
abhi shelat

Greedy Alg: Caching,
Huffman coping

CACHING

CACHE HIT

Cache
CPU
load r2, addr Q
store $r 4$, addr b

QUESTION:
How to manage the cache??
Best-case scenario in which the pattern of all memory accesses is
Known a priori

PROBLEM STATEMENT

input: $\quad \underline{K}$, the size of the cache
$\overline{\mathrm{d}_{\mathrm{I}}}, \mathrm{d}_{2}, \ldots, \mathrm{~d}_{\mathrm{m}}$ memory accesses
min \# of cache misses

cache is fully associative, line size is I

BELADY EVICT RULE
"farther t-in- the -future"
If you must evict, evict the element that is accessed the farthest in the future.

EXAMPLE

cache
a

EXAMPLE

cache

a b c d a d e a d b a ece a

EXAMPLE

cache

a b c d a d e a d b a ece a

EXAMPLE

cache

$a b c d a d e a d b a \operatorname{c} e a$

EXAMPLE cache
a a
b b
,
c) nos \square drop
\square
a
e
d) roo
b
a bc da de a d ba ec e a

schedule w operations to the cache that follow) Fr

A another schedule that has the same \# af misses.

SURPRISING THEOREM

The schedule in which we evict the item
that is accessed farthest-in-the-future, ie, Sff_{f} is optimal.

SCHEDULE
Schedule for access pattern d1,d2,...,dn:
operation on the cache © each access "nop" or "evict x for y^{\prime}

Reduced schedule:
schedule in which "evict x for y " only occurs when the access is $d_{i}=y$

For any schedule S, misses (Reduced (S)) $\leq \operatorname{misses}(S)$

EXCHANGE LEMMA
If S is a seduced schedule that aces w/ $S_{F f}$ on the first j ops,
then \exists a reduced schedule S^{\prime} that agrees w/ $S_{f f}$ on jul operations, and

$$
\operatorname{misses}\left(S^{\prime}\right) \leq \operatorname{misses}(S) .
$$

Exchange Lemma:
Let S be a reduced sched that agrees with $S_{f f}$ on j items.
There exists a reduced sched S' that agrees on $j+1$ items and has the same or fewer \# of misses as S .
optinal $\sim \int *$

$$
\underset{\text { lempa }}{S_{1}} \underset{\text { lerma }}{\sim} S_{2} \sim \ldots \sim N
$$

Why do we

$$
j=1 \quad j=2
$$

$$
j=m
$$

care abort
th:s
leama??

$$
\operatorname{misscs}\left(S_{f f}\right) \leq \operatorname{misses}\left(S_{o p t}\right)
$$

Thm: Let S be a reduced shed that agrees with $S_{f f}$ on j items. There exists a reduced shed \underline{S} ' that agrees on items and has the same \# of misses as S.
Proof:
Since Sand Spf agree in the first j operations, both schedules produce the same cache state.

Let d be the address accessed at time jul.

State of the cache after I operations under the two schedules.

easy case i $d \in$ cache
easycrase $2 d$ cocaine bot both S and $S_{f f}$ "evict e for d ".
\Rightarrow Bath StSff also agree on the first jut operations.
So set $S=S$ done

case 3: d \& cache. Sevicts e but Spf evicts f. hards
so how can we construct S^{\prime} in this case??

S' must do what Pf does and "evict f for d "

THE CONSTRUCTION OF S'

State of cache
S \square
Let access t be the first access involving e or f after $j+1$.
(1) $S \& S^{\prime}$ will be the same e this point except. for $\{d f\} \cup\{e, d\}$.

Causes to consilen:
t accesses e.
t accesses f.
t accesses $g \neq e \neq f$.

what if $t=e$?
(Smost evict some element to bring in e.

- if S evicts f, then $S+S^{\prime}$ agree.

$$
\operatorname{misscs}\left(S^{\prime}\right)<\operatorname{misses}(S)
$$

$h \neq f$

- if S "evicts h fore" \Rightarrow make S" evict h for $f "$

$$
\begin{array}{r}
\text { S } \begin{array}{r}
|e| \quad|d| f \\
\\
\\
\\
\operatorname{misses}\left(S^{\prime}\right)=|e| d \\
\operatorname{misscs}(S)
\end{array}
\end{array}
$$

what if $t=f$?
IMPOSSIBLE!!

