
L15
4102 10.17.2013

abhi shelat

Greedy Alg:
Huffman

Huffman
Coding

image: wikimedia

In testimony before the committee, Mr. Lew stressed that the Treasury
Department would run out of “extraordinary measures” to free up cash in a
matter of days. At that point, the country’s bills might overwhelm its cash
on hand plus any receipts from taxes or other sources, leading to an
unprecedented default.Mr. Lew said that Treasury had no workarounds to
avoid breaching the debt ceiling. “There is no plan other than raising the
debt limit,” he said. “The legal issues, even regarding interest and principal
on the debt, are complicated.”

m

In testimony before the committee, Mr. Lew stressed that the Treasury
Department would run out of “extraordinary measures” to free up cash in a
matter of days. At that point, the country’s bills might overwhelm its cash
on hand plus any receipts from taxes or other sources, leading to an
unprecedented default.Mr. Lew said that Treasury had no workarounds to
avoid breaching the debt ceiling. “There is no plan other than raising the
debt limit,” he said. “The legal issues, even regarding interest and principal
on the debt, are complicated.”

B(T, {fc}) =
X

c2C

fc · `c

def: cost of an encoding

881

e: 235 000
i: 200 001
o: 170 010
u: 87 011
p: 78 100
g: 47 101
b: 40 110
f: 24 111

3
3
3
3
3
3
3
3

character frequency

0

75

150

225

300

e i a o r n t s l c u p m d h y g b f v k w z x q j

e: 234803
i: 200613
a: 198938
o: 170392
r: 160491
n: 158281
t: 152570
s: 139238
l: 130172
c: 103307
u: 87211
p: 78077
m: 70504
d: 68007
h: 64165
y: 51527
g: 47011
b: 40351
f: 24110
v: 20103
k: 16012
w: 13825
z: 8439
x: 6926
q: 3729
j: 3075

morse code

def: prefix code

e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

prefix code

binary tree

code to binary tree
e: 235 0
i: 200 10
o: 170 110
u: 87 1110
p: 78 11110
g: 47 111110
b: 40 1111110
f: 24 11111110

111111010111110

ie o u p

use tree to encode messages

e: 235 00
i: 200 01
o: 170 10
u: 87 110
p: 78 111

2
2
2
3
3

{fc}c�C

min
T

B(T, {fc})

goal
given the character frequencies

produce a prefix code T with smallest cost

property

x

y

a b

Lemma:optimal tree must be full.

divide & conquer?

counter-example
e: 32
i: 25
o: 20
u: 18
p: 5

!""#"$$%%$&$#!##!'(

e i o u p g b f

)"

$%%$&$#!##!'(

e i o u p
"$

g
!""#

b f

)"

$%%$&$#!##!'(

e i o u p
"$

g
!""#

b f

)"

276

87 u 78 p

165

47 g

40 b 24 f

64

111

235 e

370

170 o200 i

881

511

e: 235 01
i: 200 11
o: 170 10
u: 87 0011
p: 78 0010
g: 47 0000
b: 40 00011
f: 24 00010

470
400
340
348
312
188
200
120
2378

objective

exchange argument
lemma:

x

y

a b

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

b

x y

T ��

exchange argument

T

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

exchange argument

proof:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

exchange argument

T

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

a

y

x b

exchange argument

T T �

fa � fb

fx � fy

fx � fa

fy � fb

first step

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

x

y

a b

T

a

y

x b

T �

fx � fa

B(T �) =
�

c

fc⇤
�
c + fx⇤�

x + fa⇤�
aB(T) =

�

c

fc⇤c + fx⇤x + fa⇤a

B(T)�B(T �) ⇥ 0

fx � fa
x

y

a b

T

a

y

x b

T �

a

y

x b

a

b

x y

B(T �)�B(T ��) ⇥ 0

T � T ��

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T)�B(T �) ⇥ 0

x

y

a b

T

a

y

x b

T �

a

b

x y

T ��

B(T �)�B(T ��) ⇥ 0

T ��
is also optimal

x

y

a b

a

b

x y

exchange argument

T T �

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

lemma:

fc

optimal sub-structure
!""#"$$%%$&$#!##!'(

fx fy

fzfc�

optimal sub-structure
!""#"$$%%$&$#!##!'(

)""$$%%$&$#!##!'(

fx fy

problem of size n

problem of size n-1

fc

optimal sub-structure
!""#"$$%%$&$#!##!'(

fx fy

problem of size n

fzfc�
)""$$%%$&$#!##!'(

problem of size n-1

fc

Lemma:

optimal sub-structure
!""#"$$%%$&$#!##!'(

fx fy

problem of size n

fzfc�
)""$$%%$&$#!##!'(

problem of size n-1

fc

Lemma:

HuffmanCode(C1, . . . , Cn)
1 Insert C1, . . . , Cn into a heap Q
2 for i ⇤ 1 to n� 1
3 do allocate a new node z
4 zleft ⇤ x ⇤ ExtractMin(Q)
5 zright ⇤ y ⇤ ExtractMin(Q)
6 fz ⇤ fx + fy

7 Insert(Q, z)
8 return ExtractMin(Q)

Let x, y ⌅ C be characters with smallest frequencies fx, fy. There exists an
optimal prefix code T �� for C in which x, y are siblings. That is, the codes for
x, y have the same length and only di�er in the last bit.

The optimal solution for T consists of computing an optimal solution for T �

and replacing the left z with a node having children x, y.

