MAX FLOW +
APPLICATIONS.

2

4102 4.07.2016

abhi shelat

Max flow

Min Cut

userid:

What are the 2 restrictions on a flow f: (1) capacity
$$f(e) = c(e)$$

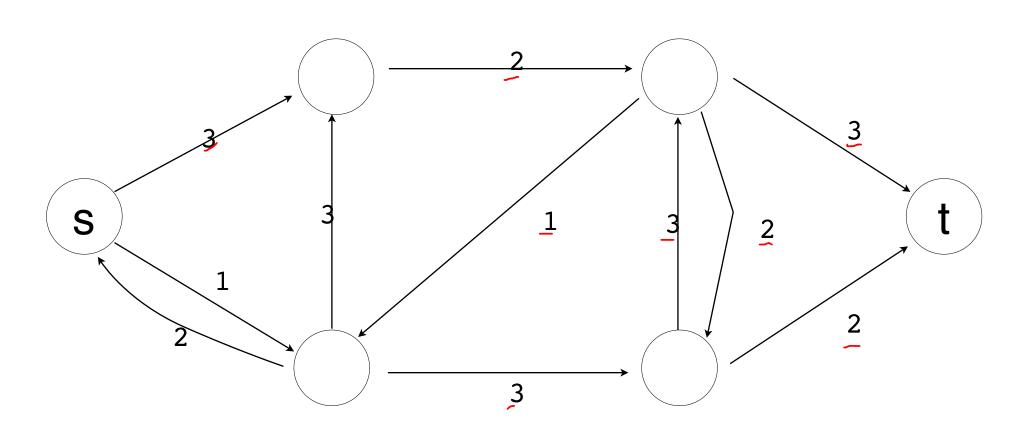
(2) $(\text{NFLOW}(v) = \text{OUTFLOU}(v))$ for all $v \in V - \{25, 4\}$

What is the value of a flow |f|:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

How does the Ford-Fulkerson algorithm work?

example $G=(v_i \in V_i)$, c



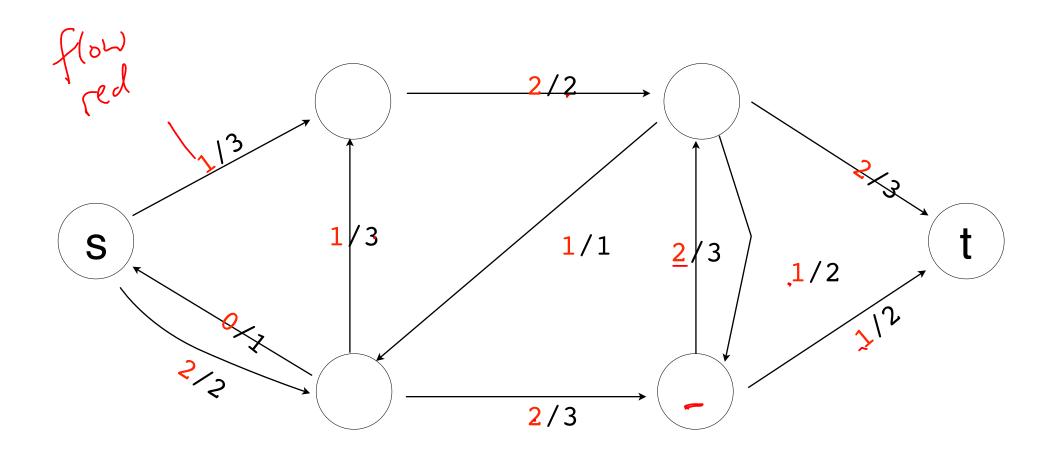
map from edges to numbers:
$$f(e) \rightarrow \mathbb{Z}^{+}$$

capacity constraint:

flow constraint:

