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What about Negative 
edge weights?
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bellman-ford(G, s)
1 short0,s ⇥ 0
2 ⇧v ⌅ V � {s}, short0,v ⇥⇤
3 for i = 1, . . . , V � 1
4 do for each v ⌅ V � {s}

5 do shorti,v = minx⇥Adj (v)

�
shorti�1,v

w(x, v) + shorti�1,x

⇥
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3 for i = 1, . . . , V � 1
4 do for each e = (x, y) ⌅ E

5 do shorti,y = min
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bellman-ford(G, s)
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1 short0,s ⇥ 0
2 ⇧v ⌅ V � {s}, short0,v ⇥⇤
3 for i = 1, . . . , V � 1
4 do for each v ⌅ V � {s}

5 do shorti,v = minx⇥Adj (v)

⇤
shorti�1,v

w(x, v) + shorti�1,x

⌅

bellman-ford(G, s)
1 short0,s ⇥ 0
2 ⇧v ⌅ V � {s}, short0,v ⇥⇤
3 for i = 1, . . . , V � 1
4 do for each e = (x, y) ⌅ E

5 do shorti,y = min

⇧
 

⌥

shorti�1,y

shorti,y

w(x, y) + shorti�1,x

⌃
⌦

�

bellman-ford(G, s)
1 ds ⇥ 0
2 ⇧v ⌅ V � {s}, dv ⇥⇤
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⇥
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Optimization to save Space
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2 ⇧v ⌅ V � {s}, short0,v ⇥⇤
3 for i = 1, . . . , V � 1
4 do for each v ⌅ V � {s}
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applications of BF



image: cheswick et al
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distance vector

image: hurricane electric
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ashorti,j,k =



i j

k

ashorti,j,k =



ashorti,j,k =



ashorti,j,k =

8
<

:

wi,j k = 0

min

�
ashorti,j,k-1

ashorti,k,k-1 + ashortk,j,k-1
k � 1

9
=

;



Floyd-Warshall(G,W)



int graph[128][128], n; // a weighted graph and its size
   void floydWarshall() {
       for( int k = 0; k < n; k++ )
       for( int i = 0; i < n; i++ )
       for( int j = 0; j < n; j++ )
           graph[i][j] = min( graph[i][j], graph[i][k] + graph[k][j] );

   }
   int main {
       // initialize the graph[][] adjacency matrix and n
       // graph[i][i] should be zero for all i.
       // graph[i][j] should be "infinity" if edge (i, j) does not exist
       // otherwise, graph[i][j] is the weight of the edge (i, j)
       floydWarshall();
       // now graph[i][j] is the length of the shortest path from i to j
   }



Max flow
Min Cut
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Figure 1 Figure from Tolstŏı [7] to illustrate a negative cycle

In their basic paper Maximal Flow through a
Network (published in 1954), Ford and Fulker-
son [1] mention that the maximum flow prob-
lem was formulated to them by T.E. Harris as
follows:

“Consider a rail network connecting two cities
by way of a number of intermediate cities,
where each link of the network has a number
assigned to it representing its capacity. As-
suming a steady state condition, find a maxi-
mal flow from one given city to the other.”

It inspired Ford and Fulkerson to their fa-
mous Max-Flow Min-Cut Theorem: The maxi-
mum amount of flow that can be sent along
a network from a set of sources to a set of
destinations, subject to a given capacity up-
per bound, is equal to the minimum capacity
of the cuts of the network that separate all
sources from all destinations.

In their 1962 book Flows in Networks, Ford
and Fulkerson [2] give a more precise refer-
ence to the origin of the problem:

“It was posed to the authors in the spring of

1955 by T. E. Harris, who, in conjunction with
General F. S. Ross (Ret.), had formulated a
simplified model of railway traffic flow, and
pinpointed this particular problem as the cen-
tral one suggested by the model [11].”

