

Greedy Alg:
Huffman
abhi shelat

In testimony before the committee, Mr. Lew stressed that the Treasury Department would run out of "extraordinary measures" to free up cash in a matter of days. At that point, the country's bills might overwhelm its cash on hand plus any receipts from taxes or other sources, leading to an unprecedented default.Mr. Lew said that Treasury had no workarounds to avoid breaching the debt ceiling. "There is no plan other than raising the debt limit," he said. "The legal issues, even regarding interest and principal on the debt, are complicated."

In testimony before the committee, Mr. Lew stressed that the Treasury Department would run out of "extraordinary measures" to free up cash in a matter of days. At that point, the country's bills might overwhelm its cash on hand plus any receipts from taxes or other sources, leading to an unprecedented default.Mr. Lew said that Treasury had no workarounds to avoid breaching the debt ceiling. "There is no plan other than raising the debt limit," he said. "The legal issues, even regarding interest and principal on the debt, are complicated."

$c \in C$	f_{c}	T	ℓ_{c}
$\mathrm{e}:$	235	000	3
$\mathrm{i}:$	200	001	3
$\mathrm{o}:$	170	010	3
$\mathrm{u}:$	87	011	3
$\mathrm{p}:$	78	100	3
$\mathrm{~g}:$	47	101	3
$\mathrm{~b}:$	40	110	3
$\mathrm{f}:$	24	111	3
	881		

morse code

International Morse Code
1 dash $=3$ dots
The space between parts of the same letter $=1$ dot
-The space between letters $=3$ dots.
The space between words $=7$ dots.

U•• -
$\underbrace{\forall x, y} \in C, x \neq y \Longrightarrow \operatorname{CODE}(x)$ not a prefix of $\operatorname{CODE}(y)$

$\mathrm{e}:$	235	0
$\mathrm{i}:$	200	10
$\mathrm{o}:$	170	110
$\mathrm{u}:$	87	1110
$\mathrm{p}:$	78	11110
$\mathrm{~g}:$	47	111110
$\mathrm{~b}:$	40	1111110
$\mathrm{f}:$	24	$\underbrace{11111110}_{\text {prefix free code }}$

prefix code

binary tree

code to binary tree

$\mathrm{e}:$	235	0
$\mathrm{i}:$	200	10
$\mathrm{o}:$	170	110
$\mathrm{u}:$	87	1110
$\mathrm{p}:$	78	11110
$\mathrm{~g}:$	47	111110
$\mathrm{~b}:$	40	1111110
$\mathrm{f}:$	24	11111110

(1)11111010111110

use tree to encode messages

goal

given the character frequencies

$$
\left\{\begin{array}{l}
f \\
f
\end{array}\right\} c \in C
$$

produce a prefix code I with smallest cost

$$
\min _{T} B\left(T, \frac{\left.\left\{f_{c}\right\}\right)}{}\right.
$$

Lemma: optimal tree must be full.
\rightarrow each node in the tree
has either O or 2 children
Why??

if some node has only l child, then it \rightarrow car be removed from the tree to produce a code that is shorter for all the -u children of that rode.
divide \& conquer?

- partition the freaumcirs int 2 costly equal halve 4 Solve recursively.

counter-example

not optinal

$\ell_{u}<l_{0}$ but $f_{u}<f_{0}$

objective
Show that the Huffman construction is optimal prefix-fire encoding.
$\Rightarrow 2$ lemnos that we prove.
exchange argument
lemma: If x cay are the 2 lent frequent characters in $\left\{f_{c}\right\}$, then there exists an optimal Tree in which ty are siblings.

Proof: Consider an optimal solution T in which ray are not siblings.
(1) Since T is optimal, T is full tree. Let a, b be the leaves with the greatest depth. We know such a pair exists $b / c T$ is full.
exchange argument
lemma: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

exchange argument

lemma: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

exchange argument

lemma: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.
proof:

exchange argument

lemma: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

first step

exchange argument

lemma: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

$$
\frac{f_{a} \leq f_{b}}{f_{x} \leq f_{y}} \quad \frac{f_{x} \leq f_{a}}{f_{y} \leq f_{b}}
$$

