
2.25.2016
abhi shelat

## Billboard problem



gout: is to maximize viewership for an acceptable campaign


Input is $\left(\left(x_{1}, \ldots, x_{n}\right)\left(v_{1}, \ldots, v_{n}\right), D\right)$

Best $_{n}=$ max viewership for an acceptable campaign that $\begin{gathered}\text { considers } \\ \forall \text { cess }\end{gathered}$ the find $n$ billboards


$$
\begin{aligned}
& \underline{\text { Best }_{1}}=V_{j}=V_{1} \\
& \underline{\underline{\text { Best }_{2}}}=\max \left\{\begin{array}{l}
\text { Best }_{1} \\
v_{2}+\text { Best }_{\text {buddy }}(2)=v_{2}
\end{array} \quad\right. \text { buddy }
\end{aligned}
$$

Billboard Problem

$$
\left\{\operatorname{BEST}_{j}=\max \left\{\begin{array}{l}
\mathrm{BEST}_{j-1} \\
v_{j}+\operatorname{BEST}_{c l(j)}
\end{array}>\text { closed }=\right.\text { buddy }\right.
$$

$$
\begin{aligned}
& \text { best }[0]=0 \\
& \text { for } i=1 \text { to } n
\end{aligned}
$$

$$
c \mid=i-1
$$

while $\left(\operatorname{dist}(x[c \mid], x[i])<D^{6}\right) \quad c \mid=\mathbb{C l}-1_{j}$

$$
\operatorname{best}[i]=\max \left\{\begin{array}{l}
\text { best }[i-1] \\
v[i]+\text { best }[c 1]
\end{array}\right.
$$

return best [n]

Billboard Problem

$$
\operatorname{BEST}_{j}=\max \left\{\begin{array}{l}
\operatorname{BEST}_{j-1} \\
v_{j}+\operatorname{BEST}_{c l(j)}
\end{array} \quad \text { RUNTME: } \theta\left(n^{2}\right)\right.
$$

```
best[0] = 0
for i=1 to n }<n\mathrm{ iterations
    cl = i-1
    while( (x[i]-x[cl])< D && cl>0) cl=cl-1 < 0(n)
    best[i] = max(best[i-1], \underset{vi}{~}\mp@subsup{\}{i}{\prime}+\mathrm{ best[cl])}
return best[n]
```



Pre-process to find every board's buddy.

$$
\text { right }=n \text {, left }=n
$$


move left until dist(x[right], $x[l e f t])>D$
buddy[right] = left
|-95

| $\mathrm{X}_{1}$ | $\mathrm{X}_{2}$ | $\mathrm{X}_{3} \mathrm{X}_{4}$ | $\mathrm{X}_{5}$ | $\mathrm{X}_{6}$ | $\mathrm{X}_{7}$ | $\mathrm{X}_{8}$ | $\mathrm{X}_{9}$ | $\mathrm{X}_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~V}_{1}$ | $\mathrm{~V}_{2}$ | $\mathrm{~V}_{3} \mathrm{~V}_{4}$ | $\mathrm{~V}_{5}$ | $\mathrm{~V}_{6}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{8}$ | $\mathrm{~V}_{9}$ | $\mathrm{~V}_{10}$ |
| Pre-process to find every board's buddy. |  |  |  |  |  |  |  |  |

$$
\text { right }=\mathrm{n} \text {, left = n }
$$

$\rightarrow$ move left until dist(x[right], $x[$ left $])>D$
buddy[right] = left move right to right


1-95


$$
\text { right }=n \text {, left }=n
$$

while right and left are valid move left until dist(x[right], x[left]) > D buddy[right] = left move right to the left handle any leftover right



## Better Billboard

$$
\begin{aligned}
& {\underset{B E S T}{j}}^{\theta(r)}=\max \left\{\begin{array}{l}
\mathrm{BEST}_{j-1} \\
v_{j}+\operatorname{BEST}_{c l(j)}
\end{array}\right\} \\
& \text { <Preprocess buddies>- } \theta(r) \\
& \text { runtive }: \theta(n) \\
& \text { for } i=1 \text { to } n \in \\
& \text { cl = i-1 } \\
& \text { While }\left(\begin{array}{l}
r \\
x[i]-x[c l])<D \quad \& \&-c l>0) \quad c l=c l-1 *
\end{array}\right. \\
& \text { best[i] }=\max (\operatorname{best}[i-1], v[\dot{j}]+\text { best[buddy[i]] }) \theta(1) \\
& \text { return best[n] }
\end{aligned}
$$

## $T$ <br> Typesetting

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.



