

abhi shelat

Shortest paths, negative weights All pairs

WHAT ABOUT NEGATIVE EDGE WEIGHTS?

Auto	-refresh 15x		\bigcirc			((+)		E	
	0 : 56)	USD	EUR	GBP	INR	AUD	CAD	ZAR	NZD	JPY
	1 USD Inverse:		0.72611 1.37721							
0	1 EUR Inverse:		1.00000 1.00000							
4 B 9 F	1 GBP Inverse:		1.16622 0.85747							
÷	1 BMD Inverse:		0.72611 1.37721							
/lid-r	market rate	s: 2013-10)-29 15:53	UTC						

VHERE DOES OLD ARGUMENT BREAK DOWN

 $w(p) \ge d_u + \delta(y, u)$

FIRST IDEAS:

 $\text{SHORT}_{i,v} =$

sssp(G,s)

$$SHORT_{i,v} = \begin{cases} \infty & i = 0\\ 0 & v = s\\ \min_{x \in V} & \begin{cases} SHORT_{i-1,v}\\ SHORT_{i-1,x} + w \end{cases} \end{cases}$$

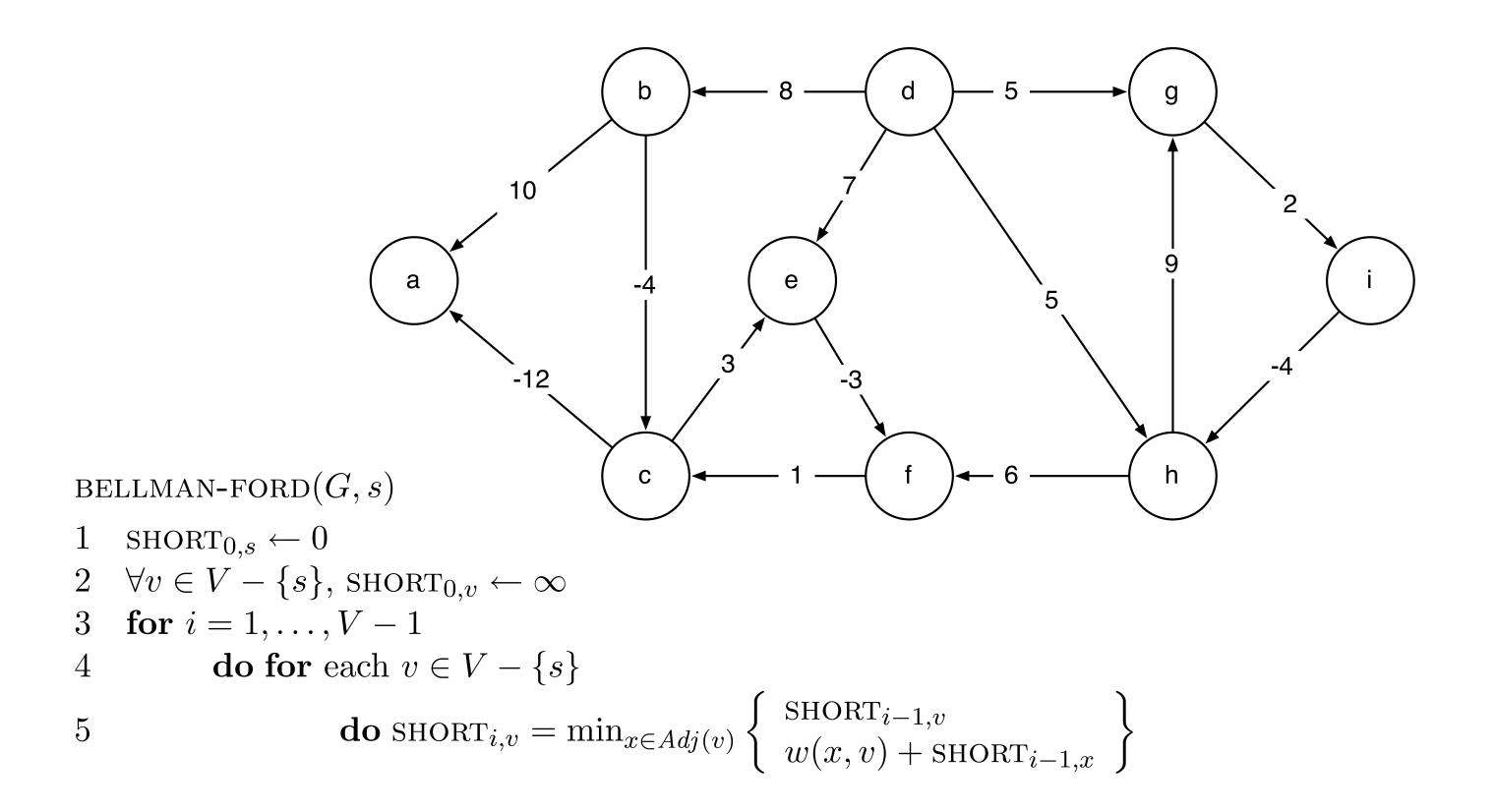
v(x,v)

MAX LEN OF A SIMPLE PATH:

BELLMAN-FORD(G,s)

