54800 - ALGORITHMS - F'16 — SHELAT/NGUYEN
DUE THU OCT6, 2016 AT 11.59P VIA GRADESCOPE H2 N

e The assignment is due at Gradescope on Thursday, October 6 at 11:59pm. Late
assignments will not be accepted. Submit early and often.

e You are permitted to study with friends and discuss the problems; however, you must
write up you own solutions, in your own words. Do not submit anything you cannot
explain. If you do collaborate with any of the other students on any problem, please
do list all your collaborators in your submission for each problem.

¢ Finding solutions to homework problems on the web, or by asking students not
enrolled in the class is strictly prohibited.

e We require that all homework submissions are prepared in Latex. If you need to
draw any diagrams, however, you may draw them with your hand. Please use a new
page to begin each answer.

PROBLEM 1 Flip-flop

Consider the recurrence T(n) = 2T(n/2) + f(n) in which

f(n) = { n if [log(n)] is even

n? otherwise

Show that f(n) = Q(n'°&(@)+€). Explain why the third case of the Master’s theorem
stated above does not apply. Prove a ®-bound for the recurrence.

https://shelat.ccis.neu.edu/16f-4800
https://gradescope.com/courses/4095

PROBLEM 2 Why 5 in Median?
Recall the deterministic selection algorithm:

SeLect(A[l, ..., n],i)

1 Base case if |A| < 5.

2 p < MEDIANOFMEDIANS(A)

3 Ay A, iy < PARTITION(A, p)

4 if iy = ireturn Afip]

5 elseif i, < i return SELECT(A,,i —1ip)
6 else return SELECT(A, iy — 1)

MEDIANOFMEDIANS (A[1 .. 1])

1 Divide A into lists of 5 elements. If only one element, return it.

2 Compute the median of each small list, store these medians in a new list B
3 p < SeLect(B, [n/10])

4 return p

1. Suppose Line 1 of MEDIANOEMEDIANS divides A into lists of 3 elements each instead
of 5 elements and line 3 is modified to pick the [1/6]™ element. State an upper and
lower bound on the size of A;. Be as precise as you can.

2. Show a lower-bound for the running time of SELECT under the 3-element version of
MEDIANOFMEDIANS.

H2-2

PROBLEM 3 Planet Laser

The NASA Near Earth Object Program lists potential future Earth impact events that
the JPL Sentry System has detected based on currently available observations. Sentry is
a highly automated collision monitoring system that continually scans the most current
asteroid catalog for possibilities of future impact with Earth over the next 100 years.

This system allows us to predict that i years from now, there will be x; tons of asteroid
material that has near-Earth trajectories. In the mean time, we can build a space laser
that can blast asteroids. However, each laser blast will require exajoules of energy, and so
there will need to be a recharge period on the order of years between each use of the laser.
The longer the recharge period, the stronger the laser blast; e.g. after j years of charging,
the laser will have enough power to obliterate d; tons of asteroid material. This problem
explores the best way to use such a laser.

The input to the algorithm consists of the vectors (xy,...,x,) and (dy,...,d,) repre-
senting the incoming asteroid material in years 1 to n, and the power of the laser d; if it
charges for i years. The output consists of the optimal schedule for firing the laser which
obliterates the most material.

Example Suppose (x1,x2,x3,%4) = (1,10,10,1) and (dy,da,d3,ds) = (1,2,4,8). The best
solution is to fire the laser at times 3,4 in order to blast 5 tons of asteroids.

(a) Construct an instance of the problem on which the following “greedy” algorithm
returns the wrong answer:

BADLASER((x1, ..., %), (d1,...,dy))

1 Compute the smallest j such that dj > xy. Set j = n if no such j exists.
2 Shoot the laser at time 7.
3 if n > j then BADLASER((x1,...,X;—j), (d1, ..., dy_j)).

Intuitively, the algorithm figures out how many years (j) are needed to blast all the
material in the last time slot. It shoots during that last time slot, and then accounts
for the j years required to recharge for that last slot, and recursively considers the
best solution for the smaller problem of size n — j.

(b) Given an array holding x; and d;, devise an algorithm that blasts the most asteroid
material. Analyze the running time of your solution.

PROBLEM 4 Price Run

Given a list of closing stock ticker prices py, p2, ..., pn, devise an O(nz) algorithm that
finds the longest (not necessarily consecutive) streak of prices that increase or stays the
same. For example, given the prices 2,5,2,6,3,3,6,7,4,5, there is the streak 2,5,6,6,7 of
prices that increase or stay the same, but an even longer streak is 2,2, 3, 3,4, 5.

(Challenge: by using both dynamic programming and binary search, you can solve
this problem in O(nlogn) time.)

Ha2-4

PROBLEM 5 Tug of War

We want to play roughly fair tug of war in cs4800. You are given an array that holds the
weights of n people in the class W = (wy, wy, ..., w,). Your goal is to divide the n people
into two teams such that the total weight of the two teams is equal or as close as possible
to equal. Describe such an algorithm and give its running time. The total number of
people on each team should differ by at most 1. Assume that M is the maximum weight
of a person, i.e., Vi,w; < M. The running time should be O(n3M). The output should be
the list of people on each team and the difference in weight between the teams.

PROBLEM 6 Programming Tug of War

In this part, you will implement your algorithm for Tug of War and test it on real
data. Register and take on the challenge at https://www.hackerrank.com/contests/
cs4800£16

https://www.hackerrank.com/contests/cs4800f16
https://www.hackerrank.com/contests/cs4800f16

