

abhi shelat

What about Negative edge weights?

SSSP(G,S)

 $\frac{\text{SHORT}_{i,v}}{\text{SHORT}_{i,v}} = \underset{s \neq v}{\text{length}} \oint fle shortest path from from stoves that uses a celles.}$

SSSP(G,S)

$$\text{SHORT}_{i,v} = \begin{cases} \infty & i = 0\\ 0 & v = s\\ \min_{x \in V} & \begin{cases} \text{SHORT}_{i-1,v}\\ \text{SHORT}_{i-1,x} + w(x,v) \end{cases} \end{cases}$$

$$i-1,x$$
 } loop ver edge instead.

Γ. 1 m

ノ

}, SHORT_{0,v}
$$\leftarrow \infty$$

, $V - 1$
each $e = (x, y) \in E$
do SHORT_{i,y} = min
$$\begin{cases} SHORT_{i-1,y} \\ SHORT_{i,y} \\ w(x, y) + SHORT_{i-1,x} \end{cases}$$

	8			
0	0			
	7			
	5			
	5			

Optimization to save Space

BELLMAN-FORD
$$(G, s)$$

1 $d_s \leftarrow 0$
2 $\forall v \in V - \{s\}, d_v \leftarrow \infty$
3 for $i = 1, \dots, V - 1$
4 do for each $e = (x, y) \in E$
5 $do(d_y) - \min\{d_y, w(x, y) + d_x\}$

HU) Space

running time

BELLMAN-FORD(G, s)

$$\begin{array}{ll}
1 & d_s \leftarrow 0 \\
2 & \forall v \in V - \{s\}, \, d_v \leftarrow \infty \\
3 & \mathbf{for} \ i = 1, \dots, V - 1 \\
4 & \mathbf{do} \ \mathbf{for} \ \mathrm{each} \ e = (x, y) \in E \\
5 & \mathbf{do} \ d_y \leftarrow \min\left\{ \ d_y, w(x, y) + d_x \ \right\}
\end{array}$$

$\Theta(UE)$ time $\Theta(V)$ space.

0)

O

6-1-3

Decrease on the Uth step => 7 ~ regative ggc.

negative cycles?

s	0	0	0	0
a	2	2	2	I
b		5	5	5
t			6	6

applications of BF

 $\Theta(VE) > \Theta(ElgV)$

image: cheswick et al Figure 3: Lucent's intranet as of 1 October 1999.

distance vector

All-pairs shortest path

BF: OCVE) $A(I_{pairs}, V, \Theta(V \cdot E) = \Theta(V^2 E)$

Nodes 1... to K.

$ASHORT_{i,j,k} =$

$$ASHORT_{i,j,k} = \begin{cases} \frac{w_{i,j}}{\min \left\{ \begin{array}{l} ASHORT_{i,j,k-1} \\ ASHORT_{i,k,k-1} + ASHORT_{k,j,k-1} \end{array} \right\}} & \underbrace{k = 1}{k \geq 1} \end{cases}$$

Floyd-Warshall(G,W), init wird weights for (k=1...n)

for(i=(...n))

 $far\left(\frac{1}{2}=1...n\right)$

ASMORTING = Min & ASMIRTING (ASMORTING, + ASMORTKIG)

(1)³) time

 $\Theta(v^2)$ space.

Max flow

Min Cut

"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons indicated as 'The bottleneck'

courtesy Alexander Schrijver

MAX EWW

MIN CUT problem.

flow networks

G = (V, E)sink note t source + sink: Source note S, capacities: $C: E \rightarrow R^{+}$

positive edge capacity

flow networks

G = (V, E)

source + sink: node s, and t

capacities: c(u,v)assumed to be 0 if no (u,v) edge

flow

map from edges to numbers:
$$f: E \rightarrow Pt$$
 mas edge
capacity constraint: for every edge $e \in E$, $f(e) = c$
flow constraint: $\rightarrow for$ every node $v \in V-2s, t3$, $inFund $Z = f(v_1 \times) = Z$
 $x \in V$
 $(v_1 \times) = Z$
 $x \in V$
 $(v_2 \times) = Z$
 $x \in V$
 $(v_1 \times) = Z$
 $x \in V$
 $(v_2 \times) = Z$
 $(v_1 \times) = Z$
 $(v_2 \times)$
 $(v_2 \times) = Z$
 $(v_1 \times)$
 $(v_2 \times)$
 $(v_1 \times)$
 $(v_2 \times)$
 $(v_2$$

edges to nombers.

 $e_{2} \leq c(e)$ (NFUW(U) = 0U7(V) $\sum_{x \in Y} f(x, v)$ (())

(Net outflow from S)

example

|f|=3

max flow problem

given a graph G, compute

G=(V,E) C· capacities

ARGMAX F

over all valid flows, Find the maximum one

greedy solution?

hundreds of applications

bipartite matching edge-disjoint paths node-disjoint paths scheduling baseball elimination resource allocations

will discuss many of these applications soon

Algorithms for max flow

Residual graphs based on flow f. $G_f = (V, E_f)$ f(e) = 0new Ef: Sotoh - add the edge - add the edge

f, then

C = (u,v) w/capacity c(e) - f(e)

e'= (v,u) w/capacity f(e)

example residual graph

why residual graphs ?

augmenting paths

def:

-> i.ea path from Stot

ZFS

Ŧ

 $\begin{array}{ll} \text{initialize} & f(u,v) \leftarrow 0 \ \forall u,v \\ \text{while exists an augmenting path p in G_f \\ \text{augment f with } & c_f(p) = \min_{(u,v) \in p} c_f(u,v) \\ \end{array}$

time to find an augmenting path:

number of iterations of while loop:

Def of a cut:

cost of a cut:

lemma: [min cut] for any f, (S, T)

for any f, (S, T) it holds that $|f| \le ||S, T||$

example:

A property to remember for any f, (S, T) it holds that $|f| \le ||S, T||$ proof:

for any f, (S, T) it holds that $|f| \le ||S, T||$ (finishing proof)

why residual graphs ?

augmenting paths

def:

Thm: max flow = min cut

 $\max_{f} |f| = \min_{S,T} ||S,T||$

If f is a max flow, then Gf has no augmenting paths.

thm: max flow = min cut

 $\max_{f} |f| = \min_{S,T} ||S,T||$

initialize $f(u,v) \leftarrow 0 \forall u, v$ while exists an augmenting path p is faugment f with $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$

initialize $f(u,v) \leftarrow 0 \forall u, v$ while exists an augmenting path p is faugment f with $c_f(p) = \min_{(u,v) \in p} c_f(u,v)$

time to find an augmenting path:

number of iterations of while loop:

root of the problem

edmonds-karp 2

choose path with fewest edges first.

 $\delta_f(s,v)$:

lemma:

 $\delta_f(s, v)$ increases monotonically thru exec $\delta_{i+1}(v) \ge \delta_i(v)$

for every augmenting path, some edge is critical.

critical edges are removed in next residual graph.

key idea: how many times can an edge be critical?

Outline of the argument

QUESTION: How many times can (u,v) be critical?

edge critical onlytimes.there are onlyedges.

ergo, total # of augmenting paths: time to find an augmenting path: total running time of E-K algorithm:

ff $O(E|f^*|)$ ek2

push-relabel

faster push-relabel