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MST question
what is a graph cut?

userid:

what does it mean for a set A to respect a cut S?

what does the cut theorem say?



G=(V,E,w)
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min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that 
(a) connects all vertices 
(b) has the least cost



minimum spanning tree

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that 
(a) connects all vertices 
(b) has the least cost



minimum spanning tree

min
�

(u,v)�T

w(u, v)

T � Elooking for a set of edges that 
(a) connects all vertices 
(b) has the least cost

how many edges does solution have ?

does solution have a cycle?



strategy

 add lightest edge that does not create a cycle

start with an empty set of edges A

repeat for v-1 times: 



Kruskal’s algorithm
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1 T ⇥ ⌅
2 repeat V � 1 times:
3 add to T the lightest edge e ⇤ E that does not create a cycle

4

why does this work?



definition: cut



example of a cut
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definition: crossing a cut



u � S v ⇥ V � S

definition: crossing a cut
an edge                   crosses a graph cut (S,V-S) ife = (u, v)
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example of a crossing
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definition: respect



Cut theorem



Let edge     be the min-weight edge across     
Let                   be any cut that respects    .

A

Cut theorem

Suppose the set of edges      is part of an m.s.t.
(S, V ⇤ S) A

(S, V ⇤ S)e

A � {e}Then: is part of an m.s.t.



example of theorem
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proof of cut theorem

1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ �
2 repeat V � 1 times:
3 add to A the lightest edge e ⌃ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of G =
(V, E). Let (S, V � S) be any cut that respects A and let e be the edge with the minimum
weight that crosses (S, V � S). Then the set A� {e} is part of a minimum spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T, then the theorem is true already.
Case 2 Suppose A � {e} ⌥⇥ T. Let e = (u, v). We shall construct a new tree T⇧ that
contains A � {e} by changing only a few edges of T. First, draw a picture of the
situation:

Now consider adding edge e to T. This creates a cycle from u to v to u. (why?)
Let e⇧ ⌥= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e⇧ exist?)
Let T⇧ = T � {e⇧} + {e}. Since T⇧ has V � 1 edges (why?) and since T⇧ is

connected, then T⇧ is also a spanning tree. Now we shall argue that T⇧ is also a
minimum spanning tree. This follows because:

w(T⇧) = w(T) + w(e)� w(e⇧)

Since w(e) ⇤ w(e⇧) (why?), it follows that w(T⇧) ⇤ w(T). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T⇧ is
also a minimum spanning tree. �

4
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1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �
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 correctness



1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �

4

 correctness

Proof: by induction. in step 1, A is part of some MST. 
Suppose that after k steps, A is part of some MST (line 2). 
In line 3, we add an edge e=(u,v). 



3 cases for edge e.  
Case 1: e=(u,v) and both u,v are in A.



3 cases for edge e.  
Case 2: e=(u,v) and only u is in A.



3 cases for edge e.  
Case 3: e=(u,v) and neither u nor v are in A.



analysis?1 Minimum Spanning Tree Algorithm

Kruskal-pseudocode(G)
1 A ⌅ ⌥
2 repeat V � 1 times:
3 add to A the lightest edge e ⇧ E that does not create a cycle

Theorem 2 Suppose the set of edges A is part of a minimum spanning tree of
G = (V,E). Let (S, V � S) be any cut that respects A and let e be the edge with the
minimum weight that crosses (S, V �S). Then the set A�{e} is part of a minimum
spanning tree.

Proof. By assumption, A ⇥ T for some minimum spanning tree T of G.
Case 1 If A � {e} ⇥ T , then the theorem is true already.
Case 2 Suppose A� {e} ⌃⇥ T . Let e = (u, v). We shall construct a new tree T � that
contains A � {e} by changing only a few edges of T . First, draw a picture of the
situation:

Now consider adding edge e to T . This creates a cycle from u to v to u. (why?)
Let e� ⌃= e be the edge on this cycle that crosses (S, V � S). (why must such an

edge e� exist?)
Let T � = T � {e�} + {e}. Since T � has V � 1 edges (why?) and since T � is

connected, then T � is also a spanning tree. Now we shall argue that T � is also a
minimum spanning tree. This follows because:

w(T �) = w(T ) + w(e)� w(e�)

Since w(e) ⇤ w(e�) (why?), it follows that w(T �) ⇤ w(T ). Since T is a minimum
spanning tree, this means that the relation must be equality, and therefore T � is also
a minimum spanning tree. �
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General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6



Prim’s algorithm
General-MST-Strategy(G = (V,E))
1 A ⇥ ⇤
2 repeat V � 1 times:
3 Pick a cut (S, V � S) that respects A
4 Let e be min-weight edge over cut (S, V � S)
5 A ⇥ A ⌅ {e}

6

A is a subtree 
edge e is lightest edge that grows the subtree
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implementation

idea:



implementation



new data structure



binary heap
full tree, key value <= to key of children



binary heap
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binary heap
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binary heap
full tree, key value <= to key of children
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how to extractmin?
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binary heap
full tree, key value <= to key of children
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8

binary heap
full tree, key value <= to key of children
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how to extractmin?
how to decreasekey?
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binary heap
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full tree, key value <= to key of children
how to extractmin?
how to decreasekey?



