
abhi shelat

Finish Gerry Intro Greedy Schedule Caching

$$
A_{i} 1 B_{i}=M \angle \begin{gathered}
\# \text { people } \\
\text { in a district }
\end{gathered}
$$

$A_{i}=$ \＃⿹弋工力 people that vote for A in precinct i

GERRYMANDER PROBLEM
given: $M, A_{1} A_{2}, \ldots A_{n} n$ is even
output: 2 districts $D_{1} D_{2} . \quad\left|D_{1}\right|=\left|P_{2}\right|$ i.e same \#ot precincts

$$
\begin{aligned}
& A\left(D_{1}\right)>\frac{M \cdot n}{4} \\
& A\left(D_{2}\right)>\frac{M \cdot n}{4}
\end{aligned}
$$

ie. party A has a majority in both districts.

GERRYMANDER PROBLEM

$$
m \quad A_{1}, A_{2}, \ldots, A_{n}
$$

n is even
TH if people that vote for A in

$$
D_{2}, D_{2}
$$

such that

$$
\begin{aligned}
& \left|D_{1}\right|=\left|D_{2}\right| \\
& A\left(D_{1}\right)>\frac{m n}{4} \\
& A\left(D_{2}\right)>\frac{m n}{4}
\end{aligned}
$$

$$
\text { because }\left|P_{1}\right|=\frac{r}{z}
$$

$$
\Rightarrow \text { \#people in } P_{1}
$$

$$
\frac{M n}{2}
$$

or "failure" if no such solution is possible

$$
\Rightarrow \text { majorly in } D_{1}
$$

$$
\geqslant, \frac{M n}{4}
$$

GERRYMANDER

imagine very last precinct and how it is assigned:

GERRYMANDER

$$
S_{j, k, x, y}=\text { true or false variable }
$$

True if \exists an assignment of the first

- precincts sit.

$$
\left|D_{1}\right|=x
$$

$$
A\left(D_{1}\right)=x
$$

$$
A\left(D_{2}\right)=y .
$$

GERRYMANDER
$S_{\hat{j}, k, x, y}=$ there is a split of first \mathbf{j} precincts in which $\left|\mathrm{D}_{\mathrm{I}}\right|=\mathbf{k}$ and
x people in DI vote A
\mathbf{y} people in $\mathrm{D} \mathbf{2}$ vote A

Brote fore

$$
\left(\frac{n}{n} 2\right)-2^{n / 2}
$$

$$
\begin{aligned}
& S_{j, k, x, y}=S_{j-1, k-1, x-A_{j}, y} \vee S_{j-1, k, x, y-A_{j}} \leftarrow \underbrace{\leftarrow}(\mathbb{P}, \underline{\mathrm{~A}}, \mathbf{m}) C_{j, k_{, k, y}}=1 \text { or } 2
\end{aligned}
$$

initialize array $\mathrm{S}[0, \mathrm{o}, \mathrm{o}, \mathrm{o}]$
for $j=1$ to n
for $k=1$ to $n / 2$
$\theta(n)$
for $x=1$ to $M \cdot j$
$\theta(n)$
$\theta(M \cdot n)$
for $y=1$ to Mi

$$
S_{j, k, x, y}=S_{j-1, k-1, x-A_{j}, y} \quad \text { or } \quad S_{j-1, x, x, y-A_{j}}
$$

Check if any $\underbrace{S_{n, n / 2}, x, y}$ is true for $x, y>\frac{M \cdot n}{4}$

$$
S_{j, k, x, y}=S_{j-1, k-1, x-A_{j}, y} \vee S_{j-1, k, x, y-A_{j}}
$$

GERRYMANDER(P,A,m)

initialize array $\mathrm{S}[0, \mathrm{o}, \mathrm{o}, \mathrm{o}]$
for $\mathrm{j}=1, \ldots, \mathrm{n}$
for $k=1, \ldots, n / 2$
for $x=0, \ldots, j m$
for $y=0, \ldots, j m$
fill table according to equation
search for true entry at $\mathrm{S}[\mathrm{n}, \mathrm{n} / 2,>\mathrm{mn} / 4,>m n / 4]$

SCHEDULING

A New techrique. Greely

sy333	$\underline{2}$	$\frac{3.25}{4}$
en162	1	4
ma123	3	4.75
cs4102	3.5	5.25
cs4402	4	6
cy 333	4.5	6.5
$\operatorname{cs1011}$	5	8

PROBLEM STATEMENT
$\left(a_{1} . \ldots, a_{n}\right)$
$\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
$\left(\underline{f_{1}}, f_{2}, \ldots, f_{n}\right) \quad(\operatorname{SORTED}) s_{i}<f_{i}$
(COMPATIBLE)
FIND LARGEST SUBSET OF ACTIVITIES $C=\left\{a_{i}\right\}$ SUCH THAT

$$
f_{i} \leq s_{j}
$$

PROBLEM STATEMENT

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \\
& \left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) \quad(\text { SORTED }) \quad s_{i}<f_{i}
\end{aligned}
$$

find largest subset of activities $\mathrm{C}=\left\{\mathrm{a}_{\mathrm{i}}\right\}$ such that

$$
\begin{aligned}
& a_{i}, a_{j} \in C, i<j \\
& f_{i} \leq s_{j}
\end{aligned}
$$