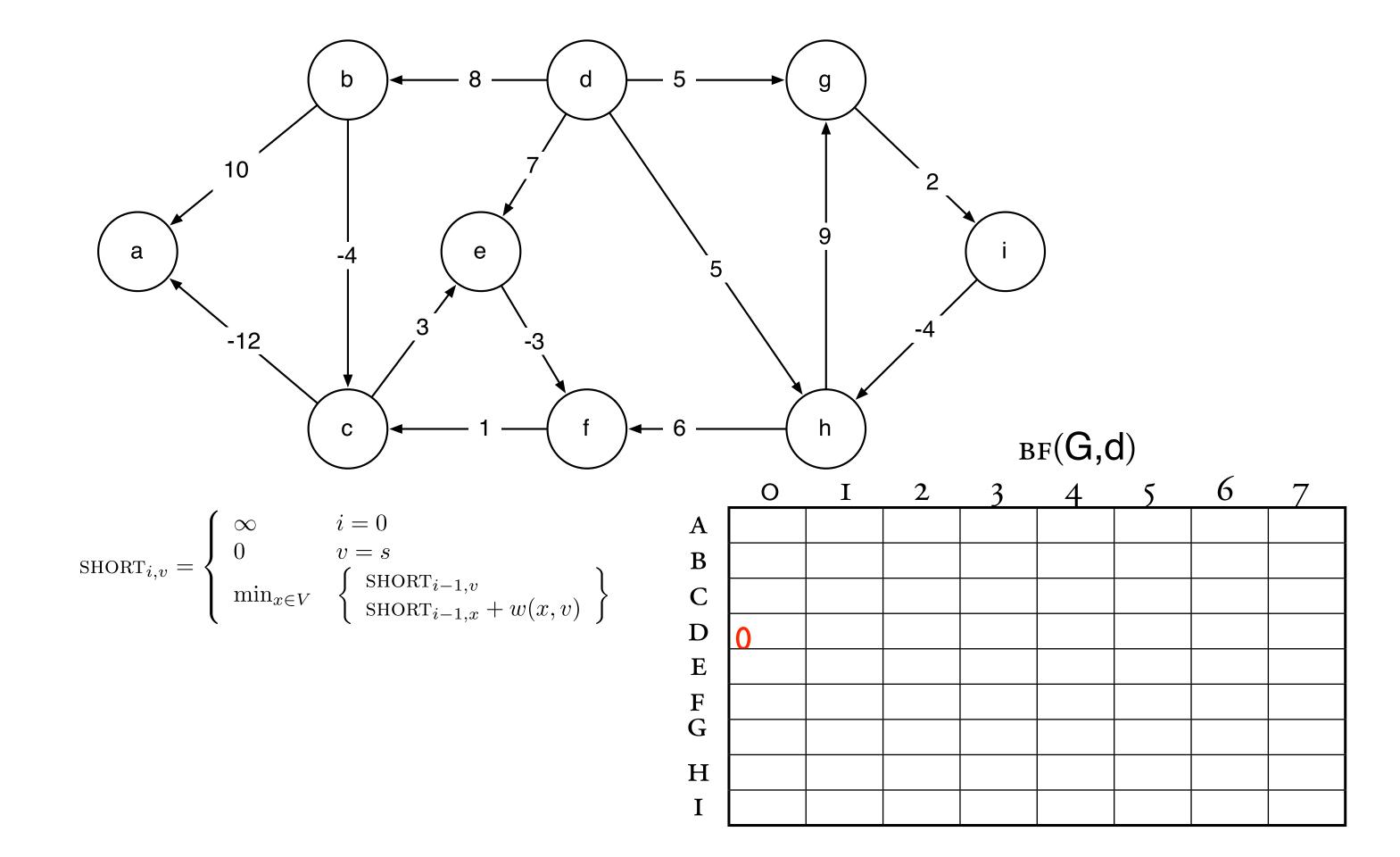
BELLMAN-FORD
$$(G, s)$$

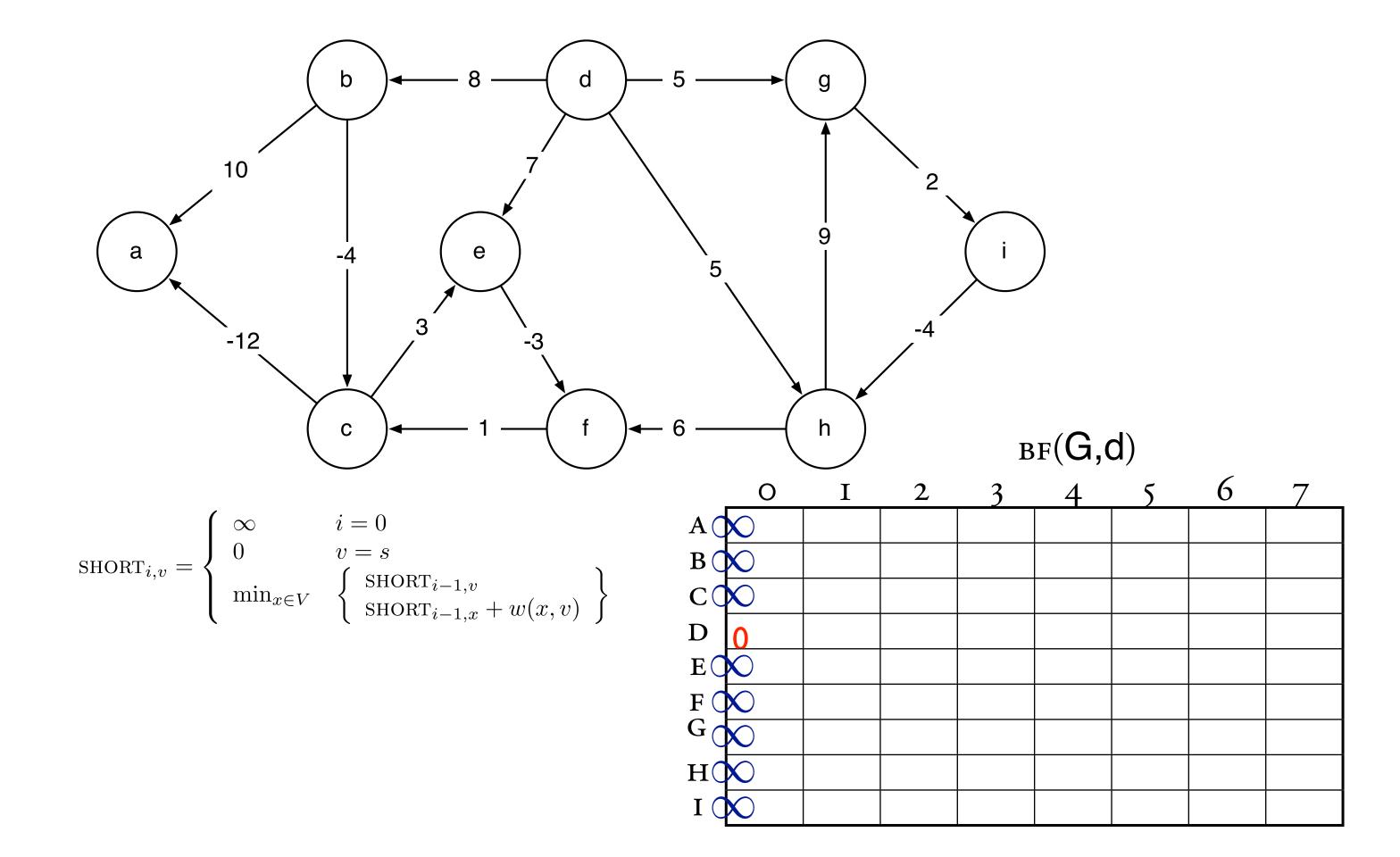
1 SHORT_{0,s} $\leftarrow 0$
2 $\forall v \in V - \{s\}$, SHORT_{0,v} $\leftarrow \infty$
3 **for** $i = 1, \dots, V - 1$
4 **do for** each $v \in V - \{s\}$
5 **do** SHORT_{i,v} = min_{x \in Adj(v)} $\begin{cases} \text{SHORT}_{i-1,v} \\ w(x,v) + \text{SHORT}_{i-1,x} \end{cases}$

