
3.01 .2016
abhi shelat

## typesetting question

what is the first rule of typesetting?
what did the variable Sij represent?

Express a recursive formula for Sij :
userid:

## Typesetting

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

It was the best of times, it was the worst of times, it was the age of wisdom, i the age of foolishness, it was the epoch of it was the epoch of incredulity, it was the of Light, it was the season of Darkness, it spring of hope, it was the winter of despai had everything before us, we had nothing be we were all going direct to heaven, we were going direct the other way - in short, the all was so far like the present period, that some of its noisiest authorities insisted on its be received, for good or for evil, in the supe degree of comparison only.
ng lative

## First rule of typesetting

never print in the margin!
$\longleftrightarrow$ are simply not allowed

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of $\qquad$ incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of $\qquad$ despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

## Second rule of typesetting

avoid big ugly whitespaces (slack)

Typesetting problem
input: $\quad W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\} \quad \underline{M}$ arsing
output: $\underline{L}=\left(w_{1}, \ldots, w_{\ell_{1}}\right)_{,}^{\ln }\left(w_{\ell_{1}+1}, \ldots, w_{\ell_{2}}\right), \ldots,\left(w_{\ell_{x+1}, \ldots, w_{n}}\right)$

$$
\underline{c}_{i}=\left(\sum_{\underline{\sum_{j=\ell_{i}+1}}}^{\ell_{i+1}}\left|w_{j}\right|\right)+\underline{\left(\ell_{i+1}-\ell_{i}-1\right)} \quad \text { length of the } i
$$

such that $\quad c_{i} \leq M \quad \forall i$

$$
\min \sum\left(\underline{M-c_{i}}\right)^{2} \quad \operatorname{MiN} \quad(\operatorname{SCACU})^{2}
$$




## typesetting algorithm

make table for $S_{i, j}$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n}
$$

$$
\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

## typesetting algorithm

## (make table for $S_{i, j}$

for $\mathrm{i}=1$ to n

$$
\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

```
~compute best_0,...,best_n
int best[] = new int[n+1];
int choice[] = new int[n+1]; R
best[0] = 0;
for(int i=1;i<=n;i++) {
int min = infty;
int ch = 0;
for(int j=0;j<i;j++) {
            int t = best[j] + S[j+1][i]*S[j+1][i]; )
            if (t<min) { min = t; ch = j;
}
best[i] = min;
choice[i] = ch;)
```


## how to compute $S_{i, j}$


and ends $w_{j}$

Simplest case


## Simplest case



## how to compute $S_{i, j}$



## How to compute S

$S_{1,1}$

$i$


॥/ compute $S_{-i j}$
int $S[][]=$ new int $[n+1][n+1] ;$
for (int $i=1 ; i<=n ; i++$ )
(S[i][i] $=M$ - lens[i]:
for (int $j=i+1 ; j<=n ; j++$ ) $\{$
S[i][j] = S[i][j-1] - lens[j] - 1; Ł Znd equatio
if (S[i][j]<0) \{
while (j<=n) \{ S[i][j++] = infty; \}

## Example

It was the best of times, it was the worst of times; it was the age o wisdom, it was the age of foolishness; it was the epoch of belief, it was the epoch of incredulity; it was the season of
$\left.\begin{array}{llllllllllllllllllll}2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 \\ 3\end{array}\right)$
first step: make $S_{i, j}$

1


2


$$
S_{i, i}=M-\left|w_{i}\right|
$$

$$
S_{i, j}=S_{i, j-1}-1-\left|w_{j}\right|
$$

first step: make $S_{i, j}$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1 | 40 | 36 | 32 | 27 | 24 | 17 | 14 | 10 | 6 | 0 | 99 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2

| 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{lllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\
3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2
\end{array}
$$



2

3
$3 9 \longdiv { 3 5 } 3 0 \longdiv { 2 7 } 2 0 \longdiv { 1 7 } 1 3$ $\square$ 3 $\square$
0 $\square$
$\square$
$\square$
$\square$
$\square$
$\square$
$\square$
$\square$
$\square$
$\begin{array}{lllllllllllllllllllll}2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\ 3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2\end{array}$

