

4102

4.05.2016

abhi shelat

What about Negative

 edge weights?sssp(G,s)
$\operatorname{SHORT}_{i, v}=$ length of the shortest path from s to u that uses $\leq i$ edges.

sssp(G,s)

$$
\operatorname{SHORT}_{i, v}= \begin{cases}\infty & i=0 \\
0 & v=s \\
\min _{x \in V} & \left\{\begin{array}{l}
\operatorname{SHORT}_{i-1, v} \\
\operatorname{SHORT}_{i-1, x}+w(x, v)
\end{array}\right\}\end{cases}
$$


```
\(\operatorname{BELLMAN-FORD}(G, s)\)
\(1 \mathrm{SHORT}_{0, s} \leftarrow 0\)
\(2 \forall v \in V-\{s\}, \operatorname{SHORT}_{0, v} \leftarrow \infty\)
3 for \(i=1, \ldots, V-1\)
\(4 \quad\) do for each \(v \in V-\{s\}\)
5 do \(\operatorname{SHORT}_{i, v}=\underline{\min _{x \in \operatorname{Adj}(v)}}\left\{\begin{array}{l}\operatorname{SHORT}_{i-1, v} \\ w(x, v)+\operatorname{SHORT}_{i-1, x}\end{array}\right\}\left\{\begin{array}{l}\text { loop iver edgy } \\ \text { instend. }\end{array}\right.\)
```

```
BELLMAN-FORD (G, s)
1 SHORT
2 \forallv\inV-{s},,\mp@subsup{\operatorname{SHORT}}{0,v}{}\leftarrow\infty
3 for i=1,\ldots,V-1
4 do for each e=(x,y)
5
do SHORT
```


Optimization to save Space
$\operatorname{BELLMAN-FORD}(G, s)$
$\mathrm{SHORT}_{0, s} \leftarrow 0$
$\forall v \in V-\{s\}, \operatorname{SHORT}_{0, v} \leftarrow \infty$
for $i=1, \ldots, V-1$
$4 \quad$ do for each $e=(x, y) \in E$

$$
\text { do } \operatorname{SHORT}_{i, y}=\min \left\{\begin{array}{l}
\frac{\operatorname{SHORT}_{i-1, y}}{\mathrm{SHORT}_{i, y}} \\
w \overline{(x, y)}+\operatorname{SHORT}_{i-1, x}
\end{array}\right\}
$$

running time

BELLMAN-FORD (G, s)

$$
\begin{aligned}
& d_{s} \leftarrow 0 \\
& \forall v \in V-\{s\}, d_{v} \leftarrow \infty \\
& \text { for } i=1, \ldots, V-1 \\
& \quad \text { do for each } e=(x, y) \in E \\
& \qquad \operatorname{do} d_{y} \leftarrow \underset{\min \left\{d_{y}, w(x, y)+d_{x}\right\}}{ }
\end{aligned}
$$

$\theta(U E)$ time
$\theta(V)$ space.
negative cycles?

negative cycles?

s	0	0	0	0
a	2	2	2	1
b		5	5	5
t			6	6

applications of BF

$$
\theta(v t)>\theta(E \mid g v)
$$

Figure 3: Lucent's intranet as of 1 imese cheber 1999.

distance vector

All-pairs shortest path

BF: $\theta(V E)$

$$
A\left(p \times 1 / B: V \cdot \theta(V \cdot E)=\theta\left(v^{2} E\right)\right.
$$

$\operatorname{ASHORT}_{i, j, k}=$ Leigh of the short oft path from
i to j that uses only nodes $1 \ldots$ to k.

$\operatorname{ASHORT}_{i, j, k}=$

$$
\operatorname{ASHORT}_{i, j, k}=\left\{\begin{array}{ll}
\underline{w_{i, j}} \\
\min \left\{\begin{array}{ll}
\operatorname{ASHORT}_{i, j, k-1} \\
\operatorname{ASHORT}_{i, k, k-1}
\end{array}+\operatorname{ASHORT}_{\underline{k, j, k-1}}\right. & \underline{k=0}
\end{array}\right\}
$$

Floyd-Warshall(G,W)

$$
\begin{aligned}
& \text { for }(k=1 \ldots n) \\
& \qquad \text { for }(i=1 \ldots n) \\
& \qquad \operatorname{for}(j=1 \ldots n) \\
& \text { ASNORT} T_{i, j}=\min \left\{\begin{array}{l}
A S A N R T_{i j} \\
A S N O R T_{i, n,},+A S H O R T_{k, j}
\end{array}\right\}
\end{aligned}
$$

int graph[128][128], n; // a weighted graph and its size void floydWarshall() \{
for (int k=0; $k<n ; k++$) for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) $\operatorname{graph}[i][j]=\min (\operatorname{graph}[i][j], \operatorname{graph}[i][k]+\operatorname{graph}[k][j])$;
\}
int main \{
// initialize the graph[[]] adjacency matrix and n
\longrightarrow // graph[i][i] should be zero for all i.
$\rightarrow / /$ graph[i][j] should be "infinity" if edge (i, j) does not exist
\rightarrow // otherwise, graph[i][j] is the weight of the edge (i, j) floydWarshall(); //now graph[i][j] is the length of the shortest path from i to j \}