$$|f| =$$

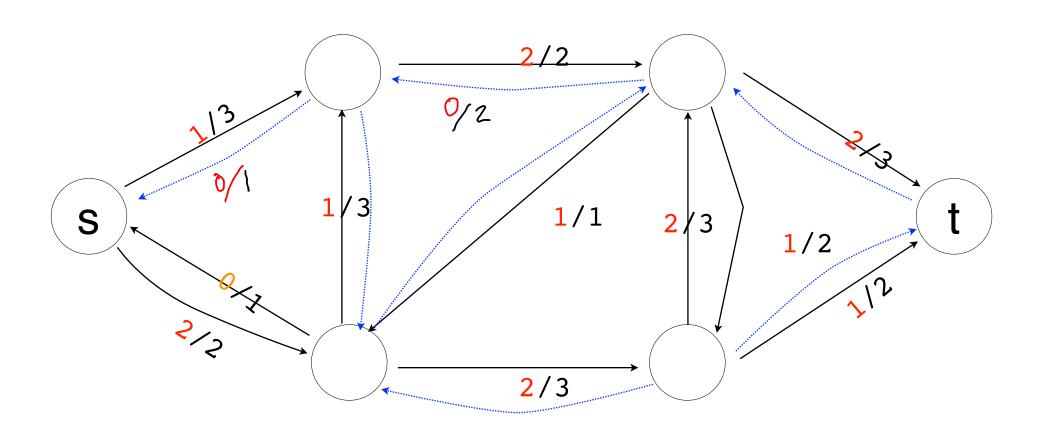
example



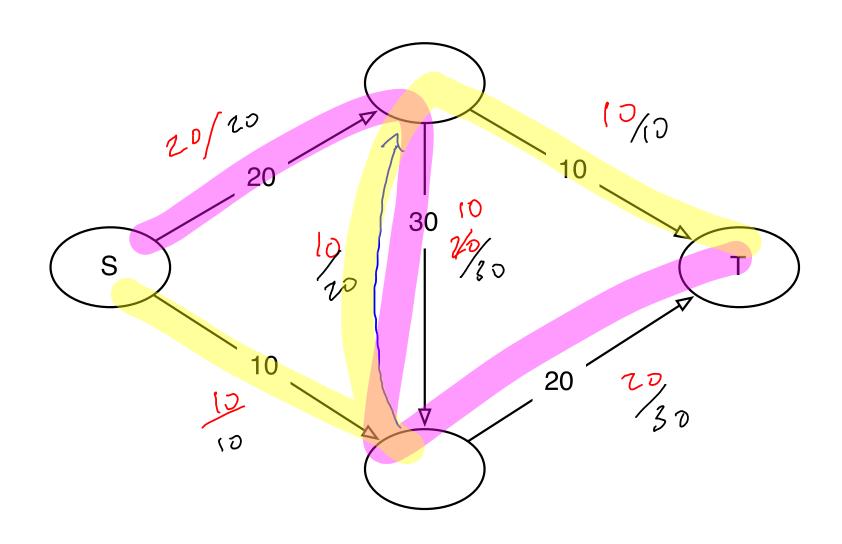
Residual graphs

$$G_f = (V, E_f)$$
 given a flow f , define the residual graph $G_f = (V, E_f)$, C_f E_f : consists of all eff such that $(V, E_f) = (V, E_f)$ and $(V, E_f) = (V, E_f)$ and

example residual graph



why residual graphs?

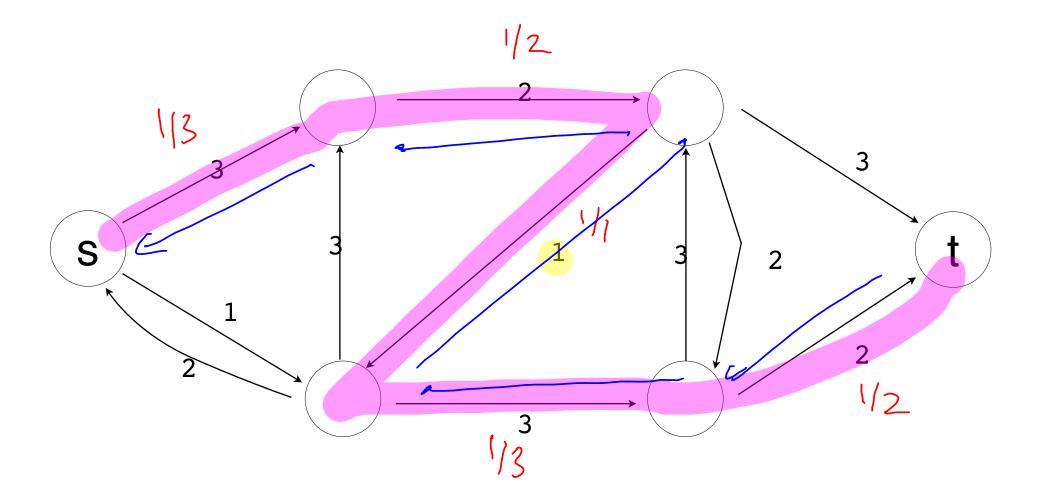


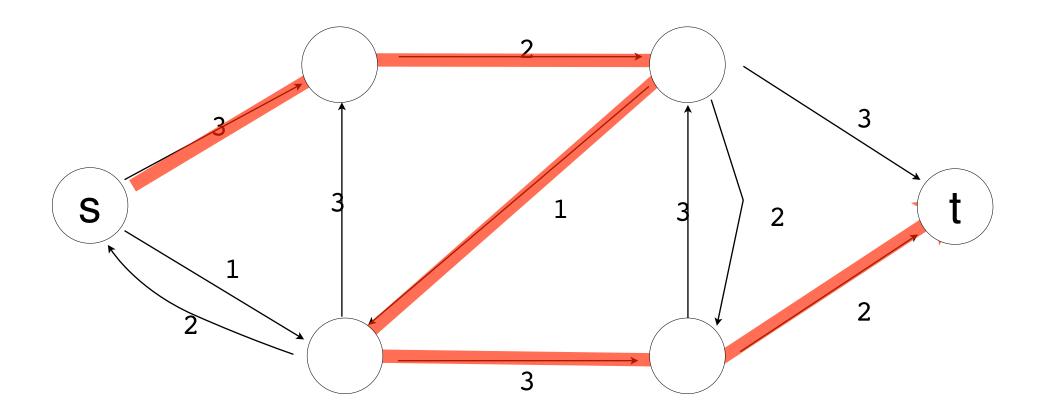
augmenting paths

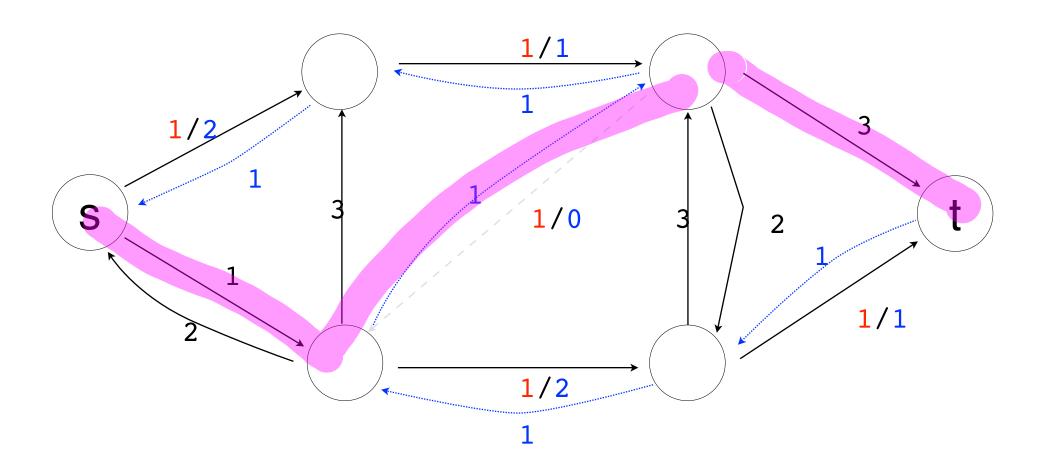
Def: A path in Gf from S to t.

