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graphs
clrs [ch 22]





definition: path
a sequence of nodes 
with the property that 

simple path:

cycle:



definition:tree

a tree is 

connected graph:



what we want:
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minimum spanning tree

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that
(a) connects all vertices
(b) has the least cost



facts
min

�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that
(a) connects all vertices
(b) has the least cost

how many edges does solution have ?

does solution have a cycle?



strategy

 add lightest edge that does not create a cycle

start with an empty set of edges A
repeat for v-1 times:
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1 T ⇥ ⌅
2 repeat V � 1 times:
3 add to T the lightest edge e ⇤ E that does not create a cycle

4

why does this work?



definition: cut



example of a cut
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definition: crossing a cut



u � S v ⇥ V � S

definition: crossing a cut
an edge                   crosses a graph cut (S,V-S) ife = (u, v)
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example of a crossing
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definition: respect



cut theorem



A

cut theorem
suppose the set of edges      is part of an m.s.t.

(S, V ⇤ S) Alet                   be any cut that respects    .

(S, V ⇤ S)let edge     be the min-weight edge across     e

A � {e}then: is part of an m.s.t.



example of theorem
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1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ �
2 repeat V � 1 times:
3 add to A the lightest edge e ⌃ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of G =
(V, E). Let (S, V � S) be any cut that respects A and let e be the edge with the minimum
weight that crosses (S, V � S). Then the set A� {e} is part of a minimum spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T, then the theorem is true already.
Case 2 Suppose A � {e} ⌥⇥ T. Let e = (u, v). We shall construct a new tree T⇧ that
contains A � {e} by changing only a few edges of T. First, draw a picture of the
situation:

Now consider adding edge e to T. This creates a cycle from u to v to u. (why?)
Let e⇧ ⌥= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e⇧ exist?)
Let T⇧ = T � {e⇧} + {e}. Since T⇧ has V � 1 edges (why?) and since T⇧ is

connected, then T⇧ is also a spanning tree. Now we shall argue that T⇧ is also a
minimum spanning tree. This follows because:

w(T⇧) = w(T) + w(e)� w(e⇧)

Since w(e) ⇤ w(e⇧) (why?), it follows that w(T⇧) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T⇧ is
also a minimum spanning tree. �
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1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �
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 correctness



1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

 correctness
proof: by induction. in step 1, A is part of some MST.
suppose that after k steps, A is part of some MST (line 2).
in line 3, we add an edge e=(u,v) to A. 



3 cases for edge e. 
Case 1: e=(u,v) and both u,v are in A.



3 cases for edge e. 
Case 2: e=(u,v) and only u is in A.



3 cases for edge e. 
Case 3: e=(u,v) and neither u nor v are in A.



3 cases for edge e

S
S

S



analysis?
1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �
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General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6



Prim’s algorithm
General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

A is a subtree 
edge e is lightest edge that grows the subtree
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implementation
idea:



implementation



new data structure



binary heap
full tree, key value <= to key of children
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full tree, key value <= to key of children
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binary heap
full tree, key value <= to key of children
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implementation

use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:

decreasekey:



algorithm



prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6
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5 while Q ⌅= ⇧
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8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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running time
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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O(V log V + E log V) = O(E log V)

implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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implementation
use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:

decreasekey:

priority queue fibonacci heap
O(log n) 

O(log n )

O(log n )

n 
log n 

log n 

O(1)

n 
amortized

amortized



O(E + V log V)

faster implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



E + V log V

E log(log� V)

E�(V)

E

E�(V) log �(V)

V log V

research in mst

fredman-tarjan 84:
gabow-galil-spencer-tarjan 86:
chazelle 97
chazelle 00

pettie-ramachandran 02:

karger-klein-tarjan 95:
(randomized)

(optimal)

euclidean mst:



A(m, n) =

�
⇤

⇥

n + 1 m = 0
A(m� 1, 1) m > 0, n = 0
A(m� 1, A(m, n� 1)) m, n > 0

A(4, 2) =

ackerman function



�(n) =

inverse ackerman



application of mst



application of mst



application of mst