StableMatch(M, W,⇥m,⇥w)
1 Initialize all m, w to be free
2 while ⇧free(m) and hasn’t proposed to all W
3 do Pick such an m
4 Let w ⌅ W be highest-ranked to whom m has not yet proposed
5 if free(w)
6 then Make a new pair (m, w)
7 elseif (m�, w) is paired and m� ⇥w m
8 do Break pair (m�, w) and make m� free
9 Make pair (m, w)

10 return Set of pairs

1

z

T �

z

x y

z

B(T �) B(T)

T � T

x y

z

B(T �) B(T)

T � T

B(T �) = B(T)� fx � fy

Suppose is not optimal T

Suppose is not optimal T

yx

U
B(U) < B(T)

Suppose is not optimal
B(U) < B(T)

yx

U

z

U �

T

Suppose is not optimal
B(U) < B(T)

B(U �) = B(U)� fx � fy
yx

U

z

U �

But this implies that B(T’) was not optimal.

< B(t) - fx - fy

T

therefore

z

T �

x y

summary of argument

MST

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

e

d

fc

b

a

10

8 8

h

g

i

2

11

95

61

33

9

12

graphs
clrs [ch 22]

G = (V,E)representation
adjacency list

space:
time list neighbors:
time check an edge:

representation
adjacency matrix

space:
time list neighbors:
time check an edge:

G = (V,E)

definition: path
a sequence of nodes
with the property that

simple path:

cycle:

definition:tree

a tree is

connected graph:

what we want:

e

d

fc

b

a

10

8 8

h

g

i

2

11

95

61

33

9

12

minimum spanning tree

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that
(a) connects all vertices
(b) has the least cost

facts
min

�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that
(a) connects all vertices
(b) has the least cost

how many edges does solution have ?

does solution have a cycle?

strategy

 add lightest edge that does not create a cycle

start with an empty set of edges A
repeat for v-1 times:

example

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

kruskal

kruskal
e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

1 T ⇥ ⌅
2 repeat V � 1 times:
3 add to T the lightest edge e ⇤ E that does not create a cycle

4

why does this work?

definition: cut

example of a cut

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

definition: crossing a cut

u � S v ⇥ V � S

definition: crossing a cut
an edge crosses a graph cut (S,V-S) ife = (u, v)

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

example of a crossing

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

definition: respect

theorem: cut property

A

thm: cut property
suppose the set of edges is part of an m.s.t.

(S, V ⇤ S) Alet be any cut that respects .
(S, V ⇤ S)let edge be the min-weight edge across e

A � {e}then: is part of an m.s.t.

example of theorem

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

6

9

f

c12

1

3

5

8

7

d

h

10

b

a

e

2

i

g

8

9

11

3

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ �
2 repeat V � 1 times:
3 add to A the lightest edge e ⌃ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of G =
(V, E). Let (S, V � S) be any cut that respects A and let e be the edge with the minimum
weight that crosses (S, V � S). Then the set A� {e} is part of a minimum spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T, then the theorem is true already.
Case 2 Suppose A � {e} ⌥⇥ T. Let e = (u, v). We shall construct a new tree T⇧ that
contains A � {e} by changing only a few edges of T. First, draw a picture of the
situation:

Now consider adding edge e to T. This creates a cycle from u to v to u. (why?)
Let e⇧ ⌥= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e⇧ exist?)
Let T⇧ = T � {e⇧} + {e}. Since T⇧ has V � 1 edges (why?) and since T⇧ is

connected, then T⇧ is also a spanning tree. Now we shall argue that T⇧ is also a
minimum spanning tree. This follows because:

w(T⇧) = w(T) + w(e)� w(e⇧)

Since w(e) ⇤ w(e⇧) (why?), it follows that w(T⇧) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T⇧ is
also a minimum spanning tree. �

4

6

9

fc

12

1

3

5

8

7

d

h

10b a

e

2
i

g8

9
11

3

proof of cut thm

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

 correctness

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

 correctness
proof: by induction. in step 1, A is part of some MST.
suppose that after k steps, A is part of some MST (line 2).
in line 3, we add an edge e to A.

3 cases for edge e

3 cases for edge e

e must be lightest edge crossing

analysis?
1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

prim
General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

A is a subtree
edge e is lightest edge that grows the subtree

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

implementation
idea:

implementation

new data structure

binary heap
full tree, key value <= to key of children

binary heap
full tree, key value <= to key of children

'

&# (

&& &') :

!' ""

binary heap
full tree, key value <= to key of children

'

&# (

&& &') :

!' "" %

%

binary heap
full tree, key value <= to key of children

'

&# (

&&

&'

) :

!' ""

&#

%

binary heap
full tree, key value <= to key of children

'

(

&&

&'

) :

!' ""

how to extractmin?

&#

%

binary heap
full tree, key value <= to key of children

(

&&

&'

) :

!' ""

&'
how to extractmin?

&'

(

&#

%

binary heap
full tree, key value <= to key of children

&&

&'

) :

!' ""

how to extractmin?

)

&'

(

&#

%

binary heap
full tree, key value <= to key of children

&&

&'

:

!' ""

how to extractmin?

)

&'

(

&#

%

binary heap
full tree, key value <= to key of children

&& :

!' ""

how to decreasekey?

)

&'

(

$

%

binary heap
full tree, key value <= to key of children

&& :

!' ""

how to decreasekey?

implementation

use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:

decreasekey:

algorithm

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

implementation

