

matrix-chain-mult(p)

initialize array $m[x, y]$ to zero

matrix-chain-mult(p)

initialize array $m[x, y]$ to zero
starting at diagonal, working towards upper-left
compute $m[i, j]$ according to

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

running time?

initialize array $m[x, y]$ to zero
starting at diagonal, working towards upper-left
compute $\mathrm{m}[\mathrm{i}, \mathrm{j}]$ according to

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