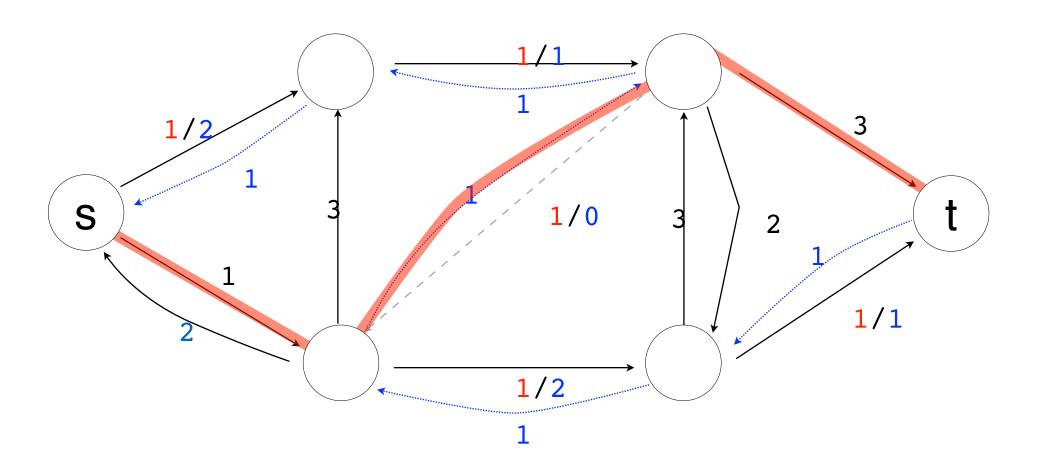
Ford-Fulkerson

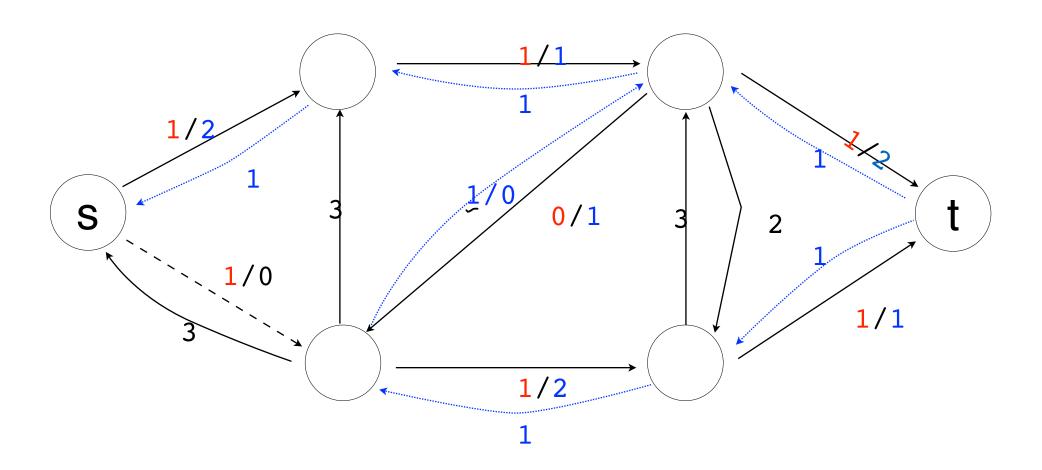
```
initialize f(u,v) \leftarrow 0 \ \forall u,v while exists an augmenting path p in G_f augment f with c_f(p) = \min_{(u,v) \in p} c_f(u,v)
```