## second step: compute

best



## second step: compute

best | 1600 |
| :---: |
| Sestz |
|  |

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$


2


## second step: compute

best 0
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 40 | 36 | 32 | 27 | 24 | 17 | 14 | 10 | 6 | 0 | 09 | 92 | 99 |

2



$$
\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$



42 cheracters
It $\qquad$
was $\qquad$


| 29 | 35 | 35 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
\mp@subsup{\operatorname{EST}}{i}{}=\mp@subsup{\operatorname{min}}{j=0}{i-1}{\mp@subsup{\operatorname{BEST}}{j}{}+\mp@subsup{S}{j+1,i}{2}}
```




|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40 | 36 | 32 | 27 | 24 | 17 | 14 | 10 | 6 | 0 | 99 | 99 | 99 |
| 2 |  | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | $\square$ | $\square$ | $\square$ | $\square$ |  | $\square$ | $\square$ | $\square$ |  |  |


$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 |  |  |  |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |

$\mid$ It was the best $\mid$
$\mathrm{BEST}_{i}=\min _{j=0}^{i-1}\left\{\mathrm{BEST}_{j}+S_{j+1, i}^{2}\right\}$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 |  |  |  |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |

$\mid$ It was the best of $\mid$

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
$*\left\{\left.\begin{array}{l}\text { It was the best of times, it was the worst of } \\ \text { of } \\ 9\end{array} \right\rvert\,\right.$ Worst of

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 |  |  |  |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| It was the best of times, it was the worst of |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Best $_{11}=\min \{$
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 |  |  |  |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |


$|$| It was the best of times, it was the |
| :--- |
| worst of |

$$
\operatorname{BEST}_{11}=\min \left\{\begin{array}{l}
\operatorname{BEST}_{10}+S_{11,11}^{2} \\
\operatorname{BEST}_{9}+S_{10,11}^{2} \\
\operatorname{BEST}_{8}+S_{9,11}^{2} \\
\operatorname{BEST}_{7}+S_{8,11}^{2} \\
\operatorname{BEST}_{6}+S_{7,11}^{2} \\
\cdots
\end{array}\right.
$$

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 |  |  |  |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |


$|$| It was the best of times, it was |
| :--- |
| the worst of |

$$
\operatorname{BEST}_{11}=\min \left\{\begin{array}{l}
\mathrm{BEST}_{10}+S_{11,11}^{2} \\
\mathrm{BEST}_{9}+S_{10,11}^{2} \\
\mathrm{BEST}_{8}+S_{9,11}^{2} \\
\mathrm{BEST}_{7}+S_{8,11}^{2} \\
\mathrm{BEST}_{6}+S_{7,11}^{2} \\
. \bar{?}
\end{array}\right.
$$

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 | 818 |  | $\square$ |
| b choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |  |  |


$|$| It was the best of times, |
| :--- |
| it was the worst of |

$$
\operatorname{BEST}_{11}=\min \left\{\begin{array}{l}
\operatorname{BEST}_{10}+S_{11,11}^{2} \\
\mathrm{BEST}_{9}+S_{10,11}^{2} \\
\mathrm{BEST}_{8}+S_{9,11}^{2} \\
\mathrm{BEST}_{7}+S_{8,11}^{2} \\
\mathrm{BEST}_{6}+S_{7,11}^{2} \\
\cdots
\end{array} \quad 2891\left(S_{7,11}\right)^{2}\right. \text { is the best }
$$

$$
\mathrm{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}