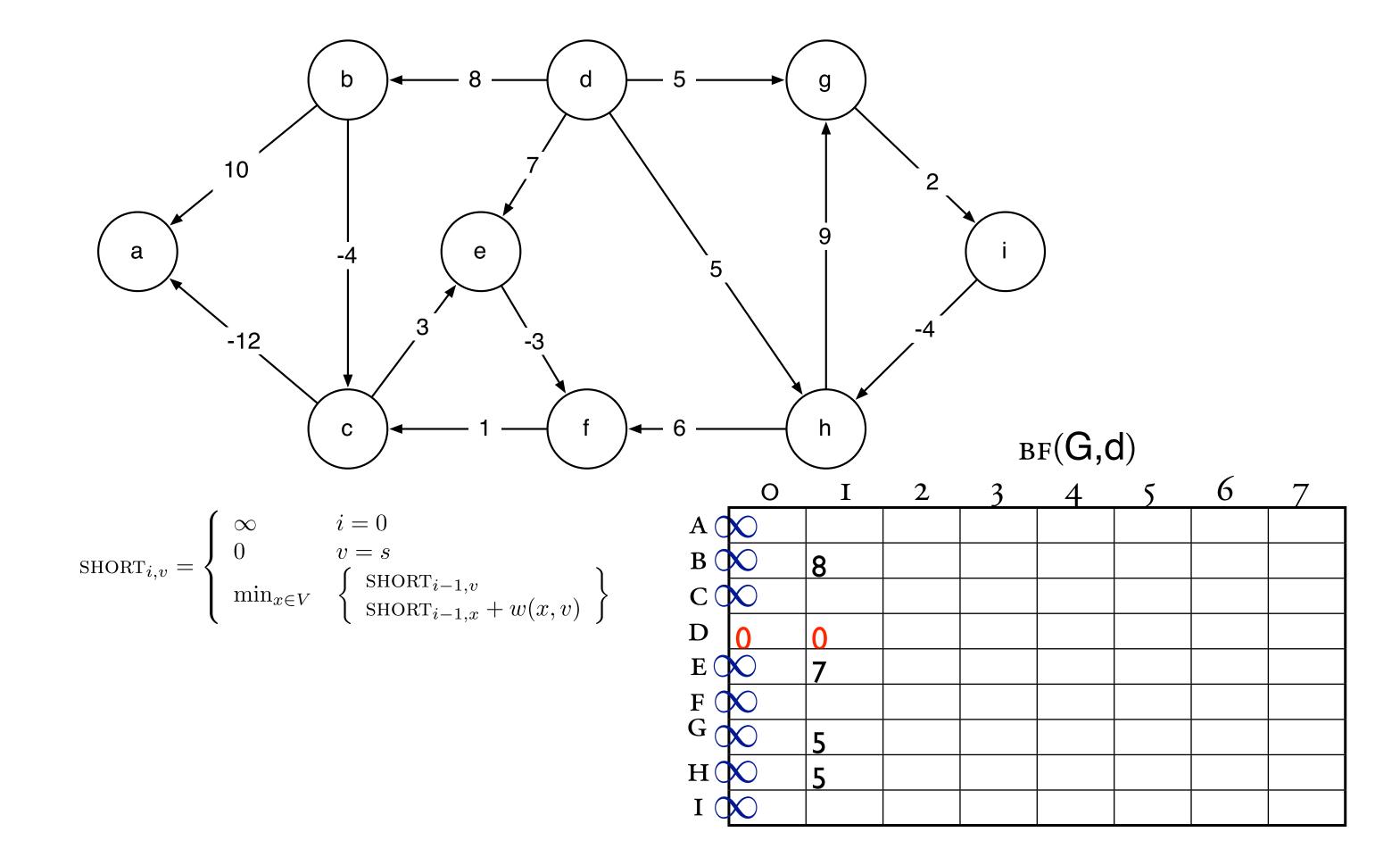


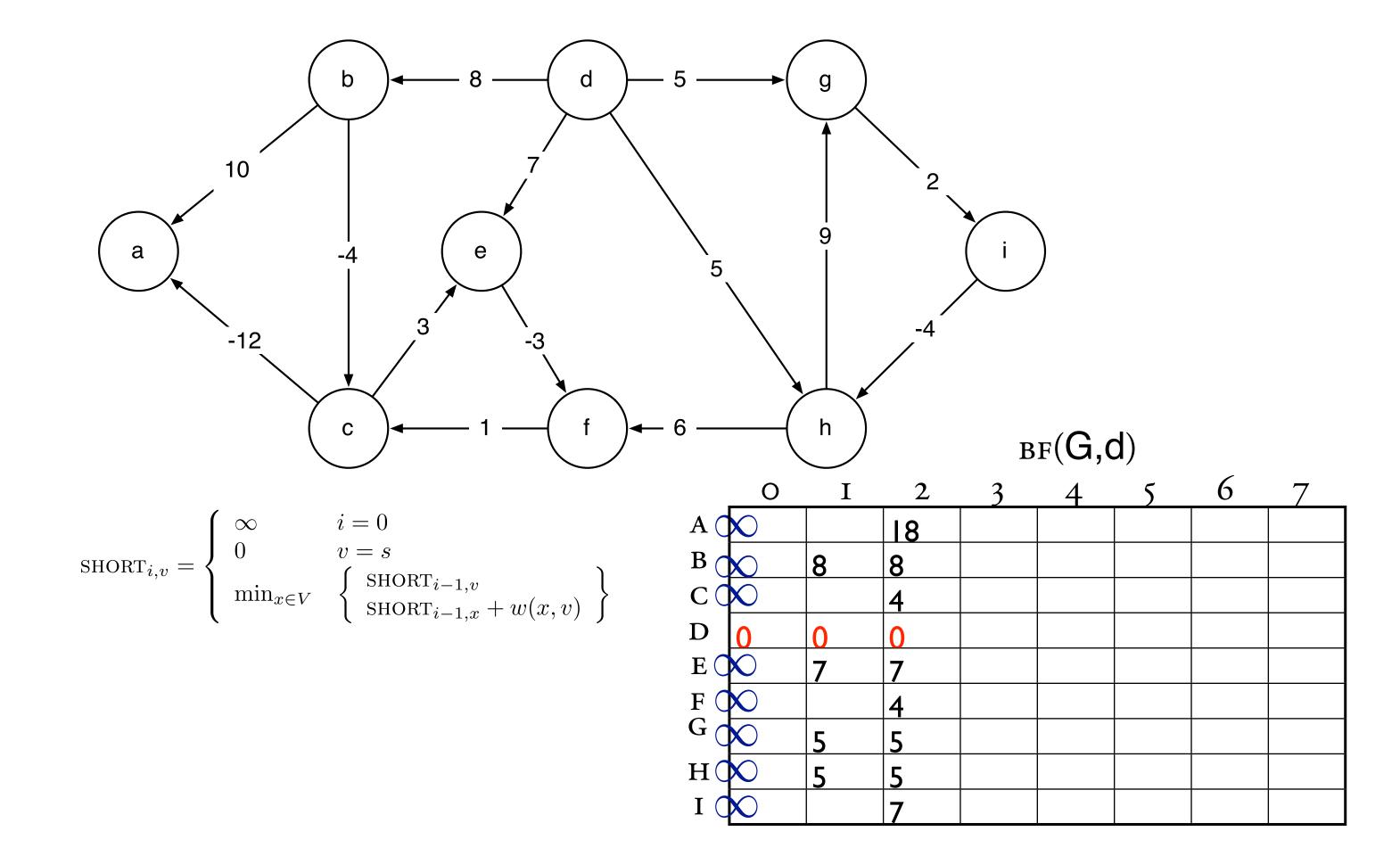
BELLMAN-FORD(G, s)
1 SHORT_{0,s}
$$\leftarrow 0$$

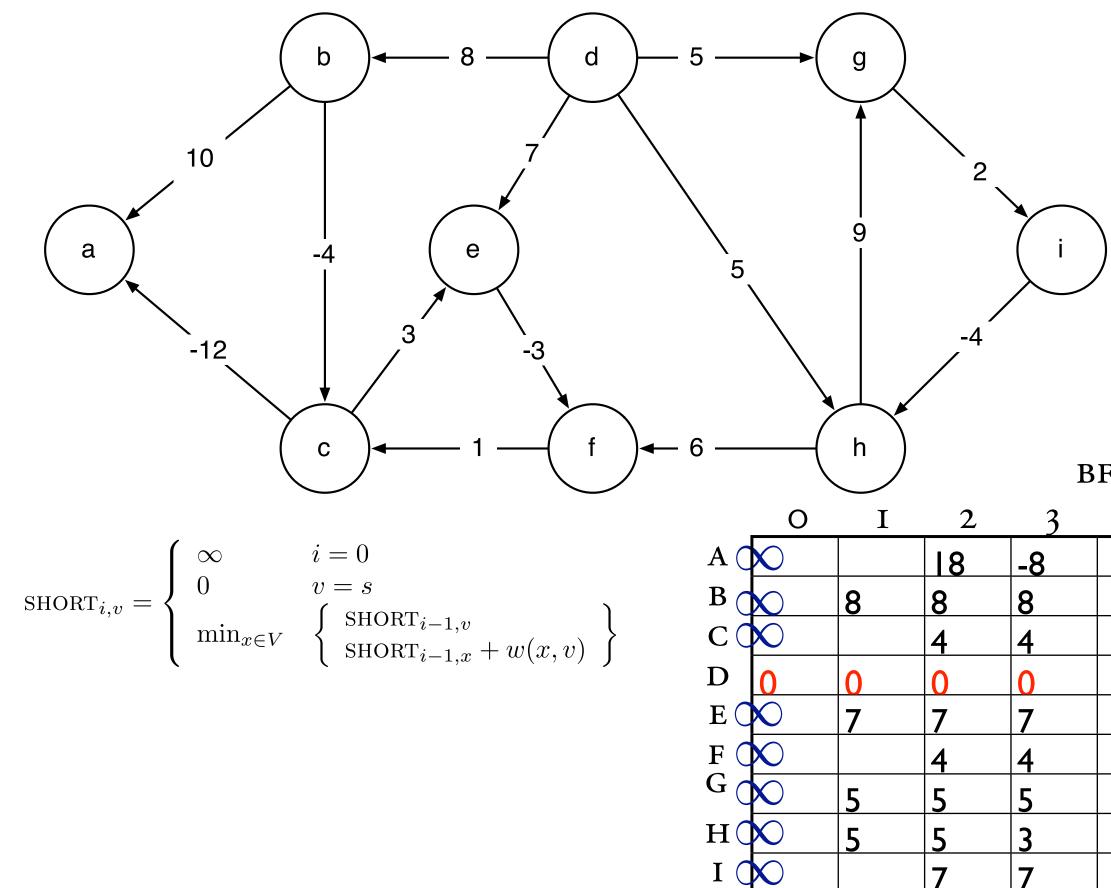
2 $\forall v \in V - \{s\}$, SHORT_{0,v} $\leftarrow \infty$
3 **for** $i = 1, ..., V - 1$
4 **do for** each $e = (x, y) \in E$
5 **do** SHORT_{i,y} = min $\begin{cases} SHORT_{i-1,y} \\ SHORT_{i,y} \\ w(x, y) + SHORT_{i-1,x} \end{cases}$











