4102

10.1.2013

abhi shelat

$$B(ij) = \# \text{ if ways to Sel to}$$

$$(iij)$$

$$= B(i-1) + R(i-1)$$

= B(i-1i) + B(i, j-1)

Tif CP was at there.

Typesetting

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

s (ach

It was the best of times, it was the worst of times, it was the age of wisdom, it he age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct to heaven, we were going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

do not typeset in margin do not typeset in margin typeset every word minimize the slack between margin and last word on a line

one paragraph at a time

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of 144 incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

greedy strategy tails

It was the best of times, it was the worst of times, it was the age of wisdom,_ it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the_ spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

Typesetting problem

 $W = \{w_1, w_2, w_3, \dots, w_n\} \qquad M \qquad M$ input: Line breaks output: $L=(w_1,\ldots,w_{\ell_1}),(w_{\ell_1+1},\ldots,w_{\ell_2}),\ldots,(w_{\ell_{x+1},\ldots,w_n})$ such that No line exceeds the margin $Ci \leq M$ - scharacters on line i.

min \(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \)

(Slack on each like)

Typesetting problem

input: $W = \{w_1, w_2, w_3, \dots, w_n\}$ M

output:
$$L = (w_1, \dots, w_{\ell_1}), (w_{\ell_1+1}, \dots, w_{\ell_2}), \dots, (w_{\ell_{x+1}, \dots, w_n})$$

$$c_i = \left(\sum_{j=\ell_i+1}^{\ell_{i+1}} |w_j|\right) + (\ell_{i+1} - \ell_i - 1)$$

such that $c_i \leq M \ \forall i$

$$\min \sum (M - c_i)^2$$

how to solve

define the right variable:

Bestn: Smallest penalty for which the first words can be typesed. imagine optimal solution

2fw011-1

slack for the last line if the last line begins w/fwoll.

some word has to be the first-word-oflast-line (fwoll) imagine optimal solution $S_{\ell,n}$ last line slack when line starts with w_ℓ , and goes to word n. fwoll is (

imagine optimal solution

 $w_{\ell-1}$ $S_{\ell,n}$ last line fwoll is w_ℓ slack when line starts with w_ℓ $BEST_n = BEST_{\ell-1} + S_{\ell,n}^2$

how many candidates are there for the fwoll? In candidates.

is w. fwoll?

 w_1

there is no slack (no solution even) because words go beyond edge!

define $S_{1,n} = \infty$ if this happens

is w₂ fwoll?

 w_1

 w_2

$$S_{2,n} = \infty$$

is w_j fwoll?

 $S_{j,n}$

which word is fwoll?

which word is fwoll?

typesetting algorithm

typesetting algorithm

make table for $S_{i,j}$ for $\underline{\mathtt{i=1}}$ to \mathtt{n}

```
best[i] = \min_{j \in I} \{best[j] + s[j+1][i]^2 \}
```

```
// compute best_0,...,best_n
    int best[] = new int[n+1];
    int choice[] = new int[n+1];
    best[0] = 0;
    for(int i=1;i<=n;i++) {
        int min = infty;
        int ch = 0;
        for(int j=0;j<i;j++) {
            int t = best[j] + S[j+1][i]*S[j+1][i];
            if (t<min) { min = t; ch = j;}
            best[i] = min;
            choice[i] = ch;
}</pre>
```

how to compute $S_{i,j}$

Simplest case

$$S_{112} = S_{11} - |V_2|$$

Simplest case

how to compute $S_{i,j}$

 $S_{i,j}$

 (w_i)

slack when line starts with w_i and ends w_j

$$S_{i,j} = \int M - |W_i| \quad \text{if } i = j$$

$$S_{i,j-1} - | - |W_j|$$

How to compute Sij

Example

It was the best of times, it was the worst of times; it was the age o wisdom, it was the age of foolishness; it was the epoch of belief, it was the epoch of incredulity; it was the season of