Pf evicted f instead of e. This means that f hal to be accessed after $e \rightarrow$ fartheetin the forture
what if t is neither e nor f ?
\Rightarrow S's operation must be "evict for g"

$$
S=\begin{aligned}
& {[d[g]} \\
& \operatorname{misscs}(S)=\operatorname{misseg}\left(S^{\prime}\right)
\end{aligned}
$$

$$
\begin{gathered}
S^{\prime} \frac{1 g \mid d}{S^{\prime}: \text { "evic te for } g^{\prime \prime}}
\end{gathered}
$$

Finally, we set
$S=R_{\text {educe }}(S i)$ ard conclude the.

WHAT HAVE WE SHOWN

\square
\square

$$
\operatorname{misses}(S l) \leq \operatorname{misses}(s)
$$

$S^{*} \quad S$ fr

Huffman

Coding

Morse

In testimony before the committee, Mr. Lew stressed that the Treasury Department would run out of "extraordinary measures" to free up cash in a matter of days. At that point, the country's bills might overwhelm its cash on hand plus any receipts from taxes or other sources, leading to an unprecedented default.Mr. Lew said that Treasury had no workarounds to avoid breaching the debt ceiling. "There is no plan other than raising the debt limit," he said. "The legal issues, even regarding interest and principal on the debt, are complicated."

In testimony before the committee, Mr. Lew stressed that the Treasury Department would run out of "extraordinary measures" to free up cash in a matter of days. At that point, the country's bills might overwhelm its cash on hand plus any receipts from taxes or other sources, leading to an unprecedented default.Mr. Lew said that Treasury had no workarounds to avoid breaching the debt ceiling. "There is no plan other than raising the debt limit," he said. "The legal issues, even regarding interest and principal on the debt, are complicated."

```
c\inC}C\quad\begin{array}{ccc}{\mp@subsup{f}{c}{}}&{T}\\{\textrm{e}:}&{235}&{000}
    i: 200 001
    o: 170 010
    u: 87
    p: 78
    g: 47
    b: 40
    f: 24
```

 881

$000101101 \ldots$
coot of sending an of cher mog
would be $881.3=2643$
O: can we do better??

DEF: COST OF AN ENCODING

$$
\begin{aligned}
& \underset{\text { encoling }}{B\left(\prod_{n},\left\{f_{c}\right\}\right)}=\sum_{c \in C} f_{c} \cdot{\underline{l_{c}}}_{\eta} \\
& \begin{array}{cccc}
c \in C & f_{c} & T & \ell_{c} \\
\mathrm{e}: & 235 & 000 & (3) \\
\mathrm{i}: & 200 & 001 & 3 \\
\mathrm{o}: 170 & 010 & 3 \\
\mathrm{u}: 87 & 011 & 3 \\
\mathrm{p}: 78 & 100 & 3 \\
\mathrm{~g}: 47 & 101 & 3 \\
\mathrm{~b}: 40 & 110 & 3 \\
\mathrm{f}: 24 & 111 & 3
\end{array} \\
& 881
\end{aligned}
$$

$$
r: 160491
$$

n: 158281

CHARACTER FREQUENCY

MORSE CODE

International Morse Code
Thash $=3$ dots
The space between parts of the same letter $=1$ dot
The space between letters $=3$ dots.
The space between words $=7$ dots.
$A \bullet-\quad V \bullet \bullet \bullet$
$\mathrm{B}-\cdot \cdot \mathrm{W} \cdot \mathrm{E}$
C - $-\bullet \quad X \quad \mathrm{X}=\bullet \bullet \square$
D - •
E.
F •• -
$G=$ -
$H \bullet \bullet \bullet \bullet$
$1 \bullet \bullet$
।• \quad -

L. . - $2 \bullet \bullet$ ———
$M=\square \quad 3 \bullet \bullet \bullet \square \square$
$N=4 \quad 4 \bullet \bullet \bullet+$
$\mathrm{O}=\square 5+\cdots \cdot \bullet$
$P \bullet$ - $-6 \quad 6$ - $\bullet \bullet$
Q - - - 7 -
$R \bullet-8=\square$
$\mathrm{S} \bullet \bullet \cdot \quad 9 \quad \square \quad \square \quad \square$
T 0 —
$\mathrm{U} \bullet \bullet$ •
mage http://en.wikipedia.org/wiki/Morse_code

MORSE CODE

International Morse Code
The space $=3$ dots
The space between parts of the same letter $=1$ dot
The space between letters $=3$ dots.
The space between words $=7$ dots.

```
A\bulletE}V\textrm{V}\bullet\bullet\bullet
B=\bullet\bullet\bullet W - L 
C=\bullet - * X = \bullet ! 
D ■ - -
E@
F.. - .
G= -
H***
l*
J.0
K - - =
L * E - 
```



```
M- [ 3 0.! ! 
N=
O-
PO= - 
O-
R- = 
S\bullet\bullet\bullet - 9 [ ए ए! !
T O O O O + C 
U* - - 
```