${}_{\mathrm{BF}}(G,d)$

	3	4	5	6	7
-	-8				
2	3				
	4				
()				
	7				
4	4				
	3				
	7				

OPTIMIZATION

Bellman-ford(G,s)

$$1 \quad \text{SHORT}_{0,s} \leftarrow 0$$

$$2 \quad \forall v \in V - \{s\}, \text{ SHORT}_{0,v} \leftarrow \infty$$

$$3 \quad \text{for } i = 1, \dots, V - 1$$

$$4 \qquad \text{do for each } e = (x, y) \in E$$

$$5 \qquad \text{do SHORT}_{i,y} = \min \left\{ \begin{array}{l} \text{SHORT}_{i-1,y} \\ \text{SHORT}_{i,y} \\ w(x, y) + \text{SHORT}_{i-1,x} \end{array} \right\}$$

Bellman-ford(G,s)

$$\begin{array}{ll}
1 & d_s \leftarrow 0 \\
2 & \forall v \in V - \{s\}, \, d_v \leftarrow \infty \\
3 & \mathbf{for} \ i = 1, \dots, V - 1 \\
4 & \mathbf{do} \ \mathbf{for} \ \mathrm{each} \ e = (x, y) \in E \\
5 & \mathbf{do} \ d_y \leftarrow \min \left\{ \begin{array}{l} d_y, w(x, y) + d_x \end{array} \right\}
\end{array}$$

RUNNING TIME

Bellman-ford(G,s)

$$1 \quad d_s \leftarrow 0$$

$$2 \quad \forall v \in V - \{s\}, \, d_v \leftarrow \infty$$

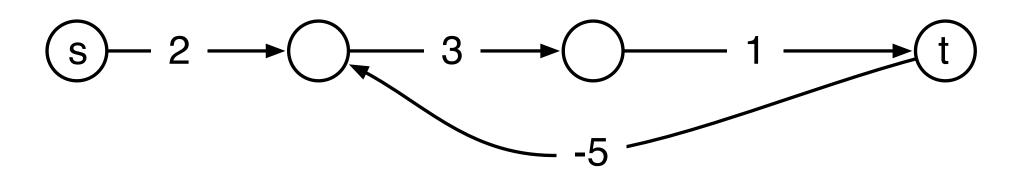
$$3 \quad \text{for } i = 1, \dots, V - 1$$

$$4 \qquad \text{do for each } e = (x, y) \in E$$

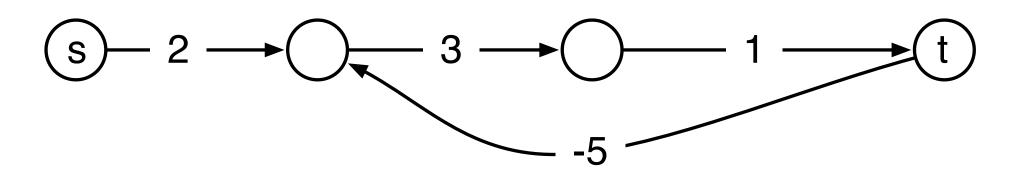
$$5 \qquad \text{do } d_y \leftarrow \min \{ d_y, w(x, y) + d_x \}$$

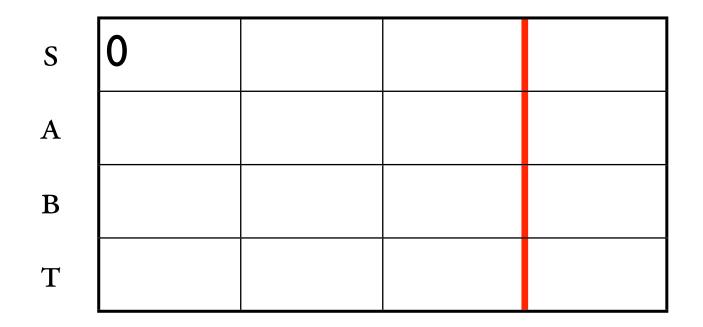
}

NEGATIVE CYCLES?

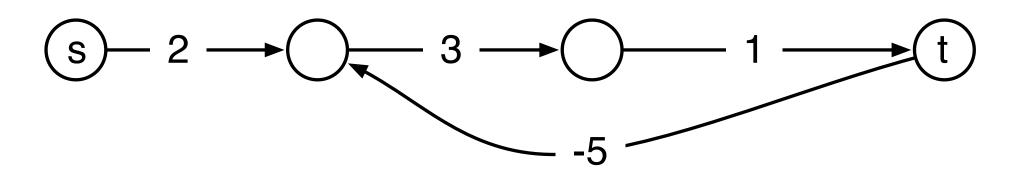


NEGATIVE CYCLES?





NEGATIVE CYCLES?