 2
 3
 3
 4
 2
 6
 2
 3
 5
 2
 6
 2
 3
 3
 3
 2
 7
 2
 3
 3

 3
 2
 12
 2
 3
 3
 5
 2
 7
 2
 3
 3
 5
 2
 12
 2
 3
 3
 6
 2

Sin first step: make $S_{i,j}$

$$S_{i,i} = M - |w_i|$$

$$S_{i,j} = S_{i,j-1} - 1 - |w_j|$$

$$S_{i,j} = S_{i,j-1} - 1 - |w_j|$$

Szz -) Slach When typesetting Word 2 ... Wordz on

first step: make $S_{i,j}$

$$S_{i,i} = M - |w_i|$$

$$S_{i,j} = S_{i,j-1} - 1 - |w_j|$$

$$S_{i,j} = S_{i,j-1} - 1 - |w_j|$$

first step: make $S_{i,j}$

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

 1
 40
 36
 32
 27
 24
 17
 14
 10
 6
 0
 99
 99
 99

 2
 39
 35
 30
 27
 20
 17
 13
 9
 3
 0
 99
 99

2 3 3 4 2 6 2 3 3 5 2 6 2 3 3 3 2 7 2 3 3 3 2 12 2 3 3 5 2 7 2 3 3 6 2

$$S_{2,2} = M - 3 = 39 -$$

$$S_{3,3} = M - 3 = 39$$

$$S_{3,3} = M-3 = 39$$

-> Slack when typese Hirs

second step: compute

 $Best_{1} = Best_{0} + (S_{1,1})^{2} = 0 + 40^{2}$ $Best_{2} = \begin{cases} Best_{0} + (S_{1,2})^{2} = 0 + 36^{2} = 1296 \\ Best_{1} + (S_{22})^{2} = 1600 + 39^{2} = 71296 \end{cases}$ i - 1 $BEST_i = \min_{j=0}^{1} \{BEST_j + S_{j+1,i}^2 \}$ 3

second step: compute

second step: compute

$$\operatorname{BEST}_{i} = \min_{j=0}^{i-1} \left\{ \operatorname{BEST}_{j} + S_{j+1,i}^{2} \right\}$$

$$\stackrel{1}{=} 0$$

Running time

make table for $\,S_{i,j}\,$

for i=1 to n iterations

$$\left(\frac{1}{2} \right)$$

PROBLEM: REDUCE IMAGE

scaling: distortion

deleting column: distortion

delete the most invisible seam

http://www.youtube.com/watch?v=qadw0BRKeMk

http://www.youtube.com/watch?v=qadw0BRKeMk

DEMO?

http://rsizr.com/

WHICH SEAM TO DELETE?

ENERGY OF AN IMAGE

$$e(\mathbf{I}) = \left| \frac{\partial}{\partial x} \mathbf{I} \right| + \left| \frac{\partial}{\partial y} \mathbf{I} \right|$$

"magnitude of gradient at a pixel"

$$\frac{\partial}{\partial x}I_{x,y} = I_{x-1,y} - I_{x+1,y}$$

energy of sample image

thanks to Jason Lawrence for gradient software

BEST SEAM HAS LOWEST ENERGY

FINDING LOWEST ENERGY SEAM?

Define a variable:

$$S_i(j)$$

definition: $S_n(j)$

definition:

BEST SEAM TO DELETE HAS TO BE THE BEST AMONG

$$S_n(1), \underline{S_n(2)}, \ldots, S_n(m)$$

IDEA: COMPUTE + COMPARE

• • •

SMALLER PROBLEM APPROACH

IMAGINE YOU HAVE THE SOLUTION TO THE FIRST n-1 ROWS

$$S_n(1) = e(n,1) + \min\{S_{n-1}(1), S_{n-1}(2)\}$$

$$S_i(j) =$$

$$S_i(j) = e(i,j) + \min \begin{cases} S_{i-1}(j-1) \\ S_{i-1}(j) \\ S_{i-1}(j+1) \end{cases}$$