# First rule of typesetting 

never print in the margin!
$\longleftrightarrow$ are simply not allowed

It was the best of times, it was the worst of times, it was the age of wisdom, it was
minimize the overall the age of foolishness, it was the epoch $\qquad$ of belief, it was the epoch of $\qquad$ incredulity, it was the season of Light,
$\qquad$ it was the season of Darkness, it was the $=$ spring of hope, it was the winter of $\qquad$ despair, we had everything before us, we had nothing before us, we were all going $\qquad$ direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.
$\qquad$ is.... slack

## Second rule of typesetting

avoid big ugly whitespaces (slack)
do not typeset in margin× do not typeset in margin $\times$ typeset every word $x$ minimize the slack between margin and last word on a line
one paragraph at a time

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch

| 0 | 0 |
| ---: | ---: |
| 0 | 0 |
| 2 | 4 |
| 12 | 144 |
| 2 | 4 |
| 1 | 1 |
| 6 | 36 |
| 2 | 4 |
| 2 | 4 |
| 0 | 0 |
|  | 197 |

I was-the besst of times, it was the
worst of times, it was the age of wisdom,
it was the age of foolishness, it was the
epoch of belief, it was the epoch of6
incredulity, it was the season of Light,
1
36
it was the season of Darkness, it was the_
spring of hope, it was the winter of
$\qquad$ despair, we had everything before us, we__ had nothing before us, we were all going $\qquad$ direct to heaven, we were all going direct

Typesetting problem
input: $\frac{W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}}{\text { sequence of word lengths }} \quad \mathbb{I} \leq$ margin
output: $\frac{L}{\text { lines }}=\left(\underline{\underline{w_{1}}}, \ldots, w_{\ell_{1}}\right),\left(\underline{w_{\ell_{1}+1}}, \ldots, w_{\ell_{2}}\right), \ldots,\left(\underline{w_{\ell_{x}+1}}, \ldots, w_{n}\right)$
such that all words typeset

$$
\begin{aligned}
& \sum_{i \in e a c h l i n e} w_{i} \leq M \\
& \operatorname{minimize} \sum_{j \in \operatorname{lines}}\left(M-\binom{\text { Sum of woilsan }}{\text { line } j}-\lim _{0 \text { works } j}+1\right)^{2}
\end{aligned}
$$

## Typesetting problem <br> $W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\} \quad M$

input:
output: $L=\left(\widehat{w}_{1}, \ldots, w_{\ell_{1}}\right),\left(\widetilde{w_{\ell_{1}+1}}, \ldots, w_{\ell_{2}}\right), \ldots,\left(\widetilde{w_{\ell_{x+7}}}, \ldots, w_{n}\right)$

$$
\left\{\begin{array}{c}
\text { length of the } i^{\text {th }} \\
\text { line in the } \\
\text { typesetting }
\end{array}\right.
$$

such that

$$
\underline{c}_{i}=\left(\frac{\sum_{j=\ell_{i}+1}^{\ell_{i+1}}\left|w_{j}\right|}{}\right)+\frac{\left(\ell_{i+1}-\ell_{i}-1\right)}{\text { spaces b/w words }}
$$

$$
\begin{aligned}
& c_{i} \leq M \\
& \min \sum\left(M-c_{i}\right)^{2}
\end{aligned}
$$

$$
r_{j}=l_{i}+1
$$

how to solve
define the right variable:
Bests: minimum penalty for typesetting the first $n$ works
imagine optimal solution

imagine optimal solution
$\square$
$\square$
$\square$

SFW.U
$\uparrow$
first word of the last line fol

$\rightarrow$ last win bitare food
shade induced by typesetting word $j$ as fol for firs $n$ words.

> some word has to be the first-word-oflast-line (fwoll)
imagine optimal solution

imagine optimal solution


$$
\mathrm{BEST}_{n}=\mathrm{BEST}_{\ell-1}+S_{\ell, n}^{2}
$$

how many candidates are there for the fol?



which word is fwoll?


