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Max flow



“Consider a rail network connecting two cities
by way of a number of intermediate cities,
where each link of the network has a number
assigned to it representing its capacity. As-
suming a steady state condition, find a maxi-
mal flow from one given city to the other.”
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Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East Euro-
pean countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons
indicated as ‘The bottleneck’

courtesy Alexander Schrijver



FLOW NETWORKS
G = (V,E)

SOURCE + SINK:

CAPACITIES:



FLOW NETWORKS
G = (V,E)

SOURCE + SINK: NODE S, AND T

CAPACITIES: C (u, z))

ASSUMED TO BE O IF NO (U,V) EDGE
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FLOW

MAP FROM EDGES TO NUMBERS:
CAPACITY CONSTRAINT:

FLOW CONSTRAINT:

fl=



EXAMPLE




MAX FLOW PROBLEM

GIVEN A GRAPH (4, COMPUTE



GREEDY SOLUTION?



HUNDREDS OF APPLICATIONS

BIPARTITE MATCHING
EDGE-DISJOINT PATHS
NODE-DISJOINT PATHS
SCHEDULING

BASEBALL ELIMINATION
RESOURCE ALLOCATIONS

WILL DISCUSS MANY OF THESE APPLICATIONS IN L22.



ALGORITHMS FOR MAX FLOW



CUTS

DEF OF A CUT:

COST OF A CUT:

15, Tl =



LEMMA: [MIN CUT| FOR ANY f , (S p T)



FOR ANY f, (S, T) IT HOLDS THAT |f‘ S HS,TH
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EXAMPLE:



FOR ANY f, (S, T) IT HOLDS THAT |f‘ S HS,TH

PROOF:
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FOR ANY f, (S, T) IT HOLDS THAT |f‘ S HS,TH

(FINISHING PROOF )



RESIDUAL GRAPHS

Gs = (V,Ey)

cr(u,v) =



EXAMPLE RESIDUAL GRAPH
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AUGMENTING PATHS

DEF:



THM: MAX FLOW = MIN CUT

— min||S, T
m;lX\f| IngnH |

IF F IS A MAX FLOW, THEN (GF HAS NO AUGMENTING PATHS.



THM: MAX FLOW = MIN CUT

— min]|S, T
m;lX\f| nngnH |



FORD-FULKERSON

INITIALIZE f(u,v) «— 0Vu,v
WHILE EXISTS AN AUGMENTING PATH p IN (5 f
AUGMENT f'WITH ce(p) = min ce(u,0)

(u,v)ep
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FORD-FULKERSON

INITIALIZE f(u,v) «— 0Vu,v

WHILE EXISTS AN AUGMENTING PATH p IN

AUGMENT fWITH cr(p)

Gy

min ¢
(wov)ep

f(u,v)

TIME TO FIND AN AUGMENTING PATH:

NUMBER OF ITERATIONS OF WHILE LOOP:













ROOT OF THE PROBLEM
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EDMONDS-KARP 2

CHOOSE PATH WITH FEWEST EDGES FIRST.

Of(s,0) :



LEMMA: 5f(s, ) INCREASES MONOTONICALLY THRU EXEC
0i11(v) = 0i(v)



FOR EVERY AUGMENTING PATH, SOME EDGE IS CRITICAL.



CRITICAL EDGES ARE REMOVED IN NEXT RESIDUAL GRAPH.



KEY IDEA: HOW MANY TIMES CAN AN EDGE BE CRITICAL?



1+1 ] k

Outline of the argument
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first time (u,v) is critical:
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i i+1 J k

time i: (u,v) is critical:
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i i+1 J k

time i: (u,v) is critical:
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| 1 1+1 ] k
time j: Edge (u,v) STRIKES BACK
57j—|—1(37U) > 52'(8,’0) T 1

0j(s,u) =40;(s,v)+1
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1 i+1 ] Kk
time k: RETURN OF THE (u,v) critical
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QUESTION: How many times can (u,v) be critical?



edge critical only times.

there are only edges.

ergo, total # of augmenting paths:

time to find an augmenting path:

total running time of E-K algorithm:



ft O(E[f™])

ek2

push-relabel

faster push-relabel