ALGORITHM

start at bottom of picture

ALGORITHM

ALGORITHM

for i=2, n use formula to compute
$$S_{i+1}(\cdot)$$

$$S_i(j) = e(i,j) + \min \left\{ \begin{array}{l} S_{i-1}(j-1) \\ S_{i-1}(j) \\ S_{i-1}(j+1) \end{array} \right.$$

$$S_1(i) = e(1,i)$$

for i=2 , n use formula to compute
$$S_{i+1}(\cdot)$$

$$S_i(j)=e(i,j)+\min\left\{\begin{array}{l}S_{i-1}(j-1)\\S_{i-1}(j)\\S_{i-1}(j+1)\end{array}\right.$$

for i=2, n use formula to compute
$$S_{i+1}(\cdot)$$

$$S_{i}(j) = e(i,j) + \min \left\{ \begin{array}{l} S_{i-1}(j-1) \\ S_{i-1}(j) \\ S_{i-1}(j+1) \end{array} \right.$$
 pick best among top row, backtrack.

RUNNINGTIME

start at bottom of picture. initialize $S_1(i) = e(1,i)$ for i=2, n use formula to compute $S_{i+1}(\cdot)$ $S_{i-1}(j-1)$ $S_{i}(j) = e(i,j) + \min \left\{ \begin{array}{l} S_{i-1}(j-1) \\ S_{i-1}(j) \\ S_{i-1}(j+1) \end{array} \right.$ pick best among top row, backtrack.

RUNNINGTIME

for i=2, n use formula to compute
$$S_{i+1}(\cdot) \begin{cases} S_{i-1}(j-1) \\ S_{i-1}(j) \\ S_{i-1}(j+1) \end{cases}$$
 pick best among top row, backtrack.

Gerrymander

Congressional District 5

GERRYMANDER PROBLEM

given:

output:

GERRYMANDER PROBLEM

given:
$$M$$
 A_1, A_2, \ldots, A_n n is even

output:
$$D_1, D_2$$

such that
$$|D_1|=|D_2|$$
 $A(D_1)>rac{mn}{4}$ $A(D_2)>rac{mn}{4}$

or "failure" if no such solution is possible

EXAMPLE

THE TECHNIQUE

GERRYMANDER

imagine very last precinct and how it is assigned:

GERRYMANDER

$$S_{j,k,x,y} =$$

GERRYMANDER

```
S_{j,k,x,y} = \text{there is a split of first } j precincts in which |D_1|=k and x people in D_1 vote A y people in D_2 vote A
```

 $S_{j,k,x,y} = S_{j-1,k-1,x-A_j,y} \lor S_{j-1,k,x,y-A_j}$

GERRYMANDER (P,A,m)

initialize array S[0,0,0,0]

$S_{j,k,x,y} = S_{j-1,k-1,x-A_j,y} \lor S_{j-1,k,x,y-A_j}$ GERRYMANDER(P,A,m)

```
initialize array S[0,0,0,0]
for j=1,...,n
    for k=1,...,n/2
    for x=0,...,jm
    for y=0,...,jm
    fill table according to equation
search for true entry at S[n,n/2, >mn/4, >mn/4]
```

Scheduling

	start	end	
sy333	2	3.25	
en162	1	4	
ma123	3	4	
cs4102	3.5	4.75	
cs4402	4	5.25	
cs6051	4.5	6	
sy333	5	6.5	
cs1011	7	8	

problem statement

```
(a_1,\ldots,a_n) (s_1,s_2,\ldots,s_n) (f_1,f_2,\ldots,f_n) (sorted) s_i < f_i (compatible) find largest subset of activities C={a_i} such that
```

problem statement

$$(a_1, \ldots, a_n)$$

 (s_1, s_2, \ldots, s_n)
 (f_1, f_2, \ldots, f_n) (sOrted) $s_i < f_i$

 $\begin{array}{c} \text{(compatible)}\\ \text{find largest subset of activities $C=\{a_i\}$ such that} \end{array}$

$$a_i, a_j \in C, i < j$$
$$f_i \le s_j$$

$\frac{\text{problem statement}}{(a_1, \dots, a_n)}$

dynamic programming

dynamic programming

dynamic programming

 $\mathrm{BEST}_{f_n} = \max$

 BEST_{e_t}

 a_n out:

greedy solution:

greedy solution:

 $SOLTN_{i,j}$

 $RIW SOLTN_{0,2n}$