
abhi shelat

How many ways can I get from KB to BG moving only up and left?

Typesetting

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

It was the best of times, it was the worst of times, it was the age of wisdom, i was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despai , we had everything before us, we had nothing be ore us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that sone of its noisiest authorities insisted on its be ng received, for good or for evil, in the supe lative degree of comparison only.
do not typeset in margin
do not typeset in margin
typeset every word minimize the slack
between margin and last word on a line
one paragraph at a time

| It was the best of times, it was the | 6 | 36 |
| :--- | :--- | ---: | ---: |
| worst of times, it was the age of wisdom, | 6 | 1 |
| it was the age of foolishness, it was the- | 1 | 1 |
| epoch of belief, it was the epoch of | | |
| incredulity, it was the season of Light, | 6 | 36 |
| it was the season of Darkness, it was the_ | 2 | 4 |
| spring of hope, it was the winter of | 1 | 1 |
| despair, we had everything before us, we_- | 6 | 36 |
| had nothing before us, we were all going | 2 | 4 |
| direct to heaven, we were all going direct | 2 | 4 |
| the other way - in short, the period was | 0 | 0 |
| so far like the present period, that some | | |
| of its noisiest authorities insisted on | | 123 |

Typesetting problem
output: $L=\left(w_{1}, \ldots, w_{\left(\ell_{1}\right)}\right),\left(w_{\ell_{1}+1}, \ldots, w_{\ell_{2}}\right), \ldots,\left(w_{\underline{\ell_{x+1}}, \ldots, w_{n}}\right)$
such that
No line exceeds the margin

$$
C i<M
$$

\longrightarrow characters on line i.
$\min \sum(\mu-c i)^{2} \longrightarrow$ minimize the sum the

$$
\left(\text { slack on each live) }{ }^{2}\right.
$$

Typesetting problem
 inout: $w=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{0}\right\} \quad M$

output: $L=\left(w_{1}, \ldots, w_{\ell_{1}}\right),\left(w_{\ell_{1}+1}, \ldots, w_{\ell_{2}}\right), \ldots,\left(w_{\left.\ell_{x+1}, \ldots, w_{n}\right)}\right.$

$$
c_{i}=\left(\sum_{j=\ell_{i}+1}^{\ell_{i+1}}\left|w_{j}\right|\right)+\left(\ell_{i+1}-\ell_{i}-1\right)
$$

such that $\quad c_{i} \leq M \quad \forall i$

$$
\min \sum\left(\underline{M-c_{i}}\right)^{2}
$$

how to solve
define the right variable:
BesTn: Smallest penalty for which the first n words can be typeset.
imagine optimal solution

imagine optimal solution

last line
some word has to
be the first-word-of-
last-line
(fwoll)

imagine optimal solution

how many candidates are there for the fol? n comblidectes.

which word is fwoll?

which word is fwoll?

typesetting algorithm

typesetting algorithm

make table for $S_{i, j}$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n}
$$

$$
\operatorname{best}[\mathrm{i}]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

Simplest case

Simplest case

how to compute $S_{i, j}$

How to compute $S_{i, j}$

Example

It was the best of times, it was the worst of times; it was the age o wisdom, it was the age of foolishness; it was the epoch of belief, it was the epoch of incredulity; it was the season of

```
2 3 3 4 2 6 2 3 3 5 2 6 2 3 3 3 2 7 2 3 3
3 2 12 2 3 3 5 2 7 2 3 3 5 2 12 2 3 3 6 2
```

sioz first step: make $S_{i, j}$

1

2
39

$$
\begin{array}{llllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\
3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2 & M=42
\end{array}
$$

$$
\underbrace{S_{i, i}=M-\left|w_{i}\right|} \quad \begin{array}{r}
S_{22} \rightarrow \text { slach whon typersting } \\
\text { word } 2 \ldots \text { wod } 2 \text { on }
\end{array}
$$

$$
S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
$$

$$
\begin{aligned}
& S_{22} \rightarrow \text { Slach whon typersting } \\
& \text { word } 2 \ldots \text { worle on } \\
& \text { a line. }
\end{aligned}
$$

first step: make $S_{i, j}$

$$
\begin{aligned}
& S_{i, i}=\underline{M}-\left|\underline{w_{i}}\right| \\
& S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
\end{aligned}
$$

first step: make $S_{i, j}$

1

40	36	32	27	24	17	14	10	6	0	99	99	99

2

39	35	30	27	20	17	13	9	3	0	99	99

$$
\begin{array}{lllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\
3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2
\end{array}
$$

second step: compute

best $0 \quad 1600$
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

second step: compute

best $0 \quad 1600 \quad 1296$
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

1

| 2 | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Running time make table for $S_{i, j}$

$O\left(n^{2}\right)$
for $i=1$ to $n=n$ iterations

$$
\operatorname{best}[i]=\underset{\imath_{n}}{\min }\left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

$$
O\left(n^{2}\right)
$$

PROBLEM: REDUCE IMAGE

scaling: distortion
deleting column: distortion
delete the most invisible seam
http://www.youtube.com/watch?v=qadwOBRKeMk

Shai Avidan

Mitsubishi Electric Research Lab Ariel Shamir
The interdisciplinary Center \& MERL
http://www.youtube.com/watch?v=qadwOBRKeMk

DEMO?

http://rsizr.com/

WHICH SEAM TO DELETE?