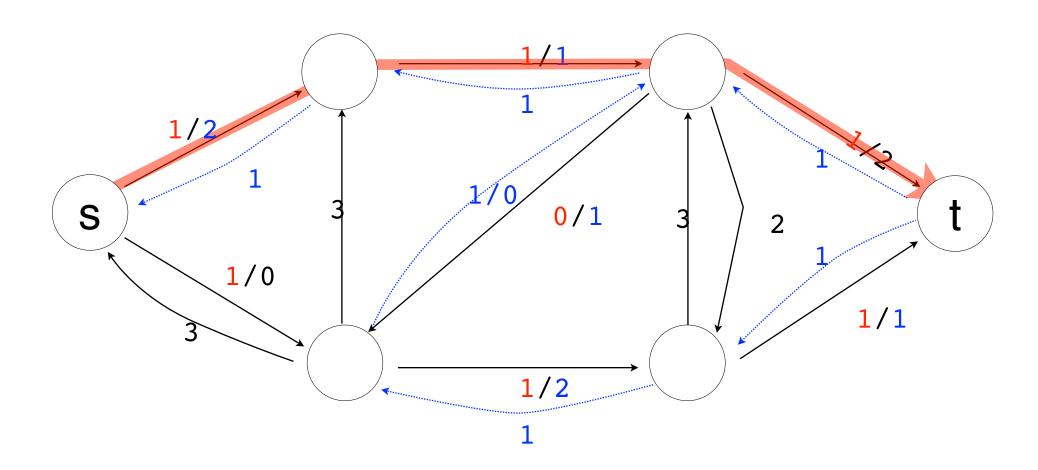


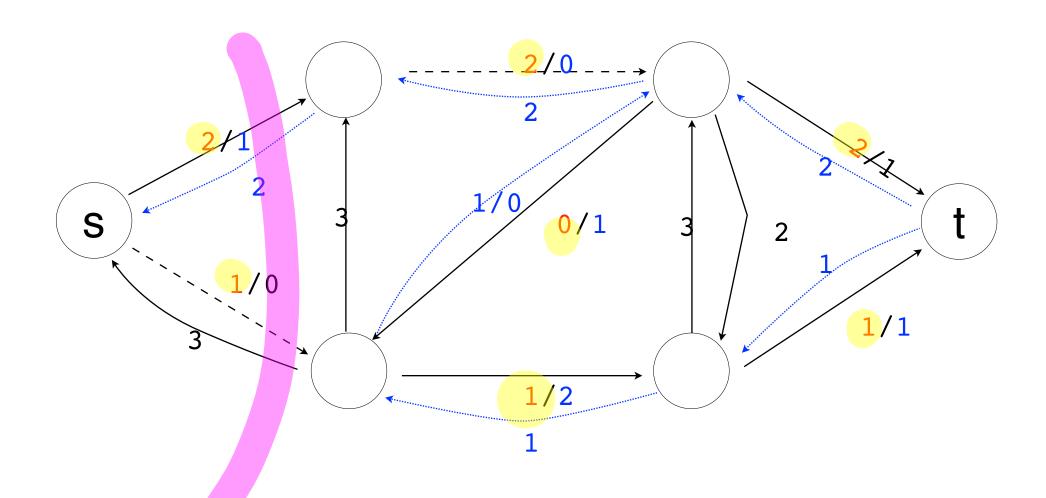












ford-fulkerson

$$\begin{array}{ll} \text{initialize} & f(u,v) \leftarrow 0 \ \forall u,v \\ \text{while exists an augmenting path } p \text{ in } G_f \\ \text{augment } f \text{ with } & c_f(p) = \min_{(u,v) \in p} c_f(u,v) \end{array}$$

time to find an augmenting path:

BFS-

number of iterations of while loop:

Running fine (E/fl)

Cuts

Defofacut: Partition
$$(S,T)$$
 such that $S \in S$ and $t \in T$ and $V = S \cup T$.

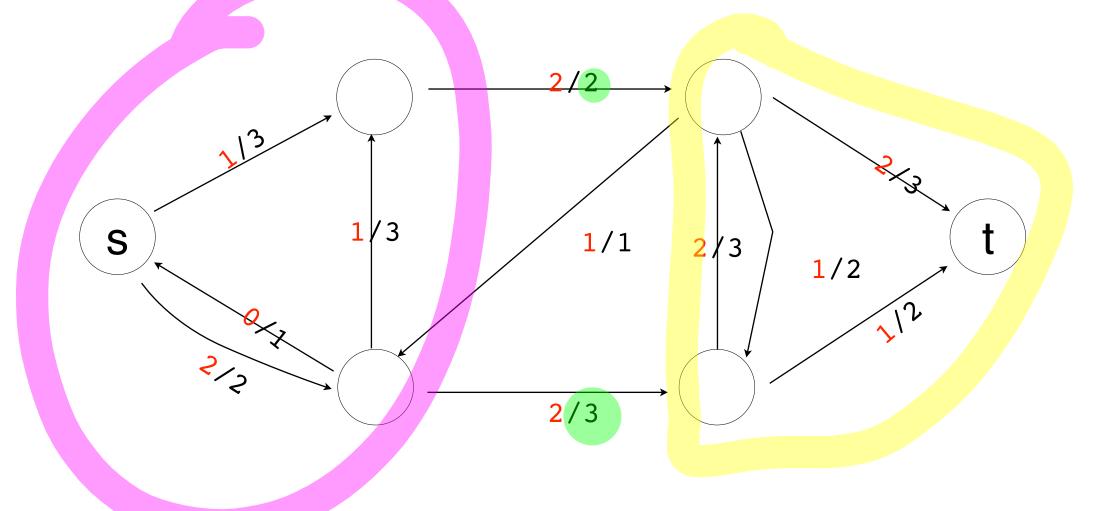
cost of a cut:

$$||S,T|| = \sum_{u \in S} \sum_{v \in T} C(u,v)$$

lemma: [MinCut] for any f, (S,T) $\qquad \qquad \Big| \int \Big| \int \Big| \Big| \Big| \Big| \Big| \Big|$

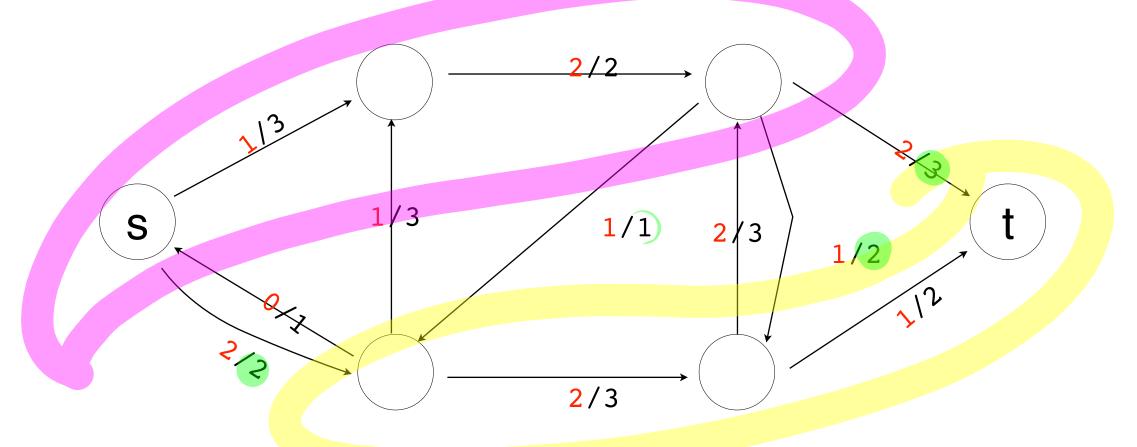
for any f,(S,T) it holds that $|f| \leq ||S,T||$ flow/capacity

15/=5



for any f,(S,T) it holds that $|f| \leq ||S,T||$

flow/capacity



Main point

for any f,(S,T) it holds that $|f| \leq ||S,T||$

log: Sonside some flow
$$f$$
: for s

$$|f| = \sum_{v \in V} f(s_i v) - \sum_{w \in V} f(w_i s)$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) - \sum_{w \in V} f(w_i u) \right]$$
by adding "O" in the form of s

$$|f| = \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) - \sum_{w \in V} f(w_i u) \right]$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{w \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{w \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