S	0	0	0	0
A	2	2	2	Ι
В		5	5	5
Т			6	6

APPLICATIONS OF BF

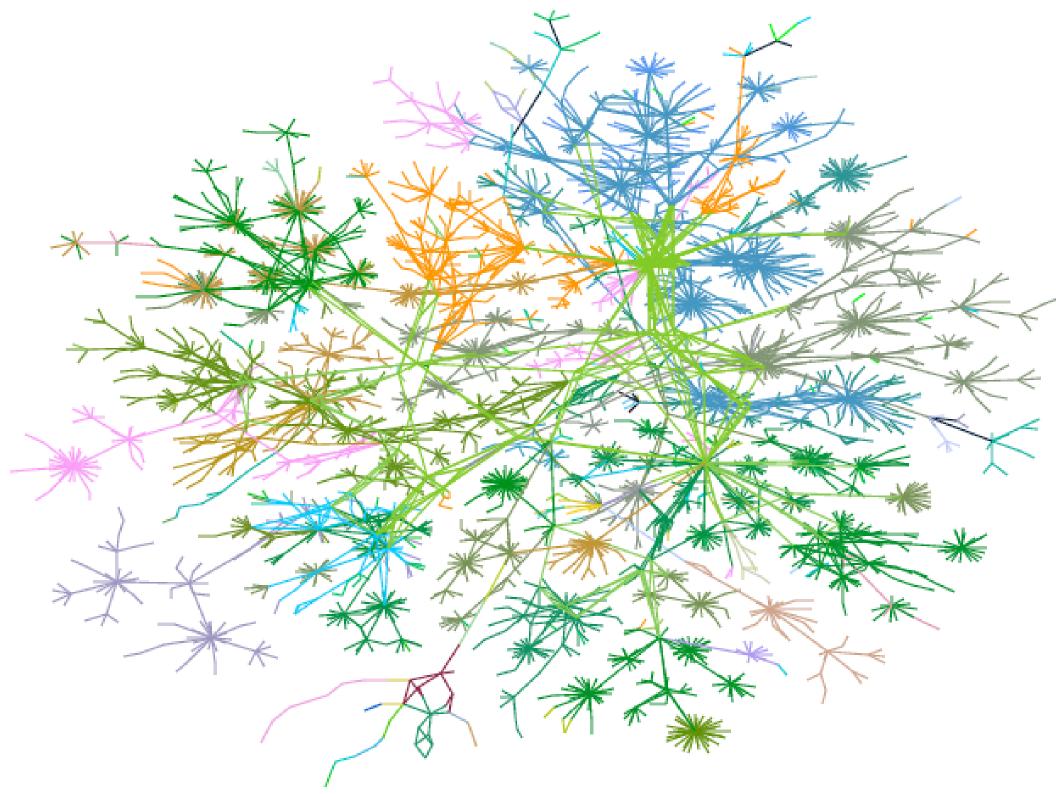
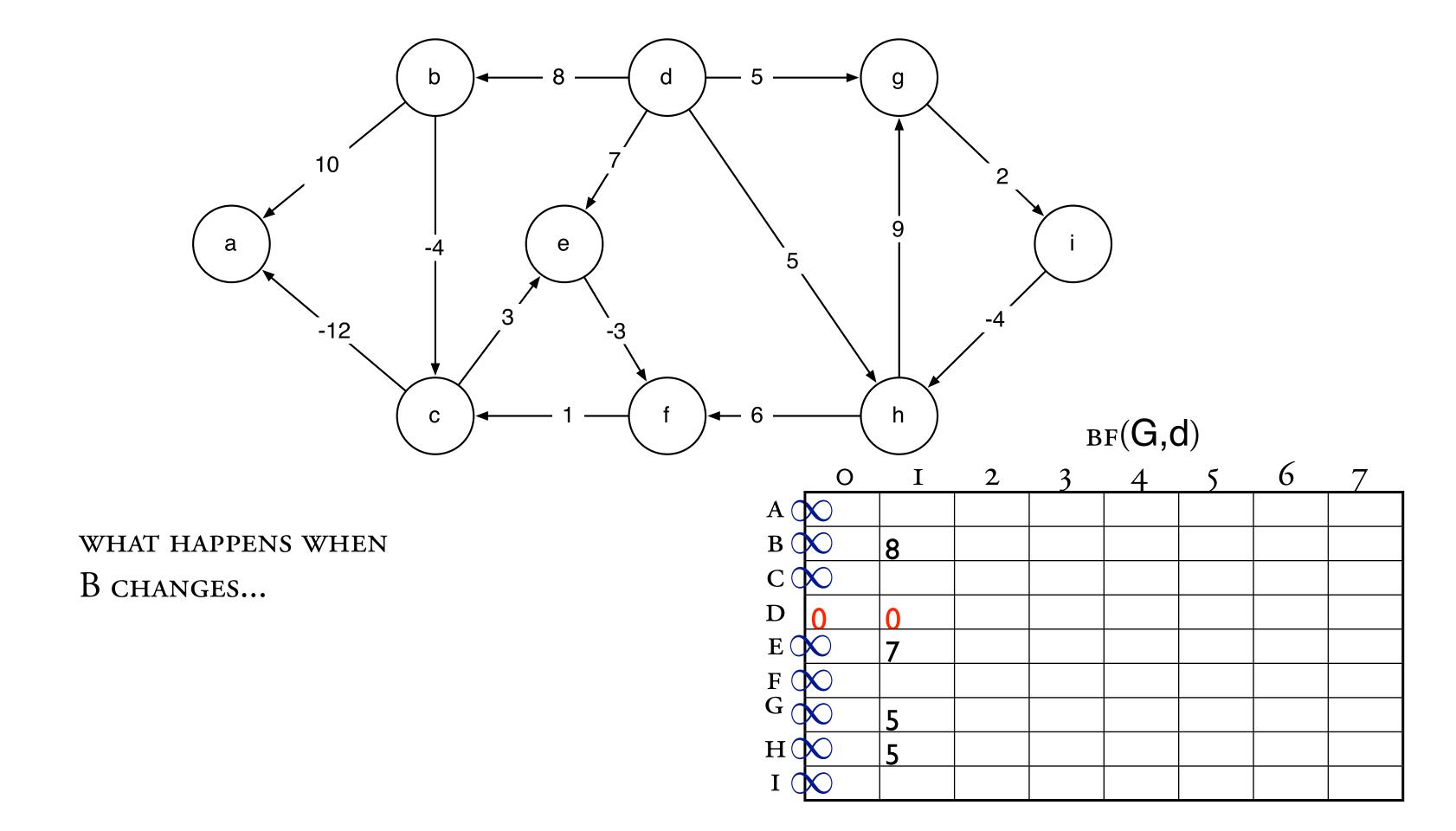
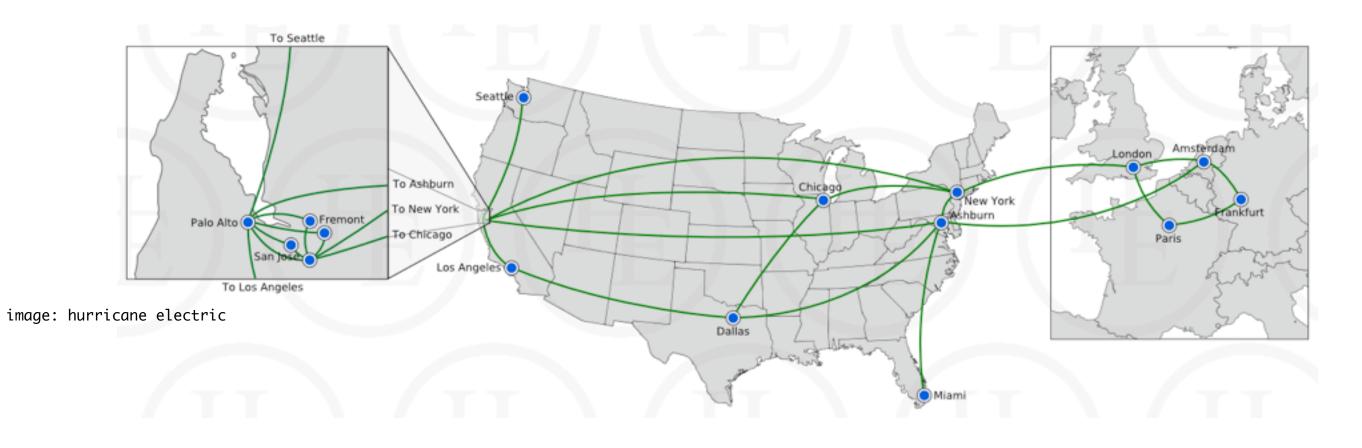