PROBLEM STATEMENT

DYNAMIC PROGRAMMING

DYNAMIC PROGRAMMING

Bestmi most number of classes that can be scheduled between event and event.

$$
\operatorname{Best}_{m}=\max \left\{\begin{array}{l}
\left.1+\operatorname{Bestsc}_{\text {ser }}^{2 n}\right) \\
\operatorname{Best}_{e_{2 n-1}}
\end{array}\right.
$$

DYNAMIC PROGRAMMING

GREEDY SOLUTION:

GREEDY SOLUTION:
 PART OF SOME $\operatorname{SOLTN}_{i, j}$
"first-to-finish is always part of the solution"

CLAIM: $\left\{\begin{array}{l}\text { The first action to finish in e }[i, j] \text { is always } \\ \text { part of Some } \\ \operatorname{SOLTN}_{i, j}\end{array}\right.$ proof: Consider the optimal Solutaij. Let a^{*} to be the f-to-f in period $[i, j]$. Suppose that $a^{*} \&$ SoluTni.j.

Let a be the first activity in Solutni,j

$$
\rightarrow a^{*} \text { is foto-f, so } f\left(a^{*}\right) \geq f(a)
$$

$$
\Longrightarrow \underline{\operatorname{SoLUTN}} \mathrm{i}, \mathrm{j}-\{a\} \cup\left\{a^{*}\right\} \text { is ALso optimal. }
$$

GREEDY SOLUTION:

GREEDY SOLUTION:

GREEDY SOLUTION:

GREEDY SOLUTION:

GREEDY SOLUTION:

GREEDY SOLUTION:

Much simpler algorithm. I pass tho the surtal list.

GREEDY SOLUTION:

RUNNING TIME

ALGORITHM: FIND FIRST EVENT TO FINISH. ADD TO SOLUTION. REMOVE CONFLICTING EVENTS. CONTINUE.

CACHING

QUESTION:
How to manage the cache??
(1) Assumption: spse we know the entire access sequence ahead of tine! !
(2) cache is folly associative

PROBLEM STATEMENT
input: K.cote size, $d_{1} d_{2} \ldots d_{n}$ ram access pattern output: least \# of cache misses. $\left\{\begin{array}{l}\text { must satisfy the memory } \\ \text { requests }\end{array}\right\}$ cache is folly associative

PROBLEM STATEMENT

input: K , the size of the cache $\mathrm{d}_{\mathrm{I}}, \mathrm{d}_{2}, \ldots, \mathrm{~d}_{\mathrm{m}}$ memory accesses
output: min \# of cache misses

cache is fully associative, line size is I

CONTRAST WITH REALITY

BELADY EVICT RULE
"if you must evict, evict the entry that is accessed farthest - in-the-future"

EXAMPLE

cache \square

EXAMPLE

cache

EXAMPLE

cache

EXAMPLE

cache

$a b c d a d e a d b a \operatorname{c} d a$

EXAMPLE

cache

$a \quad b c d a d e a d b a \operatorname{c} e a$

$<$ not $\underline{ }$

SURPRISING THEOREM
Thm: Belady de is optinal.

SCHEDULE
Schedule for access pattern $\mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{dn}$: is a sequence of "n opt "evict $x f_{0} y$ " for each operation

Reduced schedule: Schedule in which "evict x for y " occurs e $\binom{$ lazy }{ schedule } opaction i only if $d_{i}=y$.

$$
\operatorname{misses}(\text { schedule } S) \nexists \operatorname{misses}(\operatorname{reduced}(S))
$$

REDUCED SCHEDULE

Def:

EXCHANGE LEMMA $\quad \begin{gathered}\text { schedise induced by the } \\ \text { Belie }\end{gathered}$

- Spae some reduced schedule S agrees with $S_{f f}$ for the first j operations.

Then J a reduced schedule S^{\prime} that agrees with $S_{f f}$ on $j^{t l}$ operations \&

$$
\operatorname{misses}\left(S^{\prime}\right) \leq \operatorname{misses}(S)
$$

Exchange Lemma:
Let S be a reduced sched that agrees with $S_{f f}$ on j items.
There exists a reduced sched S' that agrees on $j+1$ items and has the same or fewer \# of misses as S .

Let S be a reduced sched that agrees with S_{ff} on j items. There exists a reduced sched S' that agrees on $j+1$ items and has the same \# of misses as S.

State of the cache after J operations under the two schedules.

S

easy case I

case 3

TimeLine

\square

Let access t

e d
what if $g=e$?

what if $g=f$?

what if g is neither e nor f ?

WHAT HAVE WE SHOWN

\square

C^{*}

c
Sff

