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Greedy Alg:
Caching,



caching



CACHE HIT
Cache

load r2, addr a

main memory

CPU

store r4, addr b



QUESTION:



PROBLEM STATEMENT
input:

output:

cache is 

K, the size of the cache
d1, d2, ..., dm  memory accesses

min # of cache misses

fully associative, line size is 1



BELADY EVICT RULE
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SURPRISING THEOREM

The schedule in which we evict the item 
that is accessed farthest-in-the-future, ie, 
is optimal.

Sff



SCHEDULE
Schedule for access pattern d1,d2,...,dn:

Reduced schedule:



EXCHANGE LEMMA



Let S be a reduced sched that agrees with Sff on j items.
There exists a reduced sched S’ that agrees on j+1 items
and has the same or fewer # of misses as S.

Exchange Lemma:



S⇤ S↵



LEMMA Let S be a reduced sched that agrees with Sff on j items.
There exists a reduced sched S’ that agrees on j+1 items
and has the same # of misses as S.

Thm:

Proof:
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easy case 1

easy case 2

State of the cache after J operations under the two schedules.
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THE CONSTRUCTION OF S’

S’

S

Sff



dS eS’f d

Let access t 



what if t=e ?

dS eS’f d



what if t=f ?

dS eS’f d



what if t is neither e nor f ?

dS eS’f d



WHAT HAVE WE SHOWN
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S

Sff



S⇤ S↵
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In testimony before the committee, Mr. Lew stressed that the Treasury 
Department would run out of “extraordinary measures” to free up cash in a 
matter of days. At that point, the country’s bills might overwhelm its cash 
on hand plus any receipts from taxes or other sources, leading to an 
unprecedented default.Mr. Lew said that Treasury had no workarounds to 
avoid breaching the debt ceiling. “There is no plan other than raising the 
debt limit,” he said. “The legal issues, even regarding interest and principal 
on the debt, are complicated.”
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i: 200    001
o: 170    010
u: 87     011
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B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding
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character frequency
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e: 234803
i: 200613
a: 198938
o: 170392
r: 160491
n: 158281
t: 152570
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l: 130172
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u: 87211
p: 78077
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j: 3075



morse code

image http://en.wikipedia.org/wiki/Morse_code



morse code



def: prefix-free code



def: prefix-free code



def: prefix code

e: 235    0
i: 200    10
o: 170    110
u: 87     1110
p: 78     11110
g: 47     111110
b: 40     1111110
f: 24     11111110



decoding a prefix code
e: 235    0
i: 200    10
o: 170    110
u: 87     1110
p: 78     11110
g: 47     111110
b: 40     1111110
f: 24     11111110

111111010111110



code to binary tree
e: 235    0
i: 200    10
o: 170    110
u: 87     1110
p: 78     11110
g: 47     111110
b: 40     1111110
f: 24     11111110

111111010111110



prefix code

binary tree



ie o u p

use tree to encode messages

e: 235    00
i: 200    01
o: 170    10
u: 87     110
p: 78     111
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goal
given the



{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost



property
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a b

lemma:optimal tree must be full.



divide & conquer?



counter-example

e: 32   
i: 25   
o: 20    
u: 18    
p: 5 
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exchange argument
lemma:
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exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 
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exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs
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exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1
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exchange argument

T

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs
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exchange argument

T T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma: 
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B(T �) =
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fc⇤
�
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x + fa⇤�
aB(T ) =
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exchange argument

T T �

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs
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optimal sub-structure
2440477887170200235
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fzfc�

optimal sub-structure
2440477887170200235
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fx fy

problem of size n

problem of size n-1

fc



optimal sub-structure
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optimal sub-structure
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problem of size n
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problem of size n-1
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Lemma:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1
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x y

z

B(T �) B(T )

T � T



x y

z

B(T �) B(T )

T � T

B(T �) = B(T )� fx � fy



Suppose     is not optimal T



Suppose     is not optimal T
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Suppose     is not optimal T
B(U) < B(T )

yx
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Suppose     is not optimal T
B(U) < B(T )

B(U �) = B(U)� fx � fy
yx

U

z

U �

But this implies that B(T’) was not optimal.

< B(t) - fx - fy



therefore

z

T �

x y



summary of argument