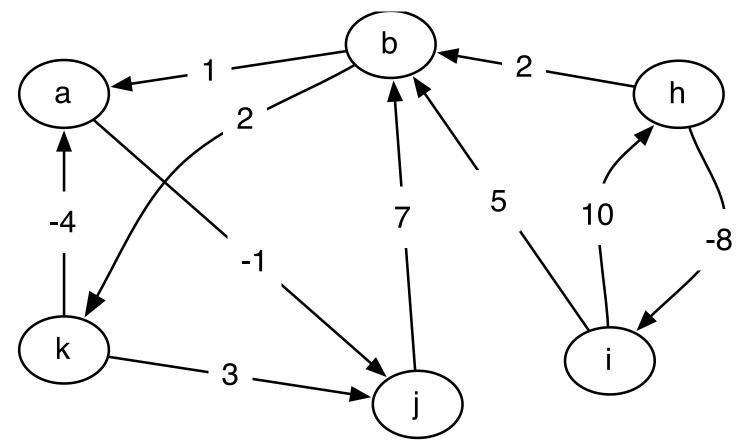
image: cheswick et al Figure 3: Lucent's intranet as of 1 October 1999.



DISTANCE VECTOR

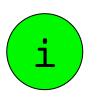


ALL-PAIRS SHORTEST PATH



 $ASHORT_{i,j,k} =$

$ASHORT_{i,j,k} =$





 $ASHORT_{i,j,k} =$

$$ASHORT_{i,j,k} = \begin{cases} w_{i,j} \\ min \begin{cases} ASHORT_{i,j,k-1} \\ ASHORT_{i,k,k-1} + ASHORT_{k,j,k} \end{cases}$$

 $\left.\begin{array}{c} k=0\\ k\geq 1\end{array}\right\}$

FLOYD-WARSHALL(G, W)


```
INT GRAPH[128][128], N; // A WEIGHTED GRAPH AND ITS SIZE
  VOID FLOYDWARSHALL() {
     FOR(INT K = O; K < N; K++)
     FOR(INT I = 0; I < N; I++)
     FOR(INT J = O; J < N; J++)
        GRAPH[I][J] = MIN(GRAPH[I][J], GRAPH[I][K] + GRAPH[K][J]);
```

INT MAIN {

// INITIALIZE THE GRAPH[][] ADJACENCY MATRIX AND N

// GRAPH[I][I] SHOULD BE ZERO FOR ALL I.

// graph[I][J] should be "infinity" if edge (I, J) does not exist // OTHERWISE, GRAPH[I][J] IS THE WEIGHT OF THE EDGE (I, J)

FLOYDWARSHALL();