ENERGY OF AN IMAGE

$$
e(\mathbf{I})=\left|\frac{\partial}{\partial x} \mathbf{I}\right|+\left|\frac{\partial}{\partial y} \mathbf{I}\right|
$$

"magnitude of gradient at a pixel"

$$
\frac{\partial}{\partial x} I_{x, y}=I_{x-1, y}-I_{x+1, y}
$$

energy of sample image
thanks to Jason Lawrence for gradient software

BEST SEAM HAS LOWEST ENERGY

FINDING LOWEST ENERGY SEAM?

Define a variable:
$S_{i}(j)$

deffintion: $S_{n}(j)$

 ต

definition:

BEST SEAM TO DELETE HAS TO BE THE BEST AMONG

$$
S_{n}(1), S_{n}(2), \ldots, S_{n}(m)
$$

IDEA: COMPUTE + COMPARE

SMALLER
PROBLEM
APPROACH

IMAGINE YOU HAVE THE SOLUTION TO THE

 FIRST n-1 ROWS

$S_{n}(1)$

$$
S_{n}(1)=e(n, 1)+\min \left\{S_{n-1}(1), S_{n-1}(2)\right\}
$$

$$
S_{i}(j)=
$$

ALGORITHM

start at bottom of picture

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $\mathrm{i}=2, \mathrm{n}$ use formula to compute $S_{i+1}(\cdot)$

$$
S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}
\end{array}\right.
$$

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $i=2$, n use formula to compute $S_{i+1}(\cdot)$

$$
S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}\right.
$$

ALGORITHM

start at bottom of picture. \quad initialize $\quad S_{1}(i)=e(1, i)$
for $\mathrm{i}=2, \mathrm{n}$ use formula to compute $S_{i+1}(\cdot)$
pick best among top row, backtrack.

RUNNING TIME
start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $i=2, n$ use formula to compute

$$
\begin{aligned}
& S_{i+1}(\cdot) \\
& S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{S_{i-1}(j)} \\
S_{i-1}(j+1)
\end{array}\right.
\end{aligned}
$$

pick best among top row, backtrack.

RUNNING TIME
start at bottom of picture. initialize $S_{1}(i)=e(1, i)$
for $\mathrm{i}=2$, n use formula to compute $\quad S_{i+1}(\cdot)$

$$
\begin{aligned}
& S_{i+1}(\cdot) \\
& S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}\right.
\end{aligned}
$$

pick best among top row, backtrack.

Gerrymander

Congressional District 5

0	50	100 Miles
L	1	

Map of Charlottesville Precincts and

GERRYMANDER PROBLEM

given:
output:

GERRYMANDER PROBLEM

given: $m A_{1}, A_{2}, \ldots, A_{n}$ nis even
output: D_{1}, D_{2}

$$
\text { such that } \begin{aligned}
\left|D_{1}\right| & =\left|D_{2}\right| \\
A\left(D_{1}\right) & >\frac{m n}{4} \\
A\left(D_{2}\right) & >\frac{m n}{4}
\end{aligned}
$$

or "failure" if no such solution is possible

EXAMPLE

THE TECHNIQUE

GERRYMANDER

imagine very last precinct and how it is assigned:

GERRYMANDER

$$
S_{j, k, x, y}=
$$

GERRYMANDER

$S_{j, k, x, y}=$ there is a split of first \mathbf{j} precincts in which \mid Dil $=k$ and \mathbf{x} people in Di vote A y people in D_{2} vote A

$$
\begin{aligned}
& S_{j, k, x, y}=S_{j-1, k-1, x-A_{j}, y} \vee S_{j-1, k, x, y-A_{j}} \\
& \text { GERRYMANDER(P,A,m)} \\
& \text { initialize array S[o,o,o,o] }
\end{aligned}
$$

$$
S_{j, k, x, y}=S_{j-1, k-1, x-A_{j}, y} \vee S_{j-1, k, x, y-A_{j}}
$$

GERRYMANDER(P,A,m)

```
initialize array S[o,o,o,o]
```

for $j=I, \ldots, n$
for $k=1, \ldots, n / 2$
for $x=0, \ldots, j m$
for $\mathrm{y}=0, \ldots, \mathrm{jm}$
fill table according to equation
search for true entry at $\mathrm{S}[\mathrm{n}, \mathrm{n} / 2,>\mathrm{mn} / 4,>\mathrm{mn} / 4]$

Scheduling

	start	end
sy333	2	3.25
en162	1	4
ma123	3	4
cs4102	3.5	4.75
$\operatorname{cs4} 402$	4	5.25
$\operatorname{cs6} 651$	4.5	6
$\operatorname{sy333}$	5	6.5
$\operatorname{cs1011}$	7	8

problem statement

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sorted) } s_{i}<f_{i} \\
& \text { (compatible) } \\
& \text { find largest subset of activities } \mathrm{C}=\{\mathrm{a}\} \text { such that }
\end{aligned}
$$

problem statement

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \text { (sOrted) } s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $\mathrm{C}=\left\{\mathrm{a}_{\mathrm{i}}\right\}$ such that

$$
\begin{aligned}
& a_{i}, a_{j} \in C, i<j \\
& f_{i} \leq s_{j}
\end{aligned}
$$

problem statement
$\left(a_{1}, \ldots, a_{n}\right)$
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)$

areedy solution:

greedy solution:

《स) $\operatorname{SOLTN}_{0,2 n}$

