LI 4IO2

ALGORITHMS

AUG 272013

ALGOR ITHMS

i love algorithms so much

you curse my name

i love it so much
i'm in this maze with you
you will crack the code

one day you are

hard
one day you are
there

Hol y
 grail

anthem

let me intro myself

first goal: create

 an amazinglearning
experience

second goal:instill

my enthusiasm for
this area
third goal: enjoy
every second of
this semester

caveat

emptor

This was one of the most brutally difficult courses I have taken. Almost every homework ended with me staying up all night before it was due in order to get it finished. However, all told, this has also been one of the most worthwhile classes I have taken. The work is very difficult, but because of that it was eve more rewarding every time I solved a problem. Abhi is incredibly enthusiastic about the topi and really does his best to get the class to actually learn something. He also really knows the subject, and is almost always able to quickly and accurately respond to any student questions.

Professor Shelat put an outstanding amount of effort into this class; he is one of the few professors I've had that have made their own slides, which were all very helpful. The homeworks were all very challenging, but really pushed me understand the material. The very theoretical perspective Prof. Shelat brought to the class was great- it was nice to have this not just be another programming class. This class has definitely been my favorite CS class at UVA as a 4th yr major.

Shelat turned this formerly-easy class into pure hell. All the assignments have been stupid hard, throw-up-your-hands-in-frustration level difficulty. And they rarely have anything to do with the lectures. And the problems are poorly written. And the assignment grading is excessively harsh, frequently arbitrary, and often inconsistent. And Shelat has been completely unresponsive to the many student complaints about all this. This has been the worst kind of hard class; the kind where you work insanely hard only to accomplish nothing meaningfull....Bottom line: Shelat should never be allowed to teach an undergraduate course ever again, at any school!

$F^{\prime} 11$

4.6

WHAT IS THIS COURSE ABOUT?

CHISTMAS MORNING

Stockings
phagetsevergbodysout Gamy
di Cameny looks at hers taking one thing out at a time \& showing Step a. Cameny looks
it to everyone.
Step Si) Then She puts them neatly back in the stocking.
step. Un. Connie does this also. Then. Bill.
Presents
1.) Cammy is appointed present finder.
2.) Cammy finds herself a present at after looking it over at saying the nessary thantyous she passes it around for everyone. 3.) then she puts the wraping paper in a pile \& puts the pres in a place where all her present will go. lever puts the like this). She does this for everyone.
4. Cammy finds a present for Connie.
51) Connie does the second part of then gives the wraping paper \& present to Cammy.
Co.) Cammy Finds a present For Bill.
7.) Bill does the second part of \#O then gives the wrapping paper
\& present to Clammy.
81) This is repeated till there are no more presents.

GREAT PYRAMID AT GIZA 2500BC

IMAGE FROM WIKIMEDIA

$$
\pi
$$

hTtP://www.CUPERTINO.ORG/INC/PDF/APPLE/RENDERINGS.PDF

"HOW MUCH GRANITE/GLASS DO I NEED?"

ALGORITHM TO COMPUTE

RED PERIMETER < πd < BLUE PERIMETER

$$
\begin{aligned}
& 1^{2}+\left(\frac{x}{2}\right)^{2}=x^{2} \\
& 4+x^{2}=4 x^{2} \Rightarrow 3 x^{2}=4 \Rightarrow x=\frac{2}{\sqrt{3}}
\end{aligned}
$$

perimeter of the hex: $\frac{12}{\sqrt{3}}>2 \pi$

$$
\Rightarrow \quad \frac{6}{\sqrt{3}}>\pi
$$

265 $\frac{\sqrt{153}}{} \approx \sqrt{3}$

IER $<\pi d<$ BLUE PERIMETER

$$
\begin{aligned}
& 3 \frac{10}{70}>\pi>3 \frac{10}{71} \\
& \underbrace{3.142}
\end{aligned}
$$

3 dig.ts corret

HOW TO ANALYZE THIS APPROACH?

- Howe celose are we to the answer?
- How much work is receded to do better??

$$
\begin{gathered}
\frac{1}{\pi}=\left(\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}}\right. \\
\frac{\underline{k=0}}{\frac{2 \sqrt{2}}{9801}}\left(\frac{0!(1103)}{(0!)\left(396^{\circ}\right)}\right)=\frac{2 \sqrt{2}}{9801} \cdot 1103=\frac{2206 \sqrt{2}}{9801} \\
3.14159273001
\end{gathered}
$$

$\mathrm{K}=\mathrm{O}$

3.14159273001330576017

$$
\begin{gathered}
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}} \\
\frac{2 \sqrt{2}}{9801}(1103+\mathbf{T} \\
\\
\left.\frac{4!(1103+26390)}{1.3964}\right)
\end{gathered}
$$

```
\(\mathrm{K}=\mathrm{I}\)
```

$$
\frac{2 \sqrt{2}}{9801}\left[1103+\frac{24 \cdot 27493}{396^{4}}\right]
$$

$3.141592653589793,97787$

BENEFITS?