$$
B(T)=C+f_{x} \cdot l_{x}+f_{a} \cdot l_{a}
$$

$$
B\left(T^{\prime}\right)=C+f_{x} \cdot l_{-}+f_{a} \cdot l_{x}
$$

$$
\begin{aligned}
B(T)-B\left(T^{\prime}\right) & =f_{x} \cdot l_{x}+f_{a} \cdot l_{a}-f_{x} \cdot l_{a}-f_{a} \cdot l_{x} \\
& =-l_{x}-f_{x}+f_{a} \\
& =\frac{\left(l_{a}-l_{x}\right)}{\left.l_{x}-f_{a}\right)+l_{a}\left(f_{a}-f_{x}\right)} \frac{\left(f_{a}-f_{x}\right)}{\geqslant 0} \geqslant 0
\end{aligned}
$$

$$
B(T)=\sum_{c} f_{c} \ell_{c}+f_{x} \ell_{x}+f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=\sum_{c} f_{c} \ell_{c}^{\prime}+f_{x} \ell_{x}^{\prime}+f_{a} \ell_{a}^{\prime}
$$

$B\left(T^{\prime}\right)$ is also optimal!!

$$
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0
$$

Same argument

$B(T) \geqslant B(T) \quad \Rightarrow \quad T^{\prime \prime} \geqslant \quad$ is also optimal
and x cay are siblings in $T^{\prime \prime}$.

$T^{1 / 1}$ is also optimal

exchange argument

lemma: Let $x, y \in C$ be characters with smallest frequencies f_{x}, f_{y}. There exists an optimal prefix code $T^{\prime \prime}$ for C in which x, y are siblings. That is, the codes for x, y have the same length and only differ in the last bit.

optimal sub-structure

optimal substructure

Why dies this work 2??

Lemma: The optimal solution for $\left\{f_{c}\right\}$ is to produce the optimal solution for $\left\{f_{c i}\right\}$ and replace node z with $f_{x} f_{y}$

optimal sub-structure

Lemma:
The optimal solution for T consists of computing an optimal solution for T^{\prime} and replacing the left z with a node having children x, y.

Let T^{\prime} be an oftimed soldim for $\left\{f_{c},\right\}$.

$$
B\left(T^{\prime}\right)=B(T)-f_{x}-f_{y}
$$

$B\left(T^{\prime}\right)$
$B(T)$

$$
B\left(T^{\prime}\right)=B(T)-f_{x}-f_{y}
$$

Suppose T is not optimal
(1) ie. there is some other tree U sit. $B(U)<B(T)$

Suppose T is not optimal

$$
B(U)<B(T)
$$

\rightarrow by Lemma 1, we know that xiy mist be siblings e the lowest depth in U.

Suppose T is not optimal

$$
\underline{B(U)}<\underline{B(T)}
$$

$b / c x / y$ are sibling y

$$
B\left(u^{\prime}\right)=B(u)-f_{x}-f_{y}
$$ that can be combined into

$$
\begin{aligned}
& <B(T)-f_{x}-f_{y} \\
& =B\left(T^{\prime}\right) \quad \text { a node } z
\end{aligned}
$$

\Longrightarrow this would mean that T is not optimal for $\left\{f_{c,}\right\}$ which is a contradiction!!

Suppose T is not optimal

$$
\begin{aligned}
B(U) & <B(T) \\
B\left(U^{\prime}\right) & =B(U)-f_{x}-f_{y} \\
& <\mathrm{B}(\mathrm{t})-\mathrm{fx}-\mathrm{fy}
\end{aligned}
$$

But this implies that $B\left(T^{\prime}\right)$ was not optimal.
therefore

summary of argument

MST

connecting houses

connecting houses

名

connecting houses

connecting houses

connecting houses

粼

connecting houses

啌 覴

connecting houses

connecting houses

graphs

clrs [ch 22]

$$
\begin{aligned}
& G=(V, E), \quad, E-R^{t} \\
& 0 \\
& 0
\end{aligned}
$$

representation

space: $(|v|+|E|)$

time list neighbors:
time check an edge:

$$
\theta(\text { H of reighbin) }=\theta(V)
$$

$G=(V, \underline{E})$
adjacency list

representation

time list neighbors:
time check an edge:

$G=(V, E)$
adjacency matrix

definition: path

a sequence of nodes

$$
\begin{aligned}
& v_{1}, v_{2}, \ldots, v_{k} \\
& \quad\left(v_{i}, v_{i+1}\right) \in E
\end{aligned}
$$

simple path:
cycle:
definition:tree
connected graph:
a tree is

what we want:

(1) way to correct each parr "f rode that hos minimum coot $\Rightarrow M S T$,

minimum spanning tree

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost

$$
\min \sum_{(u, v) \in T} w(u, v)
$$

looking for a set of edges that $T \subseteq E$
(a) connects all vertices
(b) has the least cost

$$
\min \sum_{(u, v) \in T} w(u, v)
$$

facts

how many edges does solution have?
does solution have a cycle?

strategy

start with an empty set of edges A repeat for V - times:
add lightest edge that does not create a cycle

example

kruskal

kruskal

kruskal

kruskal

kruskal

kruskal

kruskal

kruskal

kruskal

why does this work?

