CS4800 - ALGORITHMS - F'16 — SHELAT/NGUYEN
DUE SAT NOV 5, 2016 AT 11.59P VIA GRADESCOPE H3 .

e The assignment is due at Gradescope on Saturday, November 5 at 11:59pm. Late
assignments will not be accepted. Submit early and often.

e You are permitted to study with friends and discuss the problems; however, you must
write up you own solutions, in your own words. Do not submit anything you cannot
explain. If you do collaborate with any of the other students on any problem, please
do list all your collaborators in your submission for each problem.

e Finding solutions to homework problems on the web, or by asking students not
enrolled in the class is strictly prohibited.

e We require that all homework submissions are prepared in Latex. If you need to
draw any diagrams, however, you may draw them with your hand. Please use a new
page to begin each answer.

PROBLEM 1 Programming Prim

In this problem, you will program Prim’s MST algorithm in function calculateTree in
the file Prim. java that accompanies this homework. The source file describes the input
and the expected output. You should use the Heap datastructure that we provide for you
in the file Heap. java and you can consult HeapTest . java to see how to use the class.

PROBLEM 2 Programming Dijkstra

In this problem, you will program Dijkstra’s algorithm in the function calculatePaths in
the file Dijkstra. java that accompanies this assignment.

PROBLEM 3 Steiner tree approximation

The Steiner tree problem is very closely related to the minimum spanning tree, but it has
one extra flexibility which makes the problem much harder to solve. In the Steiner tree
problem, you are given a graph G = (V,E), and you wish to find a tree of minimum
weight that connects the nodes in some subset R C V (i.e. not all the nodes in V have to
be connected). This problem can be used to place fire stations on intersections in a city
so as to minimize the travel time to any particular house, or, in our case, it will help the
City of Boston design a new bus system that helps connect all of your favorite landmarks
in Boston.

In this problem, we are going to use the functions calculateTree and calculatePaths
to find an approximate Steiner tree for a graph G. The algorithm works as follows:

1. For each node x € R, compute the shortest paths dy, for all the other nodes y € R
using calculatePaths.

2. Create a new graph Gr = (R, Eg) where the edges Ey are the complete set of edges
between all nodes. Define new weights wg(x,y) for the edge between x,y € R to be
0(x,y) that was computed in the previous step.

3. Now compute a minimum spanning tree Tg on Gg using calculateTrees.

4. Now solve the original problem by extending Tr into a tree for G as follows: for
each edge (x,y) € Tg, replace the edge with the shortest path from x to y computed
in the first step.


https://shelat.ccis.neu.edu/16f-4800
https://gradescope.com/courses/4095

Complete the function main in the file Steiner. java with the algorithm above. We
have included a graph.txt file which contains all of the streets in Boston, and methods
to read that graph, and to read a file of special locations from locations.txt. Our stub
program also provides a method to write your tree to a KML file which can be viewed
using either Google Earth or Google Maps (use google to discover how).

The image below shows a sample tree rendered in Google Earth based on the locations
file.

PROBLEM 4 Another all pairs shortest path

Set BSHORT; j to be the shortest path from i to j that uses at most k edges. Note this
is different from the ASHORT variable that we used in class in that we do not restrict the
intermediate nodes to be 1...k in this formulation. State a recursive formula for BSHORT.
Devise an algorithm that uses this recurrence. What is the running time of this algorithm?

PROBLEM 5 Negative Cycles

In lecture, we argued that the Bellman-Ford algorithm can be made to detect a negative
cycle by running for one more iteration and seeing if any of the verticies have a shorter
path. Prove this by showing that if graph G = (V, E,w) has a negative cycle, then there
exists a vertex v € V for which SHORTy _; ;, > SHORTYy ;.