GOOD ALGORITHMS

TOUCH EVERY ASPECT OF

OUR LIVES
Google

GOOD ALGORITHMS

DEFEND FREEDOM

WHAT SKILLS

DO YOU NEED
FOR THIS COURSE?

PRECISION

CREATIVITY

$\mathrm{IN} \cdot \mathrm{GE} \cdot \mathrm{NU} \cdot \mathrm{I} \cdot \mathrm{TY}$

THEME

"SMALL PROBLEMS ARE EASY TO SOLVE."

THEME

"SMALL PROBLEMS ARE EASY TO SOLVE."
"SOLVE BIG PROBLEMS BY MAKING THEM INTO SMALLER ONES."

THEME 2

"TO CONVINCE WITH PURE REASON IS THE BEST MARK OF UNDERSTANDING"

HOW TO
LEARN IN THIS CLASS
(1) groupworle
(2) discussion \qquad
(3) Ask for hap

NO COOKBOOK

DEVELOP
GENERAL
PROBLEM SOLVING SKILLS

UNDERSTAND KNOWN TECHNIQUES

WORK WITH YOUR PEERS

https://crypto.as.virginia.edu/13f4102/

Stanford
Algorithms: Design and Analysis, Part 1

Video Lectures

Having trouble viewing lectures? Try changing players. Your current player format is htmi5. Change to flash.
I. INTRODUCTION (Week 1)

Why Study Algorithms ? (4 min)
Integer Multiplication (9 min)
Karatsuba Multiplication (13 min)
About the Course (17 min)
Merge Sort: Motivation and Example (9 min)
Merge Sort: Pseudocode (13 min)
Merge Sort: Analysis (9 min)
Guiding Principles for Analysis of Algorithms (15 min)
II. ASYMPTOTIC ANALYSIS (Week 1)

The Gist (14 min)
Big-Oh Notation (4 min)
Basic Examples (7 min)
Big Omega and Theta (7 min)
Additional Examples [Review - Optional] (8 min)

TATEX

Google	guide to latex
Search	

Web	[PDF] The Not So Short Introduction to LaTeX - Tobi Oetiker - Oetiker+ .
	tobi.oetiker.ch/lshort//short.pdf
Images	a LATEX installation is available, ready to use. Information on how to access the local
Videos	LATEX installation should be prover
News	LaTeX - Wikibooks, open books for an open world
	en.wikibooks.org/wiki/LaTeX - Cached
Shopping More	This is a guide to the LaTeX markup language. It is intended to form a useful resource for everybody from new users who wish to learn, to old hands who need a ...
	aTeX/Mathematics - LaTeX/Document Strugqure - LaTeX/Text Formatting - Links
Show search tools	[PDF] Short Math Guide for LaTeX-FTP Directory Listing - American ... ftp://ftp.ams.org/pub/tex/doc/amsmath/skort-math-quide. pdf

Guide to LaTeX (4th Edition): Helmut Kopka, Patrick W. Daly ..
www.amazon.com/Guide-LaTeX-Edition-Helmut.../0321173856 - Cached
Guide to LaTeX (4th Edition) [Helmut Kopka, Patrick W. Daly] on Amazon.com. * FREE* super saver shipping on qualifying offers. Published Nov 25,2003 by ..
${ }^{[P D F]}$ A Beginner's Guide to LATEX - Princeton University
www.cs.princeton.edu/courses/archive/spr10/cos433/Latex/latex-guide.pdf - Cached
A Beginner's Guide to LATEX. David Xiao dxiao@cs.princeton.edu. September 12, 2005. 1 Introduction. LATEX is the standard mathematical typesetting ...
LaTeX documentation

The Not So Short Introduction to $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$ Or $H^{4} T_{E} X 2 \varepsilon 157$ minutes

- Introduction

- Page headers and footers
-3 What is Hextsffilincyhhdr\}
-S Simple use of Vextsfifioncyhd)
- A simple example