## which word is fwoll?



## typesetting algorithm

typesetting algorithm
(make table for $S_{i, j}$ ) slack far typesetting word is as fol amor fist ${ }_{j}$ works for $i=1$ to $n$

$$
\left.\operatorname{best}[i]=\min _{\mathcal{U}}\{\underline{\operatorname{best}[j]}+\underline{s[j+1][i]}]^{2}\right\}
$$

## typesetting algorithm

make table for $S_{i, j}$

$$
\text { for } \mathrm{i}=1 \mathrm{ton}
$$

$$
\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

best
choices correspond to
int min = infty;
int min = infty;
int ch = 0;
int ch = 0;
for(int j=0;j<i;j++) {
for(int j=0;j<i;j++) {
int t = best[j] + S[j+1][i]*S[j+1][i];
int t = best[j] + S[j+1][i]*S[j+1][i];
if (t<min) { min = t; ch = j;}
if (t<min) { min = t; ch = j;}
}
}
best[i] = min;
best[i] = min;
choice[i] = ch;
choice[i] = ch;


## how to compute <br> $S_{i, j}$ <br> $\square$ <br> slack when line starts with $w_{i}$ and ends $w_{j}$

## Simplest case



Simplest case


## how to compute $S_{i, j}$



## How to compute S


$S_{1, n}$

$i$

-••••

$S_{4,4}$
// compute S_ij
int $S[][]=$ new int[n+1][n+1];
for (int $i=1 ; i<=n ; i++)$ \{
S[i][i] $=M$ - lens[i];
for (int $j=i+1 ; j<=n ; j++)$ \{
S[i][j] = S[i][j-1] - lens[j] - 1;
if (S[i][j]<0) \{
while(j<=n) \{ S[i][j++] = infty; \}
\}
\}

## Example

It was the best of times, it was the worst of times; it was the age o wisdom, it was the age of foolishness; it was the epoch of belief, it was the epoch of incredulity; it was the season of

```
2 3 3 3 4 2 6 6 2 3 3 3 5 2 6 6 2 3 3 3 3 3 2 2 7 2 2 3 3
3}2
```

first step: make $S_{i, j}$


$$
\begin{aligned}
& \underline{S}_{i, i}=M-\left|w_{i}\right| \\
& S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right| \\
& S_{1,1}=42-2=40 \\
& S_{1,2}=40-3-1=3-6 \\
& S_{1,3}=36-3-1=32 \\
& S_{2,2}=42-3=39
\end{aligned}
$$

## first step: make $S_{i, j}$

|  |  |
| :---: | :---: |
|  |  |

2

$$
\begin{aligned}
& S_{i, i}=M-\left|w_{i}\right| \\
& S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
\end{aligned}
$$

first step: make $S_{i, j}$

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40 | 36 | 32 | 27 | 24 | 7 | 14 | 10 | 6 | 0 | 99 | 99 | 99 |



$$
\begin{array}{lllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\
3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2
\end{array}
$$

| $\begin{array}{ccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 1 & 40 & 36 & 32 & 27 & 24 & 17 & 4 & 10 & 6 & 0 & 99 & 99 \\ 99\end{array}$ |
| :---: |

2 3
$\square$

$$
\begin{array}{llllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\
3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2
\end{array}
$$

## second step: compute



$$
B_{\text {est }}=B_{\text {est }}+\left(S_{1,1}\right)^{2}=40^{2}
$$

$$
\text { Best }_{2}=\min \begin{cases}\text { pesto }+\left(S_{1,2}\right)^{2} & 36^{2} \\ \text { bet, }+\left(S_{2,2}\right)^{2} & 6600+39^{2}\end{cases}
$$

$$
i-1
$$

$\mathrm{BEST}_{i}=\min _{j=0}\left\{\operatorname{BEST}_{j}+S_{\underline{j+1, i}}^{2}\right\}$


## second step: compute



## second step: compute

best $0 \quad 1600 \quad 1296$
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\mathrm{BEST}_{j}+S_{j+1, i}^{2}\right\}$

Running time
make table for $S_{i, j}$
for $i=1$ to $n$
$\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}$