$T \leftarrow \emptyset$
2 repeat $V-1$ times:
3
add to T the lightest edge $e \in E$ that does not create a cycle
definition: cut
example of a cut

definition: crossing a cut

definition: crossing a cut

an edge $\quad e=(*, 0)$ ses a graph cut $(\mathrm{S}, \mathrm{V}-\mathrm{S})$ if $u \in S \quad v \in V-S$

example of a crossing

definition: respect
theorem: cut property

thm: cut property

suppose the set of edges is pArt of an m.s.t.
let ($\mathrm{S}, \mathrm{V}-\mathrm{S}$) be any cut that respects
let edge ${ }^{e}$ be the min-weight edge acro $s \subseteq V-S$)
then: $A \cup\{e\}$ is part of an m.s.t.
example of theorem

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of $G=$ (V, E). Let $(S, V-S)$ be any cut that respects A and let e be the edge with the minimum weight that crosses $(S, V-S)$. Then the set $A \cup\{e\}$ is part of a minimum spanning tree.
proof of cut thm

add to A the lightest edge $e \in E$ that does not create a cycle
$3 \quad$ add to A the lightest edge $e \in E$ that does not create a cycle
proof: by induction. in step $1, A$ is part of some MST. suppose that after k steps, A is part of some MST (line 2). in line 3 , we add an edge e to A.

cases for edge e
ster < -

3 cases for edge e

e must be lightest edge crossing

analysis?

Kruskal-Pseudocode(G)
$1 \quad A \leftarrow \emptyset$
2 repeat $V-1$ times:
$3 \quad$ add to A the lightest edge $e \in E$ that does not create a cycle
$\operatorname{General-MST-Strategy}(G=(V, E))$
$1 \quad A \leftarrow \emptyset$
2 repeat $V-1$ times:
$3 \quad$ Pick a cut $(S, V-S)$ that respects A
4 Let e be min-weight edge over cut $(S, V-S)$
$5 \quad A \leftarrow A \cup\{e\}$

prim

$\operatorname{General-MST-Strategy}(G=(V, E))$
$1 \quad A \leftarrow \emptyset$
2 repeat $V-1$ times:
$3 \quad$ Pick a cut $(S, V-S)$ that respects A
$4 \quad$ Let e be min-weight edge over cut $(S, V-S)$
$5 \quad A \leftarrow A \cup\{e\}$
A is a subtree
edge e is lightest edge that grows the subtree

implementation

idea:
implementation
new data structure

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value <= to key of children

binary heap

full tree, key value <= to key of children how to extractmin?

binary heap

full tree, key value <= to key of children how to extractmin?

binary heap

full tree, key value <= to key of children how to extractmin?

binary heap

full tree, key value <= to key of children how to extractmin?

binary heap

full tree, key value <= to key of children how to decreasekey?

binary heap

full tree, key value <= to key of children how to decreasekey?

implementation

use a priority queue to keep track of light edges
insert:
makequeue:
extractmin:
decreasekey:
algorithm

implementation

$\operatorname{PRIM}(G=(V, E))$
$1 \quad Q \leftarrow \emptyset \quad \triangleright Q$ is a Priority Queue
2 Initialize each $v \in V$ with key $k_{v} \leftarrow \infty, \pi_{v} \leftarrow$ NIL
3 Pick a starting node r and set $k_{r} \leftarrow 0$
4 Insert all nodes into Q with key k_{v}.
5 while $Q \neq \emptyset$
do $u \leftarrow$ EXTRACT-Min (Q)
for each $v \in A d j(u)$
do if $v \in Q$ and $w(u, v)<k_{v}$
then $\pi_{v} \leftarrow u$
$\operatorname{DECREASE}-\operatorname{KEy}(Q, v, w(u, v)) \quad \triangleright \operatorname{Sets} k_{v} \leftarrow w(u, v)$