implementation
use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:
decreasekey:



Prim’s algorithm



prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6

implementation
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



prim

e

d

fc

b

a

10

8

1

33

9

12

6

5 9

11

2

i

g

h

8

7

�

�

0
8

5

8

6

117

prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



running time
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



O(V log V + E log V) = O(E log V)

implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



implementation

use a priority queue to keep track of light edges

makequeue:
insert:

extractmin:
decreasekey:

priority queue fibonacci heap
O(log n) 

O(log n )
O(log n )

n 
log n 

log n 
O(1)

n 
amortized

amortized



Algorithms Non-Lecture B: Fibonacci Heaps

A kth order binomial tree, which I’ll abbreviate Bk, is defined recursively. B0 is a single node.
For all k > 0, Bk consists of two copies of Bk�1 that have been linked together, meaning that the
root of one Bk�1 has become a new child of the other root.

B
4

B
4

5
B

Binomial trees of order 0 through 5.

Binomial trees have several useful properties, which are easy to prove by induction (hint, hint).

• The root of Bk has degree k.

• The children of the root of Bk are the roots of B0, B1, . . . , Bk�1.

• Bk has height k.

• Bk has 2k nodes.

• Bk can be obtained from Bk�1 by adding a new child to every node.

• Bk has
�k
d

⇥
nodes at depth d, for all 0 � d � k.

• Bk has 2k�h�1 nodes with height h, for all 0 � h < k, and one node (the root) with height k.

Although we normally don’t care in this class about the low-level details of data structures, we
need to be specific about how Fibonacci heaps are actually implemented, so that we can be sure
that certain operations can be performed quickly. Every node in a Fibonacci heap points to four
other nodes: its parent, its ‘next’ sibling, its ‘previous’ sibling, and one of its children. The sibling
pointers are used to join the roots together into a circular doubly-linked root list. In each binomial
tree, the children of each node are also joined into a circular doubly-linked list using the sibling
pointers.

min
min

A high-level view and a detailed view of the same Fibonacci heap. Null pointers are omitted for clarity.

With this representation, we can add or remove nodes from the root list, merge two root lists
together, link one two binomial tree to another, or merge a node’s list of children with the root list,
in constant time, and we can visit every node in the root list in constant time per node. Having
established that these primitive operations can be performed quickly, we never again need to think
about the low-level representation details.

2

fibonacci heap



each node has 4 pointers
2 fields:

degree
marked

D(n)



O(E + V log V)

faster implementation
prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)

6



E + V log V

E log(log� V)

E�(V)

E

E�(V) log �(V)

V log V

Research in mst

FREDMAN-TARJAN 84:
GABOW-GALIL-SPENCER-TARJAN 86:
CHAZELLE 97
CHAZELLE 00
PETTIE-RAMACHANDRAN 02:
KARGER-KLEIN-TARJAN 95:

(randomized)

(optimal)

Euclidean mst:



A(m, n) =

�
⇤

⇥

n + 1 m = 0
A(m� 1, 1) m > 0, n = 0
A(m� 1, A(m, n� 1)) m, n > 0

A(4, 2) =

Ackerman function



�(n) =

inverse ackerman



application of mst



application of mst



application of mst



simple graph questions

what is the length of the path from a to e?



 

 



shortest path property
definition:
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3 L19

Dijkstra(G = (V,E), s)
1 for all v ⇤ V
2 do du �⇥
3 ⇥u � nil
4 ds � 0
5 Q� makequeue(V ) � use du as key
6 while Q ⌅= ⇧
7 do u� extractmin(Q)
8 for each v ⇤ Adj (u)
9 do if dv > du + w(u, v)

10 then dv � du + w(u, v)
11 ⇥v � u
12 decreasekey(Q, v)

Theorem 4 Given any weighted, directed graph G = (V,E) with non-negative
weights and source s, dijkstra(G, s) terminates with du = �(s, v) for all v ⇤ V .
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prim(G = (V,E))
1 Q� ⇧ � Q is a Priority Queue
2 Initialize each v ⇤ V with key kv �⇥, �v � nil
3 Pick a starting node r and set kr � 0
4 Insert all nodes into Q with key kv.
5 while Q ⌅= ⇧
6 do u� extract-min(Q)
7 for each v ⇤ Adj (u)
8 do if v ⇤ Q and w(u, v) < kv

9 then �v � u
10 decrease-key(Q, v,w(u, v)) � Sets kv � w(u, v)
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why does dĳkstra work?
⇤(u, v) ⇥ E, �(s, v) � �(s, u) + w(u, v)

dv � �(s, v)

triangle inequality: 

upper bound:



breadth first search
input:
output:



breadth first search
input:
output:

smallest # of edges from s to v
dv = �(s, v)
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breadth first search
input:
output: smallest # of edges from s to v
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bfs theorem


