
L16
4102 10.22.2013

abhi shelat

Greedy Alg:
Min Span Trees

MST

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

connecting houses

image:www.princegeorgeva.org, thefranciscofamily.org, www.rightdriveacademy.co.uk, www.ccscambridge.org, www.drawingcoach.com, www.pastoral.org.uk, www.daasgallery.com

e

d

fc

b

a

10

8 8

h

g

i

2

11

95

61

33

9

12

graphs
clrs [ch 22]

definition: path
a sequence of nodes
with the property that

simple path:

cycle:

definition:tree

a tree is

connected graph:

what we want:

e

d

fc

b

a

10

8 8

h

g

i

2

11

95

61

33

9

12

minimum spanning tree

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that
(a) connects all vertices
(b) has the least cost

facts
min

�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that
(a) connects all vertices
(b) has the least cost

how many edges does solution have ?

does solution have a cycle?

strategy

 add lightest edge that does not create a cycle

start with an empty set of edges A
repeat for v-1 times:

example

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

kruskal
e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

1 T ⇥ ⌅
2 repeat V � 1 times:
3 add to T the lightest edge e ⇤ E that does not create a cycle

4

why does this work?

definition: cut

example of a cut

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

definition: crossing a cut

u � S v ⇥ V � S

definition: crossing a cut
an edge crosses a graph cut (S,V-S) ife = (u, v)

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

example of a crossing

6

8

h

g

i

2

11

95

12 3

710

9

3

1

8

a

b

c f

d

e

definition: respect

cut theorem

A

cut theorem
suppose the set of edges is part of an m.s.t.

(S, V ⇤ S) Alet be any cut that respects .

(S, V ⇤ S)let edge be the min-weight edge across e

A � {e}then: is part of an m.s.t.

example of theorem

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

6

9

f

c12

1

3

5

8

7

d

h

10

b

a

e

2

i

g

8

9

11

3

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ �
2 repeat V � 1 times:
3 add to A the lightest edge e ⌃ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of G =
(V, E). Let (S, V � S) be any cut that respects A and let e be the edge with the minimum
weight that crosses (S, V � S). Then the set A� {e} is part of a minimum spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T, then the theorem is true already.
Case 2 Suppose A � {e} ⌥⇥ T. Let e = (u, v). We shall construct a new tree T⇧ that
contains A � {e} by changing only a few edges of T. First, draw a picture of the
situation:

Now consider adding edge e to T. This creates a cycle from u to v to u. (why?)
Let e⇧ ⌥= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e⇧ exist?)
Let T⇧ = T � {e⇧} + {e}. Since T⇧ has V � 1 edges (why?) and since T⇧ is

connected, then T⇧ is also a spanning tree. Now we shall argue that T⇧ is also a
minimum spanning tree. This follows because:

w(T⇧) = w(T) + w(e)� w(e⇧)

Since w(e) ⇤ w(e⇧) (why?), it follows that w(T⇧) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T⇧ is
also a minimum spanning tree. �

4

6

9

fc

12

1

3

5

8

7

d

h

10b a

e

2
i

g8

9
11

3

proof of cut thm

u

v

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

 correctness

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

 correctness
proof: by induction. in step 1, A is part of some MST.
suppose that after k steps, A is part of some MST (line 2).
in line 3, we add an edge e=(u,v) to A.

3 cases for edge e.
Case 1: e=(u,v) and both u,v are in A.

3 cases for edge e.
Case 2: e=(u,v) and only u is in A.

3 cases for edge e.
Case 3: e=(u,v) and neither u nor v are in A.

3 cases for edge e

S
S

S

analysis?
1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

Prim’s algorithm
General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

A is a subtree
edge e is lightest edge that grows the subtree

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

implementation
idea:

implementation

new data structure

binary heap
full tree, key value <= to key of children

binary heap
full tree, key value <= to key of children

!

"# $

"" "! % :

&! ''

binary heap
full tree, key value <= to key of children

!

"# $

"" "! % :

&! '' (

(

binary heap
full tree, key value <= to key of children

!

"# $

""

"!

% :

&! ''

(

binary heap
full tree, key value <= to key of children

!

"#

$

""

"!

% :

&! ''

how to extractmin?

(

binary heap
full tree, key value <= to key of children

24

"#

$

""

"!

% :

&! ''

how to extractmin?

(

binary heap
full tree, key value <= to key of children

24

"#

$

""

"!

% :

&! ''

how to extractmin?

(

binary heap
full tree, key value <= to key of children

24"#

$

""

"!

%

:

&! ''

how to extractmin?
how to decreasekey?

)

binary heap
full tree, key value <= to key of children

24"#

$

""

"!

%

:

&! ''

how to extractmin?
how to decreasekey?

)

(

implementation

use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:

decreasekey:

algorithm

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

implementation

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

�

� �

�

�

�

�

0

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

�

�

�

0

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

8

5

7

8

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

�

�

�

0

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

8

5

8

7

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

�

0

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

8

5

8

6

117

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

�

0

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

8

5

8

6

117

prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

0

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

8

5

8

6

113

1

running time
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

O(V log V + E log V) = O(E log V)

implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

implementation
use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:

decreasekey:

priority queue fibonacci heap
O(log n)

O(log n)

O(log n)

n
log n

log n

O(1)

n
amortized

amortized

O(E + V log V)

faster implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

E + V log V

E log(log� V)

E�(V)

E

E�(V) log �(V)

V log V

research in mst

fredman-tarjan 84:
gabow-galil-spencer-tarjan 86:
chazelle 97
chazelle 00

pettie-ramachandran 02:

karger-klein-tarjan 95:
(randomized)

(optimal)

euclidean mst:

A(m, n) =

�
⇤

⇥

n + 1 m = 0
A(m� 1, 1) m > 0, n = 0
A(m� 1, A(m, n� 1)) m, n > 0

A(4, 2) =

ackerman function

�(n) =

inverse ackerman

application of mst

application of mst

application of mst