$$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 | 818 | 545 | $\square$ |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 6 |  |


$|$| It was the best of times, it |
| :--- |
| it was the worst of times, it |

$$
\operatorname{BEST}_{13}=\min \left\{\begin{array}{l}
\mathrm{BEST}_{12}+S_{13,13}^{2} \\
\mathrm{BEST}_{11}+S_{12,13}^{2} \\
\cdots \\
\frac{\mathrm{BEST}_{7}+S_{8,13}^{2}}{\mathrm{BEST}_{6}+S_{7,13}^{2}}
\end{array}\right\}
$$

$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| best | 0 | 1600 | 1296 | 1024 | 729 | 576 | 289 | 196 | 100 | 36 | 0 | 818 | 545 |  |
| choice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 6 |  |


$|$| It was the best of times, it |
| :--- |
| was the worst of times, it |

$$
\operatorname{BEST}_{13}=\min \left\{\begin{array}{l}
\operatorname{BEST}_{12}+S_{13,13}^{2} \\
\operatorname{BEST}_{11}+S_{12,13}^{2} \\
\cdots \\
\operatorname{BEST}_{7}+S_{8,13}^{2} \\
\operatorname{BEST}_{6}+S_{7,13}^{2}
\end{array}\right.
$$

0 best: 0 ch 0
1 best: 1600 ch 0
best: 1024 ch 0
4 best: 729 ch 0
best: 576 ch
best: 289 ch 0
6 best: 289 ch 0
8 best: 100 ch 0
best: 36 ch 0
10 best: 0 ch 0
11 best: 818 ch 6
12 best: 545 ch 6 -
13 best: 452 ch 7
14 best: 340 ch 7 -
15 best: 244 ch 8
16 best: 164 ch $8-$
17 best: 117 ch 9
17 best: 117 ch 9
19 best: 16 ch 10
20 best: 0 ch 10 -
21 best: 509 ch 14
22 best: 413 ch 15
23 best: 344 ch 15
24 best: 133 ch 17
25 best: 118 ch 17
27 best: 32 ch 18
28 best: 4 ch 20
29 best: 444 ch 23
30 best: 348 ch 23
31 best: 277 ch 24
32 best: 197 ch 24
33 best: 149 ch 24
33 best: 149 ch 24
34 best: 87 ch 26
35 best: 66 ch 26
36 best: 446 ch 31
37 best: 377 ch 31
38 best: 297 ch 32 39 best: 233 ch 32
0 best: 0 ch 0
1 best: 1600 ch 0
3 best: 1024 ch 0
4 best: 729 ch 0
5 best: 576 ch 0
6 best: 289 ch 0
7 best: 196 ch 0
8 best: 100 ch 0
9 best: 36 ch 0
9 best: 36 ch 0
10 best: 0 ch 00
12 best: 545 ch 6
13 best: 452 ch 7
14 best: 340 ch 7
15 best: 244 ch 8
15 best: 244 ch 8
16 best: 164 ch 8
17 best: 117 ch 9
19 best: 16 ch 10
20 best: 0 ch 10
21 best: 509 ch 14
22 best: 413 ch 15
23 best: 344 ch 15
24 best: 133 ch 17
25 best: 118 ch 17
26 best: 62 ch 18
$\xrightarrow{2}$

It
It was
It was the
It was the best
It was the best of times,
It was the best of times, it
It was the best of times, it was
It was the best of times, it was the
It was the best of times, it was the worst
It was the best of times,
nit was the worst of
It was the best of times, nit was the worst of times,

It was the best of times, it $\backslash n w a s$ the worst of times, it was
It was the best of times, it was \nthe worst of times, it was the
It was the best of times, it was \nthe worst of times, it was the age
It was the best of times, it was the
It was the best of times, it was the \nworst of times, it was the age of wisdom,
It was the best of times, it was the worst $\backslash n o f$ times, it was the age of wisdom, it
It was the best of times, it was the worst $\backslash$ nof times, it was the age of wisdom, it was
It was the best of times, it itwas the worst of times, it was $\operatorname{lnthe}$ age of wisdom, it was the
It was the best of times, it was \nthe worst of times, it was the \nage of wisdom, it was the age
