1 0 2 11.05.2013

max flow

Nathan Brunelle

Max flow

Min Cut

"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons indicated as 'The bottleneck'

FLOW NETWORKS

$$G = (V, E)$$

SOURCE + SINK:

CAPACITIES:

FLOW NETWORKS

$$G = (V, E)$$

SOURCE + SINK:

NODE S, AND T

CAPACITIES:

c(u,v)

ASSUMED TO BE O IF NO (U,V) EDGE

EXAMPLE

FLOW

MAP FROM EDGES TO NUMBERS:

CAPACITY CONSTRAINT:

FLOW CONSTRAINT:

$$|f| =$$

EXAMPLE

MAX FLOW PROBLEM

GIVEN A GRAPH G, COMPUTE

GREEDY SOLUTION?

HUNDREDS OF APPLICATIONS

BIPARTITE MATCHING

EDGE-DISJOINT PATHS

NODE-DISJOINT PATHS

SCHEDULING

BASEBALL ELIMINATION

RESOURCE ALLOCATIONS

WILL DISCUSS MANY OF THESE APPLICATIONS IN L22.

ALGORITHMS FOR MAX FLOW

CUTS

DEF OF A CUT:

COST OF A CUT:

$$||S,T|| =$$

LEMMA: [MIN CUT] FOR ANY f, (S, T)

for any f,(S,T) it holds that $|f| \leq ||S,T||$

EXAMPLE:

for any f,(S,T) it holds that $|f| \leq ||S,T||$

PROOF:

for any
$$f,(S,T)$$
 it holds that $|f| \leq ||S,T||$

(FINISHING PROOF)

RESIDUAL GRAPHS

$$G_f = (V, E_f)$$

$$c_f(u,v) =$$

EXAMPLE RESIDUAL GRAPH

WHY RESIDUAL GRAPHS?

AUGMENTING PATHS

DEF:

THM: MAX FLOW = MIN CUT

$$\max_{f} |f| = \min_{S,T} ||S,T||$$

IF F IS A MAX FLOW, THEN GF HAS NO AUGMENTING PATHS.

THM: MAX FLOW = MIN CUT

$$\max_{f} |f| = \min_{S,T} ||S,T||$$

FORD-FULKERSON

INITIALIZE
$$f(u,v) \leftarrow 0 \ \forall u,v$$

WHILE EXISTS AN AUGMENTING PATH p IN

AUGMENT
$$f$$
 WITH

TH
$$p$$
 in
$$G_f$$

$$c_f(p) = \min_{(u,v) \in p} c_f(u,v)$$

FORD-FULKERSON

INITIALIZE

$$f(u,v) \leftarrow 0 \ \forall u,v$$

WHILE EXISTS AN AUGMENTING PATH p IN

AUGMENT f WITH

TH
$$p$$
 IN
$$C_f(p) = \min_{(u,v) \in p} c_f(u,v)$$

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:

ROOT OF THE PROBLEM

EDMONDS-KARP 2

CHOOSE PATH WITH FEWEST EDGES FIRST.

$$\delta_f(s,v)$$
:

LEMMA:

 $\delta_f(s,v)$ increases monotonically thru exec

$$\delta_{i+1}(v) \ge \delta_i(v)$$

FOR EVERY AUGMENTING PATH, SOME EDGE IS CRITICAL.

CRITICAL EDGES ARE REMOVED IN NEXT RESIDUAL GRAPH.

KEY IDEA: HOW MANY TIMES CAN AN EDGE BE CRITICAL?

Outline of the argument

first time (u,v) is critical:

time i: (u,v) is critical:

$$\delta_{i+1}(s,v) \ge \delta_i(s,v) + 1$$

time j: Edge (u,v) STRIKES BACK

S U U T

time i: (u,v) is critical:

$$\delta_{i+1}(s,v) \ge \delta_i(s,v) + 1$$

time j: Edge (u,v) STRIKES BACK

$$\delta_j(s,u)=\delta_j(s,v)+1$$

time j: Edge (u,v) STRIKES BACK

$$\delta_{i+1}(s,v) \ge \delta_i(s,v) + 1$$

$$\delta_j(s, u) = \delta_j(s, v) + 1$$

time k: RETURN OF THE (u,v) critical

$$\delta_k(s,u) \geq \delta_i(s,u) + 2$$

QUESTION: How many times can (u,v) be critical?

edge critical only times.

there are only edges.

ergo, total # of augmenting paths:

time to find an augmenting path:

total running time of E-K algorithm:

ff

 $O(E|f^*|)$

ek2

push-relabel

faster push-relabel