DEF: PREFIX-FREE CODE
for every $x, y \in C \quad x \neq y$
$C(x)$ is not a prefix of $c(y)$

DEF: PREFIX-FREE CODE

$$
\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x) \text { not a prefix of } \operatorname{CODE}(y)
$$

DEF: PREFIX CODE

$\forall x, y \in C, x \neq y \Longrightarrow \operatorname{CODE}(x)$ not a prefix of $\operatorname{CODE}(y)$

e: 235	0
i : 200	10
0: 170	110
u: 87	1110
p: 78	11110
g: 47	111110
b: 40	1111110
f: 24	11111110

DECODING A PREFIX CODE

$\mathrm{e}: 235$	0	
$\mathrm{i}: 200$	10	
$\mathrm{o}: 170$	110	
$\mathrm{u}: 87$	1110	
$\mathrm{p}: 78$	11110	
$\mathrm{~g}: 47$	111110	
$\mathrm{~b}: 40$	$\frac{1111110}{11111010111110}$	
$\mathrm{f}: 24$	$\frac{1111110}{}$	

CODE TO BINARY TREE

PREFIX CODE

BINARY TREE

USE TREE TO ENCODE MESSAGES

GOAL
given the frequencies for an alphabet $\left\{f_{c}\right\}_{c \in C}$
compote the $\binom{$ prefix-free }{ encoding }$~ T ~ t h a t ~$

$$
\left.\underset{T}{\operatorname{minimizes}}\left\{\underline{B\left(T,\left\{f_{c}\right\}\right.}\right)\right\}
$$

GOAL

GIVEN THE CHARACTER FREQUENCIES

$$
\left\{f_{c}\right\}_{c \in C}
$$

PRODUCE A PREFIX CODE T wITH SMALLEST COST

$$
\min _{T} B\left(T,\left\{f_{c}\right\}\right)
$$

PROPERTY

LEMMA:OPTIMAL TREE MUST BE FULL.

DIVIDE \& CONQUER?

COUNTER-EXAMPLE

$$
\begin{array}{ll}
\mathrm{e}: & 32 \\
\mathrm{i}: & 25 \\
\mathrm{o}: & 20 \\
\mathrm{u}: & 18 \\
\mathrm{p}: & 5
\end{array}
$$

OBJECTIVE

EXCHANGE ARGUMENT

EXCHANGE ARGUMENT

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

EXCHANGE ARGUMENT

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

EXCHANGE ARGUMENT

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

PROOF:

EXCHANGE ARGUMENT

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

EXCHANGE ARGUMENT

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

$$
\begin{array}{ll}
f_{a} \leq f_{b} & f_{x} \leq f_{a} \\
f_{x} \leq f_{y} & f_{y} \leq f_{b}
\end{array}
$$

$$
\begin{gathered}
B(T)=\sum_{c} f_{f_{a} \ell_{a}+f_{x} \ell_{x}+f_{a} \ell_{a}}^{B\left(T^{\prime}\right)=\sum_{c} f f_{l_{a}^{\prime}}^{\prime}+f_{x} \ell_{x}^{\prime}+f_{a} \ell_{a}^{\prime}} \\
B(T)-B\left(T^{\prime}\right) \geq 0
\end{gathered}
$$

$B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0$

$T_{\text {is also optimal }}^{11}$

EXCHANGE ARGUMENT

LEMMA: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

OPTIMAL SUB-STRUCTURE

OPTIMAL SUB-STRUCTURE

OPTIMAL SUB-STRUCTURE

Lemma:

OPTIMAL SUB-STRUCTURE

Lemma:
The optimal solution for T consists of computing an optimal solution for T^{\prime} and replacing the left z with a node having children x, y.

$$
B\left(T^{\prime}\right)=B(T)-f_{x}-f_{y}
$$

Suppose T is not optimal

Suppose T is not optimal

$$
B(U)<B(T)
$$

Suppose T is not optimal

SUPPOSE \lceil IS NOT OPTIMAL

$$
\begin{aligned}
B(U) & <B(T) \\
B\left(U^{\prime}\right) & =B(U)-f_{x}-f_{y} \\
& <\text { В(т)- FX - FY }
\end{aligned}
$$

But this implies that $\mathrm{B}\left(\mathrm{T}^{\prime}\right)$ was not optimal.

THEREFORE

SUMMARY OF ARGUMENT