// NOW GRAPH[I][J] IS THE LENGTH OF THE SHORTEST PATH FROM I TO J

Max flow

Min Cut

"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

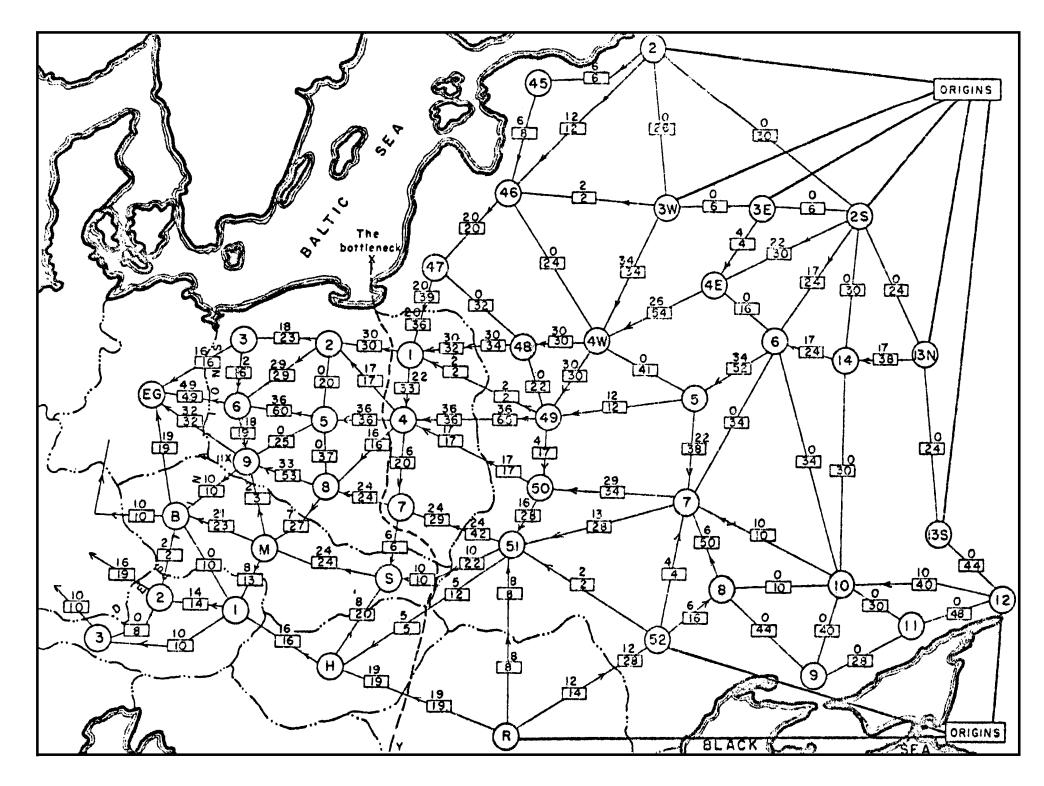


Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons indicated as 'The bottleneck'

FLOW NETWORKS G = (V, E)

SOURCE + SINK:

CAPACITIES:

FLOW NETWORKS G = (V, E)

SOURCE + SINK:

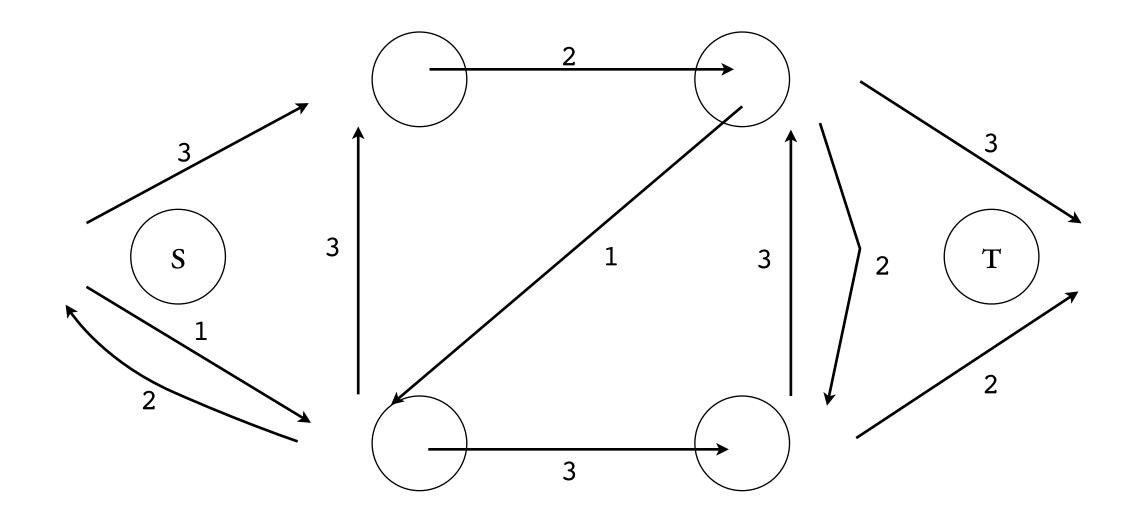
CAPACITIES:

c(u,v)

NODE S, AND T

ASSUMED TO BE O IF NO (U,V) EDGE

EXAMPLE



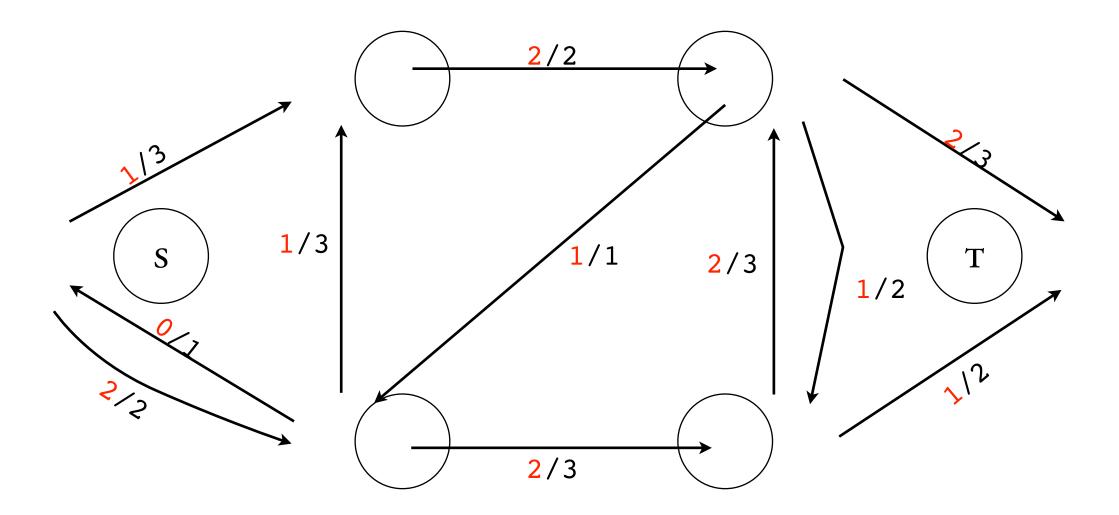
MAP FROM EDGES TO NUMBERS:

CAPACITY CONSTRAINT:

FLOW CONSTRAINT:

|f| =

EXAMPLE



MAX FLOW PROBLEM

GIVEN A GRAPH G, COMPUTE

GREEDY SOLUTION?