
4102 10.8.2013

L13
abhi shelat

Finish Gerry
Intro Greedy
Schedule
Caching

P3

P2

P1

P4 P5

P6P7

A4 B4

GERRYMANDER PROBLEM
given:

output:

GERRYMANDER PROBLEM
given: m A1, A2, . . . , An

output: D1, D2

n is even

such that |D1| = |D2|
A(D1) >

mn

4

A(D2) >
mn

4
or “failure” if no such solution is possible

GERRYMANDER
imagine very last precinct and how it is assigned:

GERRYMANDER

Sj,k,x,y =

GERRYMANDER
Sj,k,x,y = there is a split of first j precincts

in which |D1|=k and
x people in D1 vote A
y people in D2 vote A

GERRYMANDER(P,A,m)
S
j,k,x,y

= S
j�1,k�1,x�Aj ,y _ S

j�1,k,x,y�Aj

initialize array S[0,o,o,o]

GERRYMANDER(P,A,m)
initialize array S[0,o,o,o]
for j=1,...,n

for k=1,...,n/2
for x=0,...,jm

for y=0,...,jm
fill table according to equation

search for true entry at S[n,n/2, >mn/4, >mn/4]

S
j,k,x,y

= S
j�1,k�1,x�Aj ,y _ S

j�1,k,x,y�Aj

Scheduling

3.5cs4102

start end

4.75

4 5.25

1 4

2 3.25

3 4

4.5 6

5 6.5

7 8

sy333

en162

ma123

cs4402

cs6051

sy333

cs1011

problem statement

find largest subset of activities C={ai} such that

(s0rted)

(compatible)

problem statement

find largest subset of activities C={ai} such that

(s0rted)

(compatible)

problem statement

(s0rted)

dynamic programming

dynamic programming

dynamic programming

in:

out:
max

greedy solution:

definition:

greedy solution:

goal:

greedy solution:

claim: the first action to finish in e[i,j] is always
part of some

claim: the first action to finish in e[i,j] is always
part of some

proof:

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

greedy solution:

algorithm: find first event to finish. add to solution.
remove conflicting events.
continue.

running time
algorithm: find first event to finish. add to solution.

remove conflicting events.
continue.

caching

CACHE HIT
Cache

load r2, addr a

main memory

CPU

store r4, addr b

QUESTION:

PROBLEM STATEMENT
input:

output:

cache is

PROBLEM STATEMENT
input:

output:

cache is

K, the size of the cache
d1, d2, ..., dm memory accesses

min # of cache misses

fully associative, line size is 1

CONTRAST WITH REALITY

BELADY EVICT RULE

EXAMPLE
a

b

c

cache

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a

e

d

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

SURPRISING THEOREM

SCHEDULE
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

REDUCED SCHEDULE

Def:

EXCHANGE LEMMA

Let S be a reduced sched that agrees with Sff on j items.
There exists a reduced sched S’ that agrees on j+1 items
and has the same or fewer # of misses as S.

Exchange Lemma:

S⇤ S↵

LEMMA Let S be a reduced sched that agrees with Sff on j items.
There exists a reduced sched S’ that agrees on j+1 items
and has the same # of misses as S.

e
S

e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

case 3

e
S

e
Sff

f f

TIMELINE

S’

S

Sff

dS eS’f d

Let access t

what if g=e ?

dS eS’f d

what if g=f ?

dS eS’f d

what if g is neither e nor f ?

dS eS’f d

WHAT HAVE WE SHOWN

S’

S

Sff

S⇤ S↵