Max flow

Min Cut
"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

flow networks

$$
G=(\underline{V}, \underline{E})
$$

source + sink: source noble S, sink role t capacities: $C: E \rightarrow \mathbb{R}^{+}$positive edge capacity

flow networks

$$
G=(V, E)
$$

source + sink: node s, and t
capacities: $c(u, v)$
assumed to be 0 if no (u, v) edge
example

flow
map from edges to numbers: $f: E \rightarrow \mathbb{R}+$ maps edges to numbers.
capacity constraint: for esr edge et $\mathrm{E}, \quad f(e) \leq c(e)$
flow constraint: \longrightarrow for every node $v \in V-\{s, t\}, \quad \operatorname{lnfcow}(v)=\operatorname{out}(v)$

$$
\sum_{x \in V} f(v, x)=\sum_{x \in X} f(x, v)
$$

$\underline{\underline{|f|}}$
OUTflow from s.
(0.07)
(in)

$$
\left.\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s) \quad \text { (Net outflow from } s\right)
$$

example

$$
|f|=3
$$

max flow problem
given a graph G, compute

$$
G=(v, E)
$$

c- capacities
$\underset{f}{\operatorname{Argmax}}|f|$

ア
over all valid flows, find the maximum one

hundreds of applications

```
bipartite matching edge-disjoint paths node-disjoint paths scheduling
baseball elimination
resource allocations
will discuss many of these applications soon
```

Algorithms for max flow

Residual graphs
$G_{f}=\left(V, E_{f}\right)$ basel on flow f.
 - add the edge

$$
e=(u, v) \text { w/ capacity } c(e)-f(e)
$$

- add the edge

$$
e^{\prime}=(v, u) \quad w / c a p a c i t y \text { fie) }
$$

example residual graph

why residual graphs ?

augmenting paths

def:

ford-fulkerson

ford-fulkerson

initialize

$$
f(u, v) \leftarrow 0 \forall u, v
$$

while exists an augmenting path p in G_{f}

$$
\text { augment } f \text { with } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
$$

time to find an augmenting path:

number of iterations of while loop:

Cuts

Def of a cut:
cost of a cut:
$|\mid S, T \|=$
lemma: [min cut] for any $f,(S, T)$
for any $f,(S, T)$ it holds that $|f| \leq \| S, T| |$

example:

A property to remember for any $f,(S, T)$ it holds that $|f| \leq\|S, T\|$

for any $f,(S, T)$ it holds that $|f| \leq \| S, T| |$ (finishing proof)
why residual graphs ?

augmenting paths

def:

Thm: max flow = min cut

$$
\max _{f}|f|=\min _{S, T}\|S, T\|
$$

If f is a max flow, then Gf has no augmenting paths.

thm: max flow = min cut

$$
\max _{f}|f|=\min _{S, T}\|S, T\|
$$

ford-fulkerson

initialize

$$
f(u, v) \leftarrow 0 \forall u, v
$$

while exists an augmenting path $p \mathrm{i}_{f}$

$$
\text { augment } f \text { with } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
$$

ford-fulkerson

initialize

$$
f(u, v) \leftarrow 0 \forall u, v
$$

while exists an augmenting path $p \operatorname{id}_{f}$

$$
\text { augment } f \text { with } \quad c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
$$

time to find an augmenting path:
number of iterations of while loop:

root of the problem

edmonds-karp 2

choose path with fewest edges first.

$$
\delta_{f}(s, v):
$$

lemma:

$$
\begin{aligned}
& \delta_{f}(s, v) \text { increases monotonically thru exec } \\
& \delta_{i+1}(v) \geq \delta_{i}(v)
\end{aligned}
$$

for every augmenting path, some edge is critical.

critical edges are removed in next residual graph.

key idea: how many times can an edge be critical?

Outline of the argument

first time (u, v) is critical:

time $\mathrm{i}:(\mathrm{u}, \mathrm{v})$ is critical:

$$
\delta_{i+1}(s, v) \geq \delta_{i}(s, v)+1
$$

time j: Edge (u,v) STRIKES BACK

time $\mathrm{i}:(\mathrm{u}, \mathrm{v})$ is critical:

$$
\delta_{i+1}(s, v) \geq \delta_{i}(s, v)+1
$$

time j: Edge (u,v) STRIKES BACK

$$
\delta_{j}(s, u)=\delta_{j}(s, v)+1
$$

time j: Edge (u,v) STRIKES BACK

$$
\begin{aligned}
& \delta_{i+1}(s, v) \geq \delta_{i}(s, v)+1 \\
& \delta_{j}(s, u)=\delta_{j}(s, v)+1
\end{aligned}
$$

time k: RETURN OF THE (u,v) critical

$$
\delta_{k}(s, u) \geq \delta_{i}(s, u)+2
$$

QUESTION: How many times can (u,v) be critical?
edge critical only
there are only
times.
edges.
ergo, total \# of augmenting paths:
time to find an augmenting path:
total running time of $\mathrm{E}-\mathrm{K}$ algorithm:
ff

$$
O\left(E\left|f^{*}\right|\right)
$$

ek2
push-relabel
faster push-relabel

