
L14
4102 10.10.2013

abhi shelat

Greedy Alg:
Caching,

caching

CACHE HIT
Cache

load r2, addr a

main memory

CPU

store r4, addr b

QUESTION:

PROBLEM STATEMENT
input:

output:

cache is

K, the size of the cache
d1, d2, ..., dm memory accesses

min # of cache misses

fully associative, line size is 1

BELADY EVICT RULE

EXAMPLE
a

b

c

cache

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a

e

d

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e a

EXAMPLE
a

b

c

cache a

b

d

a

e

d

a

e

b

a b c d a d e a d b a e c e a

a

e

c

a

b

c

a

d

c

a

d

e

a

b

e

a

c

e

SURPRISING THEOREM

The schedule in which we evict the item
that is accessed farthest-in-the-future, ie,
is optimal.

Sff

SCHEDULE
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:

EXCHANGE LEMMA

Let S be a reduced sched that agrees with Sff on j items.
There exists a reduced sched S’ that agrees on j+1 items
and has the same or fewer # of misses as S.

Exchange Lemma:

S⇤ S↵

LEMMA Let S be a reduced sched that agrees with Sff on j items.
There exists a reduced sched S’ that agrees on j+1 items
and has the same # of misses as S.

Thm:

Proof:

e
S

e
Sff

f f

easy case 1

easy case 2

State of the cache after J operations under the two schedules.

case 3

e
S

e
Sff

f f

THE CONSTRUCTION OF S’

S’

S

Sff

dS eS’f d

Let access t

what if t=e ?

dS eS’f d

what if t=f ?

dS eS’f d

what if t is neither e nor f ?

dS eS’f d

WHAT HAVE WE SHOWN

S’

S

Sff

S⇤ S↵

Huffman
Coding

image: wikimedia

Alice Bob
mm

Alice Bob
mm

m

In testimony before the committee, Mr. Lew stressed that the Treasury
Department would run out of “extraordinary measures” to free up cash in a
matter of days. At that point, the country’s bills might overwhelm its cash
on hand plus any receipts from taxes or other sources, leading to an
unprecedented default.Mr. Lew said that Treasury had no workarounds to
avoid breaching the debt ceiling. “There is no plan other than raising the
debt limit,” he said. “The legal issues, even regarding interest and principal
on the debt, are complicated.”

m

In testimony before the committee, Mr. Lew stressed that the Treasury
Department would run out of “extraordinary measures” to free up cash in a
matter of days. At that point, the country’s bills might overwhelm its cash
on hand plus any receipts from taxes or other sources, leading to an
unprecedented default.Mr. Lew said that Treasury had no workarounds to
avoid breaching the debt ceiling. “There is no plan other than raising the
debt limit,” he said. “The legal issues, even regarding interest and principal
on the debt, are complicated.”

e: 235
i: 200
o: 170
u: 87
p: 78
g: 47
b: 40
f: 24

881

e: 235 000
i: 200 001
o: 170 010
u: 87 011
p: 78 100
g: 47 101
b: 40 110
f: 24 111

881

3
3
3
3
3
3
3
3

B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding

881

e: 235 000
i: 200 001
o: 170 010
u: 87 011
p: 78 100
g: 47 101
b: 40 110
f: 24 111

3
3
3
3
3
3
3
3

character frequency

0

75

150

225

300

e i a o r n t s l c u p m d h y g b f v k w z x q j

e: 234803
i: 200613
a: 198938
o: 170392
r: 160491
n: 158281
t: 152570
s: 139238
l: 130172
c: 103307
u: 87211
p: 78077
m: 70504
d: 68007
h: 64165
y: 51527
g: 47011
b: 40351
f: 24110
v: 20103
k: 16012
w: 13825
z: 8439
x: 6926
q: 3729
j: 3075

morse code

image http://en.wikipedia.org/wiki/Morse_code

morse code

def: prefix-free code

def: prefix-free code

def: prefix code

e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

decoding a prefix code
e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

111111010111110

code to binary tree
e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

111111010111110

prefix code

binary tree

ie o u p

use tree to encode messages

e: 235 00
i: 200 01
o: 170 10
u: 87 110
p: 78 111

2
2
2
3
3

goal
given the

{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost

property

x

y

a b

lemma:optimal tree must be full.

divide & conquer?

counter-example

e: 32
i: 25
o: 20
u: 18
p: 5

2440477887170200235
e i o u p g b f

64

7887170200235
e i o u p

47
g

2440
b f

64

7887170200235
e i o u p

47
g

2440
b f

64

111

7887170200235
e i o u p

47
g

2440
b f

64

1117887170200235
e i o u p

47
g

2440
b f

64

235
e

200
i

170
o

87
u

78
p

111

47
g

2440
b f

64

235
e

200
i

170
o

87
u

78
p

111

47
g

2440
b f

64

165

235
e

200
i

170
o

111

6447
g

2440
b f

6487
u

78
p

165

276

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

470
400
340
348
312
188
200
120
2378

objective

exchange argument
lemma:

x

y

a b

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

b

x y

T ��

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

exchange argument

T

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

y

x b

exchange argument

T T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

T

a

y

x b

T �

B(T �) =
�

c

fc⇤
�
c + fx⇤�

x + fa⇤�
aB(T) =

�

c

fc⇤c + fx⇤x + fa⇤a

B(T)�B(T �) ⇥ 0

fx � fa
x

y

a b

T

a

y

x b

T �

a

y

x b

a

b

x y

B(T �)�B(T ��) ⇥ 0

T � T ��

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T)�B(T �) ⇥ 0

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T �)�B(T ��) ⇥ 0

T ��
is also optimal

x

y

a b

a

b

x y

exchange argument

T T �

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

fc

optimal sub-structure
2440477887170200235

fx fy

fzfc�

optimal sub-structure
2440477887170200235

64477887170200235

fx fy

problem of size n

problem of size n-1

fc

optimal sub-structure
2440477887170200235

fx fy

problem of size n

fzfc�
64477887170200235

problem of size n-1

fc

Lemma:

optimal sub-structure
2440477887170200235

fx fy

problem of size n

fzfc�
64477887170200235

problem of size n-1

fc

Lemma:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

z

T �

z

x y

z

B(T �) B(T)

T � T

x y

z

B(T �) B(T)

T � T

B(T �) = B(T)� fx � fy

Suppose is not optimal T

Suppose is not optimal T

yx

U
B(U) < B(T)

Suppose is not optimal T
B(U) < B(T)

yx

U

z

U �

Suppose is not optimal T
B(U) < B(T)

B(U �) = B(U)� fx � fy
yx

U

z

U �

But this implies that B(T’) was not optimal.

< B(t) - fx - fy

therefore

z

T �

x y

summary of argument