Ford-Fulkerson’s reference 11 is a secret re-
port by Harris and Ross [3] entitled Funda-
mentals of a Method for Evaluating Rail Net
Capacities, dated 24 October 1955 and writ-
ten for the US Air Force. At our request, the
Pentagon downgraded it to ‘unclassified’ on
21 May 1999.

In fact, the Harris-Ross report solves a
relatively large-scale maximum flow problem
coming from the railway network in the West-
ern Soviet Union and Eastern Europe (‘satel-
lite countries’). And the interest of Harris and
Ross was not to find a maximum flow but
rather a minimum cut (‘interdiction’) of the
Soviet railway system. (Recall that the report
was written for the Air Force.) We quote:

“Air power is an effective means of interdict-
ing an enemy’s rail system, and such usage is
a logical and important mission for this Arm.

As in many military operations, however, the
success of interdiction depends largely on
how complete, accurate, and timely is the
commander’s information, particularly con-
cerning the effect of his interdiction-program
efforts on the enemy’s capability to move men
and supplies. This information should be
available at the time the results are being
achieved.

The present paper describes the funda-
mentals of a method intended to help the
specialist who is engaged in estimating rail-
way capabilities, so that he might more read-
ily accomplish this purpose and thus assist
the commander and his staff with greater ef-
ficiency than is possible at present.”

The Harris-Ross report stresses that spe-
cialists remain needed to make up the mod-
el (which is always a good tactic to get new
methods accepted):

“The ability to estimate with relative accuracy
the capacity of single railway lines is large-
ly an art. Specialists in this field have no
authoritative text (insofar as the authors are
informed) to guide their efforts, and very few
individuals have either the experience or tal-
ent for this type of work. The authors assume
that this job will continue to be done by the
specialist.”‘

Whereas experts are needed to set up the
model, to solve it is routine (when having the
‘work sheets’, which were added to the re-
port).

The Harris-Ross report describes an appli-
cation to the Soviet and East European rail-
ways. For the data it refers to several se-
cret reports of the Central Intelligence Agency
(CIA) on sections of the Soviet and East Euro-
pean railway networks. After the aggregation
of railway divisions to vertices, the network
has 44 vertices and 105 (undirected) edges.

The report applies flow techniques to ob-
tain a maximum flow from sources in the So-
viet Union to destinations in East European
‘satellite’ countries (Poland, Czechoslovakia,
Austria and East Germany) but the main objec-
tive was to find the corresponding minimum
cut separating the sources from the destina-
tions. In the report, the minimum cut is indi-
cated as ‘The bottleneck’ (see Figure 4).

While Tolstŏı and Harris-Ross had the
same railway network as object, their objec-
tives were dual.

Figure 2 A ‘koploper’
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Figure 3 Timetable Amsterdam-Vlissingen and Vlissingen-Amsterdam

Rolling stock circulation in the Netherlands
We will finally describe a more recent (and
more peaceful) application of flow methods
to railways, as used by Nederlandse Spoor-
wegen for Timetable 2007.

NS runs an hourly train service on its route
Amsterdam-Rotterdam-Roosendaal-Vlissingen
and vice versa, with the timetable shown
above.

The trains have more stops but for our pur-
poses only those given in the table are of inter-
est since at the stations given train sections
can be coupled or separated. For each of the
stages of any scheduled train, NS has esti-
mated the number of passengers, as given in
the table on the next page (all data concerns
weekdays and 2nd class seats).

The problem to be solved is:

What is the minimum amount of train stock
necessary to perform this train service in such
a way that at each stage there are enough
seats?

In order to answer this question, one
should know a number of further character-
istics and constraints. In a first version of the
problem considered, the train stock consist-
ed of one type of two-way train units (‘koplop-
ers’), each consisting of three carriages. Each
unit has 163 seats.

Each unit has at both ends an engineer’s
cabin and units can be coupled together up to
a certain maximum length (often 15 carriages,
meaning in this case 5 train units).