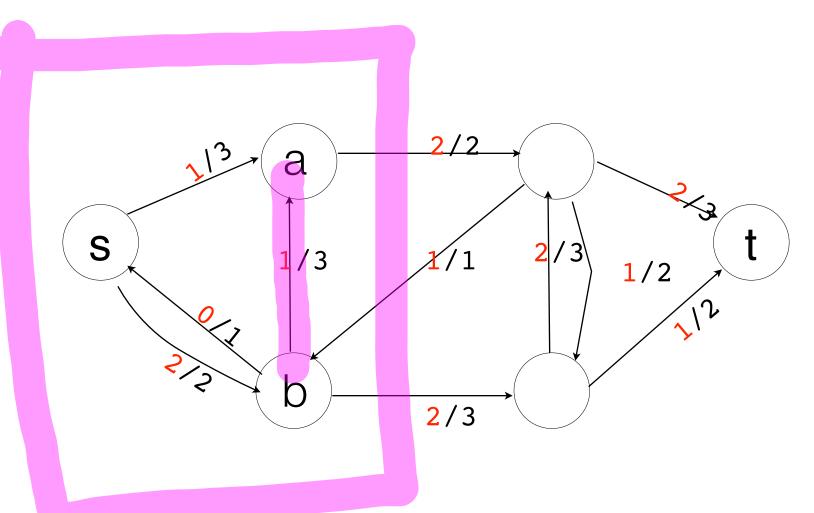
$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

$$= \sum_{v \in V} \left[\sum_{v \in V} f(u_i v) + \sum_{v \in V} f(u_i v) - \sum_{v \in V} f(w_i u) - \sum_{v \in V} f(w_i u) \right]$$

A property to remember

For any f,(S,T) it holds that $|f| \leq ||S,T||$

proof:



I(b,a) is added 4 then subtracted

Dontributes O to If

$$|f| = \sum_{u \in S} \left[\sum_{v} f(u_{1v}) + \sum_{v \in S} f(u_{1v}) - \sum_{w \in S} f(u_{1u}) - \sum_{w} f(u_{1u}) \right]$$

$$|u| = b$$

$$|f| = \sum_{v \in S} \left[\sum_{v} f(u_{1v}) + \sum_{v \in S} f(u_{1v}) - \sum_{w \in S} f(u_{1u}) - \sum_{w \in S} f(u_{1u}) \right]$$

$$|u| = a$$

$$|f| = \sum_{v \in S} \left[\sum_{v} f(u_{1v}) + \sum_{v \in S} f(u_{1v}) - \sum_{w \in S} f(u_{1u}) - \sum_{w \in S} f(u_{1u}) \right]$$

$$|f| = \sum_{v \in S} \left[\sum_{v} f(u_{1v}) + \sum_{v \in S} f(u_{1v}) - \sum_{w \in S} f(u_{1u}) - \sum_{w \in S} f(u_{1u}) \right]$$

$$|f| = \sum_{v \in S} \left[\sum_{v} f(u_{1v}) + \sum_{v \in S} f(u_{1v}) - \sum_{w \in S} f(u_{1u}) - \sum_{w \in S} f(u_{1u}) \right]$$

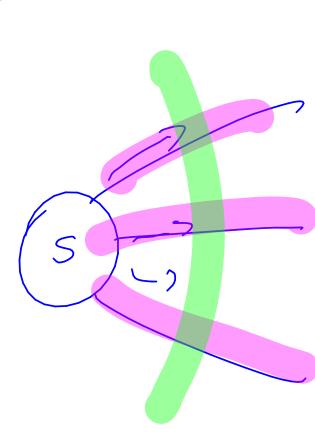
$$|f| = \sum_{v \in S} \left[\sum_{v} f(u_{1v}) + \sum_{v \in S} f(u_{1v}) - \sum_{w \in S} f(u_{1u}) - \sum_{w \in S} f(u_{1u}) \right]$$

for any f,(S,T) it holds that $|f| \leq ||S,T||$ (finishing proof)

$$|f| = \sum_{u \in S} \left[\sum_{v \in T} f(u_i v) - \sum_{w \in T} f(v_i u) \right]$$
 follows by (1) an

$$\leq \sum_{u \in S} \sum_{v \in T} f(u_i v)$$
 for $u \in S$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u_i v) = \left[|S_i T| \right]$$
 Som $t = f(u_i v)$



Thm: max flow = min cut

$$\max_{f} |f| = \min_{S,T} ||S,T||$$

If f is a max flow, then G_f has no augmenting paths.

a max flow, then
$$G_f$$
 has no augmenting paths.

Define $S = \frac{3}{2} \sqrt{\frac{3}{3}} = \frac{3}{100} \sqrt{\frac{3}{100}} = \frac{3}{100} \sqrt{\frac$

is tes ?? (No) b/c of tint live there are No any paths from sont

Ihm: $\max flow = \min cut$

$$\max_{f} |f| = \min_{S,T} ||S,T||$$

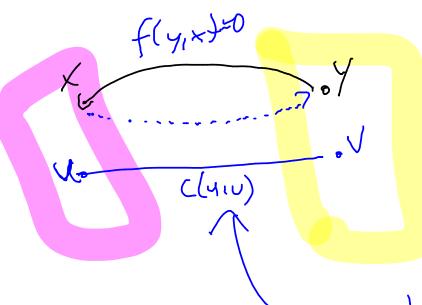
(1) Consider (u,u) with uES and vET.

$$f(u,v) = c(u,v)$$

f(u,v) = c(u,v) why??, if f(u,v) < c(u,v), then

 $C_{f}(u,v) = C(u,v) - f(u,v) > 0$

which implies



must have Zero residual capacity.

otherwise V would be in S.