It was the best of times, it was the\nworst of times, it was the age of $\backslash n w i s d o m$, it was the age of
It was the best of times, it was the $n$ nworst of times, it was the age of $\backslash n w i s d o m$, it was the age of foolishness, it
It was the best of times, it was the nworst of times, it was the age of wisdom, in nit was the age of foolishness, it was
It was the best of times, it was the $\backslash n$ norst of times, it was the age of wisdom, 10 nit was the age of foolishness, it was

Gerrymander


## Map of Charlottesville Precincts and Polling Places





gerrymander problem
given: $\left.A_{1}, \ldots A_{-(n)} n_{\text {is even }}\right) \underline{M}$ people in it. all precints have eq l. population an $A_{i} \rightarrow$ \# for party $A$ in
output: $D_{1} D_{2} .2$ districts, partition of the precinct $i$.

$$
\begin{aligned}
& \mid \underline{D_{1}\left|=\left|D_{2}\right|\right.} \\
& \underline{A\left(D_{1}\right)}>\frac{M_{n}}{4} \\
& \underline{A\left(D_{2}\right)}>\frac{m_{n}}{4}
\end{aligned}
$$

if possible majority for party $A$ in both districts
gerrymander problem given $\underline{m} A_{1}, A_{2}, \ldots, A_{n}$ nit even
output: $D_{1}, D_{2}$
such that $\left|D_{1}\right|=\left|D_{2}\right|$

$$
\begin{aligned}
& A\left(D_{1}\right)>\frac{m n}{4} \\
& A\left(D_{2}\right)>\frac{m n}{4}
\end{aligned}
$$

district 1 has $\frac{m n}{2}$
or "failure" if no such solution is possible

gerrymander
imagine very last precinct and how it is assigned:

gerrymander

$$
\begin{aligned}
& S_{j, k, x, y}=\stackrel{\text { true }}{\underline{y}} \quad \begin{array}{l}
\text { if } \\
\text { with }
\end{array} \\
& \text { ard }
\end{aligned}
$$

among the first $j$ precincts
$K$ precinds to $D_{2}$
$x$ vote for $A$ i $D_{1}$
$y$ vote for $A$ in $D_{2}$
false otherwise.

$$
S_{j k x y}=S_{j-1, k, x-A_{j}, y} \quad \underline{O} S_{j-1, k-1}, \underline{x}, \underline{y-A_{j}}
$$

"Assign $P_{j}$ to $D_{1} "$
"
Assign $P_{j}$ to $D_{2}$ "

$\underline{ } \begin{aligned} & S_{j, k, x, y}\end{aligned}=\begin{aligned} & \text { there is a split of first } \mathbf{j} \text { precincts } \\ & \text { in which }\left|\mathrm{DrI}_{\mathrm{I}}\right|=\mathbf{k} \text { and }\end{aligned}$ in which $\left|\mathrm{DII}_{\mathrm{I}}\right|=\mathbf{k}$ and
$\mathbf{x}$ people in DI vote A
y people in $\mathrm{D}_{2}$ vote A

## $S_{j, k, x, y}=S_{j-1, k-1, x-A_{j}, y} \vee S_{j-1, k, x, y-A_{j}}$ gerrymander( $\mathrm{P}, \overline{\mathrm{A}, \mathrm{m}})$

 initialize array $S[0,0,0,0]=T R U E$$$
S_{1,0, \times 10}=S_{0000}
$$

$$
\begin{aligned}
& S_{j, k, x, y}=S_{\underline{j-1}, k-1, x-A_{j}, y} \vee S_{j-1, k, x, y-A_{j}} \\
& \text { gerrymander }(\mathrm{P}, \mathrm{~A}, \mathrm{~m}) \rightarrow \rightarrow{ }^{\text {mean }} \\
& \text { initialize array } S[0,0,0,0]=\text { true } \\
& \begin{array}{c}
\text { for } j=I, \ldots, n \\
\text { for } k=1, \ldots, n / 2
\end{array}, \quad \min (j, n / 2) \\
& \text { for } x=0, \ldots, \mathrm{im} \\
& \text { for } y=0, \ldots, \text {, }=\mathrm{mm} \\
& \text { fill table according to equation } \\
& \text { search for true entry at } \mathrm{S}[\mathrm{n}, \mathrm{n} / 2,>\mathrm{mn} / 4,>\mathrm{mn} / 4]
\end{aligned}
$$