IT An example of two-sided pinting

- Redefining Vextlifloin) stid
- The scocop on Nlatex/s maks
\square Dictionary style headers
- - Fancy layouts
-G Two book examples
-IS Special page layuut for float pages
- Those blank pages
- Mextsf(N) of TextsfiM) stule pase numbers
\square Chapter or section related page numbers
$\because \leftrightarrows$ Headers and foolers induced by he lext?
4 Ti. Packgge for exta maks in loth
- A movie
- Thumbindexes
- Float placement
- Mutipage Floats
-3 Contact information
lextranarks () (Continued on next page \backslash ldots)
Some text that may or
lextramarks (Cont inued)
Greek small Letters
lend\{verbatim)

\backslash CndIndex (extramarks)
Note that the \Crdi(extramarks) command must be close to the text, i.e no
empty lines (paragraph boundaries) should intervene. Otherwise the page may
be broken at that boundary and the extramarks would come on the wrong page.
There are two new marks that can be used in the page layout with this

CrodIndex (IIrstxmark)
Crodndex (lastxmark)
(Cmd(firstxmark) gives you the first $\$ \mathrm{~m}-1$ value and
ff the currens
of the current page.
iCndIndex (firstleftmar
(CndIndex(lastrightmark)
\qquad Insert Label at complement the standard \latex/ marks. Insert Beference \quad ne point that marks are the correct way to do this, let me Insert Referenceto Page ay but it requires two |latex/ passes: you can put \Crd\{labe 1) Properties... before and after the text and compare the \backslash Cmd\{pageref)s.):
|begin(verbatim)
1 head (Cont inued)
固fancyhdrtrex
(3) Underfull \hbox (badness 5077) in paragraph at lines 1088--1095
/cmr 10/be /cmet 10/\thechapter-\arabic \{page) /cmr 10/but you can give this def-1-
ni-tion your-self af-ter the
[21] [22] [23] [24]
[25] (fancyhdr.aux)
\triangle LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.
H c M " Build <Find 1 <Find 2 /Parse/

LATE POLICY

COUNTING

(1) stand
(2) sert your "wumer" ro ons

STAND

2 SET YOUR "NUMBER" TO ONE

3 GREET A NEIGHBOR (PAUSE IF ODD PERSON OUT)

STAND

SET YOUR "NUMBER" TO ONE

3 GREET A NEIGHBOR (PAUSE IF ODD PERSON OUT)
4. IF YOU ARE OLDER, GIVE YOUR "NUMBER" TO YOUNG AND SIT
IF YOU ARE YOUNGER, ADD "NUMBERS"

STAND

SET YOUR "NUMBER" TO ONE

GREET A NEIGHBOR (PAUSE IF ODD PERSON OUT)
(- IF YOU ARE OLDER, GIVE YOUR "NUMBER" TO YOUNG AND SIT
IF YOU ARE YOUNGER, ADD "NUMBERS"

IF YOU ARE STANDING \& YOU HAVE A NEIGHBOR, GOTO 3

LETS ANALYZE THIS ALG

HOW FAST DOES IT WORK:

12) 345

1 1
$T(n)=$

$$
\begin{aligned}
& \left.1+1+T\left(V \frac{n}{2}\right\rceil\right) \\
& 2+T\left(\left[\frac{n}{2}\right\rceil\right)
\end{aligned}
$$

HOW FAST DOES IT WORK:

$T(n)$
TIME TO FINISH FOR A ROOM OF SIZE N

HOW FAST DOES IT WORK:

$$
T(n)=1+1+T(\lceil n / 2\rceil)
$$

TReouraces.

Defire
Taptraction of the funtron on - Smaller aryount

$$
T(1)=\underline{2}
$$

$$
T\left(2^{k}\right)=2+T\left(2^{k-1}\right)
$$

RECURRENCE?

$$
T\left(2^{k}\right)=2+T\left(2^{k-1}\right)
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T(2)
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T(2) \\
& =2 k+2=O\left(\log \left(2^{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T(2) \\
& =2 k+2=O\left(\log \left(2^{k}\right)\right)
\end{aligned}
$$

$$
\forall 0<n<m, T(n) \leq T(m)
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T(2) \\
& =2 k+2=O\left(\log \left(2^{k}\right)\right) \\
\forall 0<n & <m, T(n) \leq T(m) \\
T(m) & \leq T\left(2^{\lceil\log (m)\rceil}\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T(2) \\
& =2 k+2=O\left(\log \left(2^{k}\right)\right) \\
\forall 0<n & <m, T(n) \leq T(m) \\
T(m) & \leq T\left(2^{\lceil\log (m)\rceil}\right)=2\lceil\log (m)\rceil+2
\end{aligned}
$$