(e) f(y,x)=0 for any yet and xes.

why?,? B/C o/w there would be a residual edge from x-ry w/pos capacity,

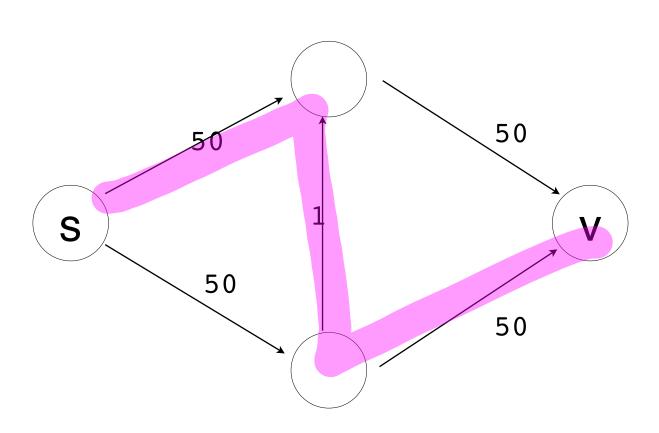
Why FF works

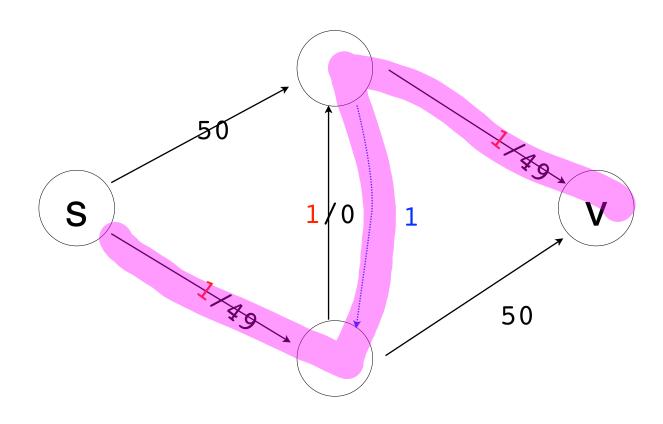
 $G_f \rightarrow (S,T)$

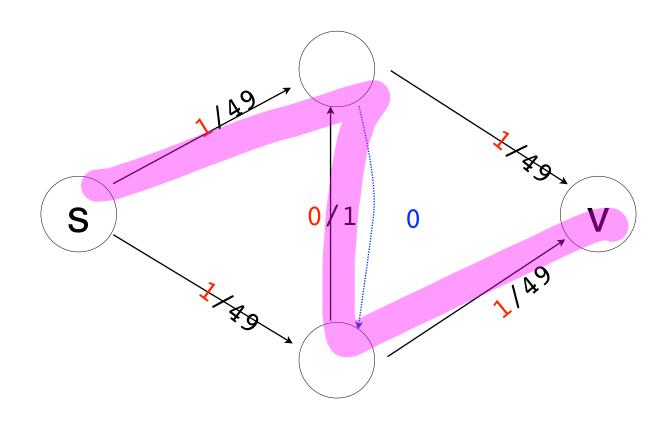
(continued)
$$|f| = \sum_{u \in S} \left[\sum_{v \in T} f(u,v) - \sum_{w \in T} f(w,u) \right]$$

$$= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{u \in S} \sum_{w \in T} f(u,u)$$

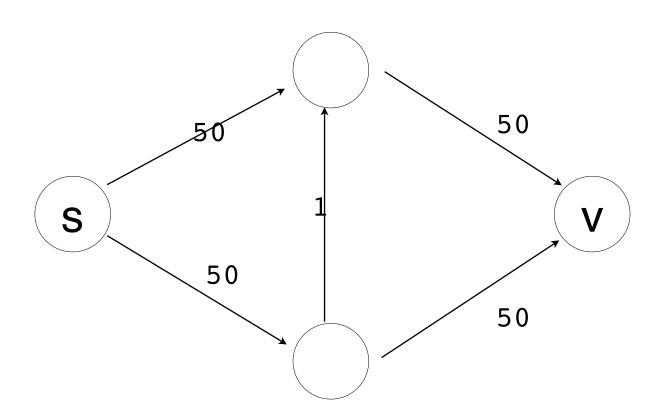
$$= \sum_{u \in S} \sum_{v \in T} c(u,u) - \sum_{u \in S} \sum_{w \in T} f(u,u)$$







root of the problem



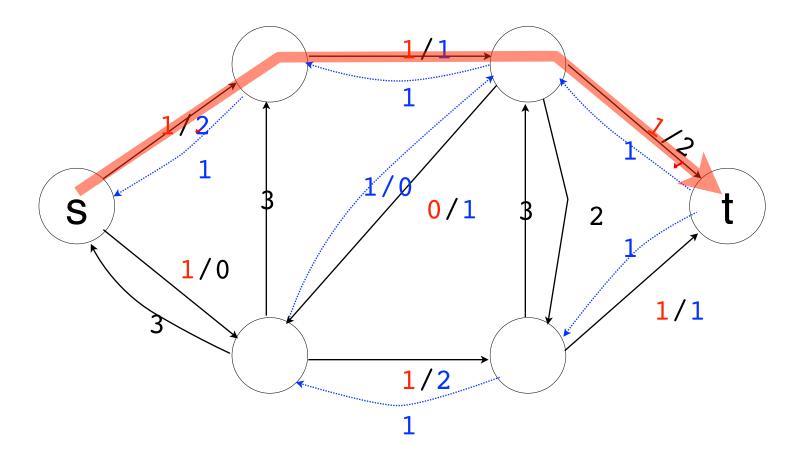
Edmonds-Karp 2

choose path with fewest edges first.