The train length can be changed, by cou-
pling or decoupling units, at the terminal sta-
tions of the line, that is at Amsterdam and
Vlissingen and en route at the intermediate
stations Rotterdam and Roosendaal. Any
train unit decoupled from a train arriving at
place p at time t can be linked up to any
other train departing from p at any time later
than t (the Amsterdam-Vlissingen schedule is

such that in practice this gives enough time
to make the necessary switchings).

A last condition is that for each place
p � {Amsterdam, Rotterdam, Roosendaal,
Vlissingen}, the number of train units stay-
ing overnight at p should be constant during
the week (but may vary for different places).
This requirement is made to facilitate survey-
ing the stock and to equalize at any place
the load of overnight cleaning and mainte-
nance throughout the week. It is not re-
quired that the same train unit, after a night
in Roosendaal, for example, should return to
Roosendaal at the end of the day. Only the
number of units is of importance.

Given these problem data and characteris-

Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East Euro-
pean countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons
indicated as ‘The bottleneck’

tics, one may ask for the minimum number of
train units that should be available to perform
the daily cycle of train rides required.

It is assumed that if there is sufficient stock
for Monday till Friday then this should also
be enough for the weekend services since at
the weekend a few early trains are cancelled
and on the remaining trains there is a smaller
expected number of passengers. Moreover, it
is not taken into consideration that stock can
be exchanged during the day with other lines
of the network. In practice this will happen
but initially this possibility is ignored.

A network model
If only one type of railway stock is used, clas-



flow networks

capacities:

source + sink:



flow networks

capacities:

source + sink: node s, and t

assumed to be 0 if no (u,v) edge
c(u, v)
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flow

capacity constraint:

map from edges to numbers:

flow constraint:
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max flow problem

given a graph G, compute



greedy solution?



hundreds of applications

bipartite matching 
edge-disjoint paths 
node-disjoint paths 
scheduling 
baseball elimination 
resource allocations

will discuss many of these applications soon



Algorithms for max flow



Residual graphs
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augmenting paths

def:



ford-fulkerson

initialize
while exists an augmenting path p in 

augment f with  
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ford-fulkerson

initialize
while exists an augmenting path p in 

augment f with  

time to find an augmenting path:

number of iterations of while loop:



Cuts
Def of a cut:

cost of a cut:



for any lemma: [min cut]
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A property to remember
for any it holds that

proof:
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(finishing proof)

for any it holds that
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augmenting paths

def:



Thm: max flow = min cut

If f is a max flow, then Gf has no augmenting paths.



thm: max flow = min cut



ford-fulkerson

initialize
while exists an augmenting path p in 

augment f with  
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ford-fulkerson

initialize
while exists an augmenting path p in 

augment f with  

time to find an augmenting path:

number of iterations of while loop:
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root of the problem
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edmonds-karp 2
choose path with fewest edges first.

� f (s, v) :



� f (s, v)

�i+1(v) � �i(v)

lemma:
increases monotonically thru exec
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i i+1 j k

Outline of the argument



first time (u,v) is critical:
i i+1 j k



time i: (u,v) is critical:
i i+1 j k

�i+1(s, v) � �i(s, v) + 1

s u v t

time j: Edge (u,v) STRIKES BACK

s u v t



time i: (u,v) is critical:
i i+1 j k

�i+1(s, v) � �i(s, v) + 1

s u v t

time j: Edge (u,v) STRIKES BACK

s u v t

�j(s, u) = �j(s, v) + 1



i i+1 j k

�i+1(s, v) � �i(s, v) + 1

time j: Edge (u,v) STRIKES BACK

s u v t

�j(s, u) = �j(s, v) + 1



i i+1 j k
time k: RETURN OF THE  (u,v) critical 

s u v t

�k(s, u) � �i(s, u) + 2

QUESTION: How many times can  (u,v) be critical? 



edge critical only                    times.

there are only                           edges.

ergo, total # of augmenting paths: 
time to find an augmenting path: 

total running time of E-K algorithm:



ff

ek2

push-relabel

faster push-relabel