ASYMPTOTIC NOTATION

$O(f)$
$\Omega(f)$
$\Theta(f)$

AT MOST WITHIN CONST OF f FOR LARGE N

AT LEAST WITHIN CONST OF f FOR LARGE N

WITHIN A CONST OF f FOR LARGE N

$$
\begin{aligned}
T\left(2^{k}\right) & =2+T\left(2^{k-1}\right) \\
& =2+2+T\left(2^{k-2}\right) \\
& =\overbrace{2+2+\cdots+2}^{k}+T(2) \\
& =2 k+2=O\left(\log \left(2^{k}\right)\right) \\
\forall 0<n & <m, T(n) \leq T(m) \\
T(m) & \leq T\left(2^{\lceil\log (m)\rceil}\right)=2\lceil\log (m)\rceil+2=O(\log (m)) \\
T(m) & =\Omega(\log (m)) \\
& =\Theta(\log (m))
\end{aligned}
$$

How то

SOLVE

RECURRENCE
?- $-\checkmark$

$\begin{array}{r}\hline 7 \\ \boldsymbol{*} \\ \hline 4 \\ \hline 4 \\ \hline\end{array} \begin{array}{r}9 \\ \hline\end{array}$

$$
\text { N } \begin{array}{|c|c|c|}
\hline 7 & \begin{array}{|c|}
\hline 8 \\
\hline 4 \\
\hline 3 \\
\hline
\end{array} & \begin{array}{|c}
2 \\
\hline
\end{array} \\
\hline
\end{array}
$$

| 1 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\times| 1 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| a | b | | c |

$a c 100^{2}+(a d+b c) 100+b d$

| 1 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\times| 1 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| a | b | | c |

$$
a c 100^{2}+(a d+b c) 100+b d
$$

| 1 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\times| 1 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| a | b | | c |

$a c 100^{2}+(a d+b c) 100+b d$

$$
T(n)=4 T(n / 2)+3 O(n)
$$

$a c 100^{2}+(a d+b c) 100+b d$

$a c 100^{2}+(a d+b c) 100+b d$

$$
(a+b)(c+d)=a c+a d+b c+b d
$$

$a c 100^{2}+(a d+b c) 100+b d$

$$
\begin{gathered}
(a+b)(c+d)=a c+a d+b c+b d \\
a d+b c=(a+b)(c+d)-a c-b d
\end{gathered}
$$

1	7	8	9	A	4
	3	2			
a	b	\square	d		

$(1 a c, b d,(a+b)(c+d)$

(1) $a c, b d,(a+b)(c+d)$
(2) $a d+b c=(a+b)(c+d)-a c-b d$

| 1 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\times| 1 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| a | b | | |

$1 a c, b d,(a+b)(c+d)$
(2) $a d+b c=(a+b)(c+d)-a c-b d$
(3) $a c 100^{2}+(a d+b c) 100+b d$

| 1 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\times| 1 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| a | b | | |

$1 a c, b d,(a+b)(c+d)$
(2) $a d+b c=(a+b)(c+d)-a c-b d$
(3) $a c 100^{2}+(a d+b c) 100+b d$

$1 a c, b d,(a+b)(c+d)$
(2) $a d+b c=(a+b)(c+d)-a c-b d$
(3) $a c 100^{2}+(a d+b c) 100+b d$

(1) $a c, b d,(a+b)(c+d) \quad 3 T(n / 2)+2 O(n)$
(2) $a d+b c=(a+b)(c+d)-a c-b d \quad 2 O(n)$
(3) $a c 100^{2}+(a d+b c) 100+b d$

$1 a c, b d,(a+b)(c+d) \quad 3 T(n / 2)+2 O(n)$
(2) $a d+b c=(a+b)(c+d)-a c-b d \quad 2 O(n)$
(3) $a c 100^{2}+(a d+b c) 100+b d_{2 O(n)}$

$$
T(n)=3 T(n / 2)+6 O(n)
$$

$$
\begin{gathered}
T(n)=3 T(n / 2)+6 O(n) \\
\Theta\left(n^{1.585}\right)
\end{gathered}
$$

$T(n)=3 T(n / 2)+6 O(n)$
$T(n)=3 T(n / 2)+6 O(n)$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

?- $-\checkmark$

$q \leftarrow\lfloor(p+r) / 2\rfloor$
merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)
$\frac{\operatorname{Merge}(A[1 \ldots n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$

$$
\text { for } k \leftarrow 1 \text { to } n
$$

if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else
$B[k] \leftarrow A[j] ; j \leftarrow j+$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