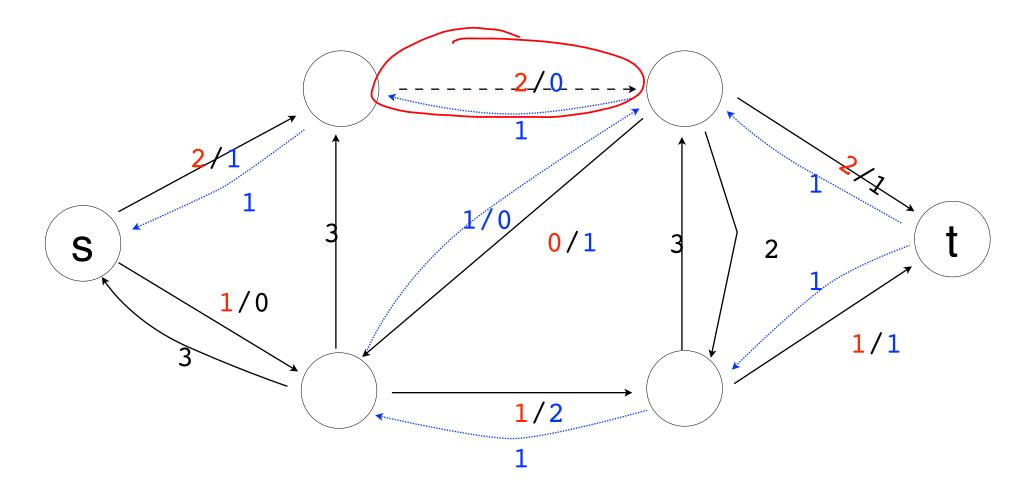
$$\delta_f(s,v)$$
:

 $\delta_f(s,v)$ increases monotonically thru exec $\delta_{i+1}(v) \geq \delta_i(v)$

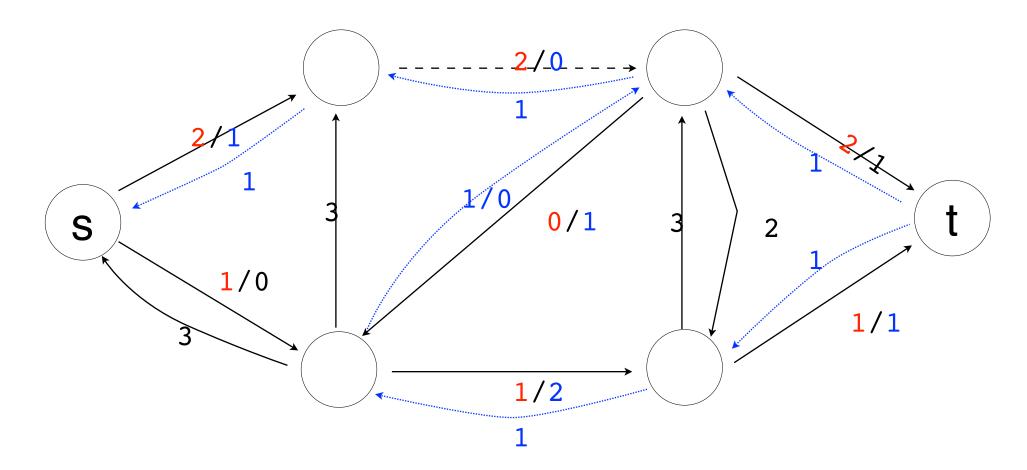
$$\delta_{i+1}(v) \geq \delta_i(v)$$



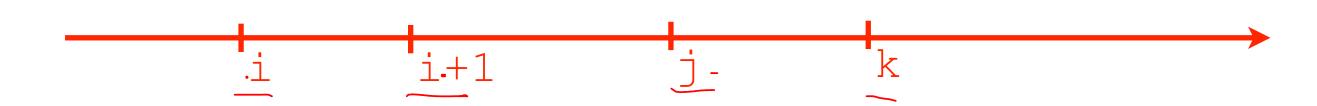
for every augmenting path, some edge is critical.

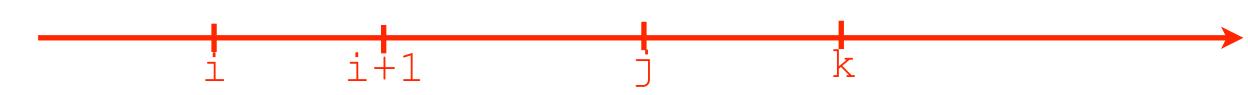


critical edges are removed in next residual graph.

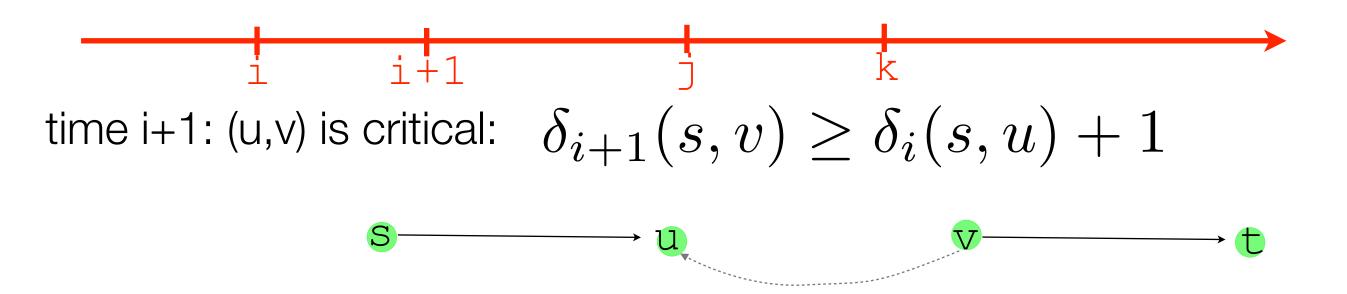


key idea: how many times can an edge be critical?

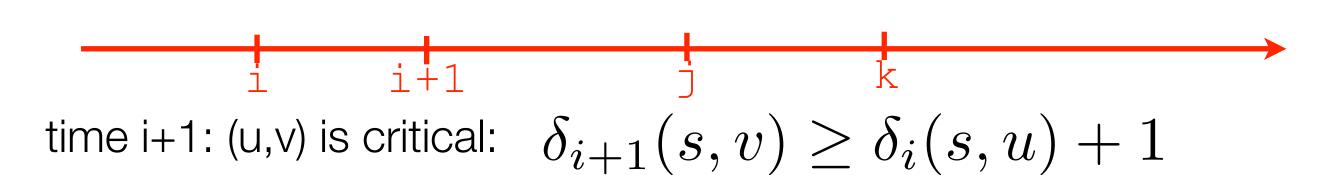




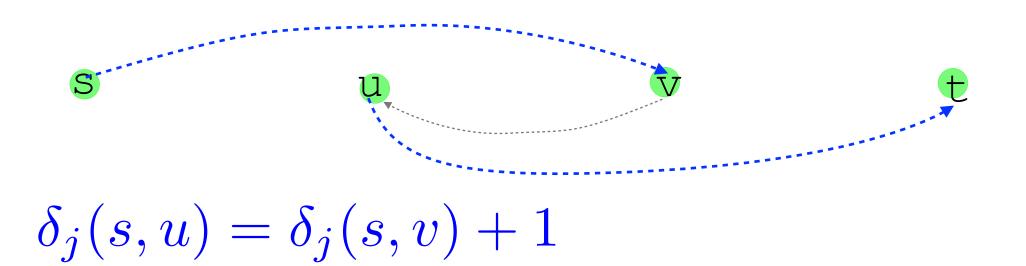
first time (u,v) is critical:



time j: Edge (u,v) STRIKES BACK



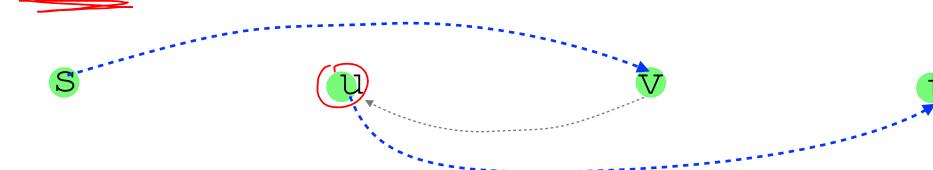
time j: Edge (u,v) STRIKES BACK

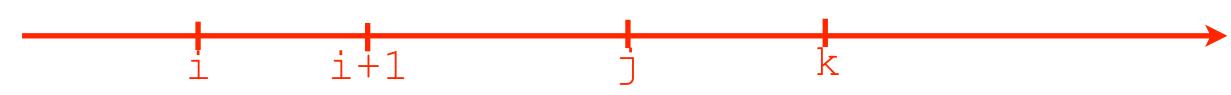


time j: Edge (u,v) STRIKES BACK

$$\delta_{i+1}(s,v) \ge \delta_i(s,u) + 1$$

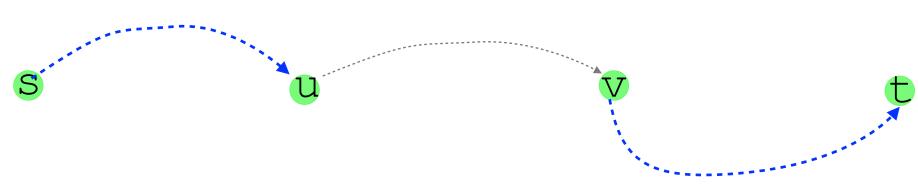
$$\delta_j(s, u) = \delta_j(s, v) + 1$$





time k: RETURN OF THE (u,v) critical

$$\delta_k(s,u) \ge \delta_i(s,u) + 2$$



QUESTION: How many times can (u,v) be critical?

edge critical only times.

there are only edges.

ergo, total # of augmenting paths:

time to find an augmenting path:

total running time of E-K algorithm:

$$\Theta(E^2V)$$

FF

 $O(E|f^*|)$

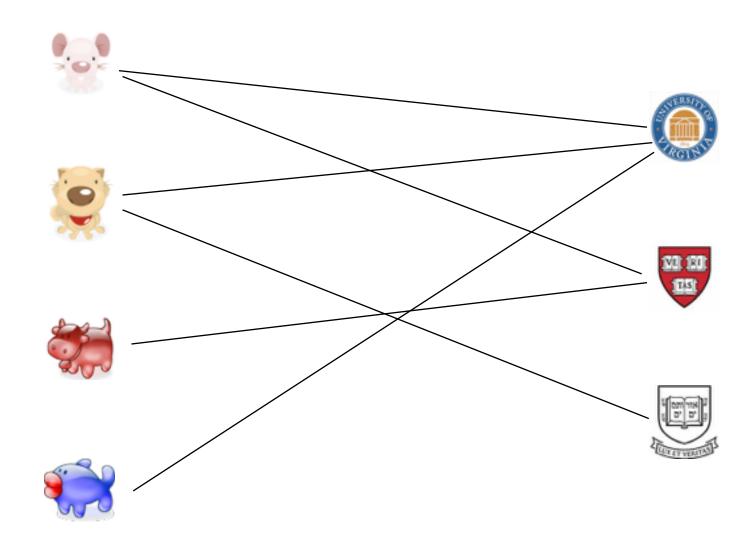
EK2

PUSH-RELABEL

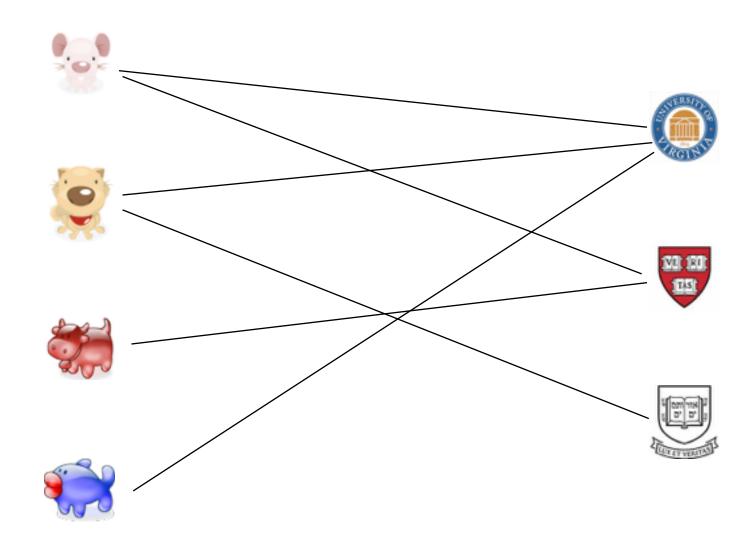
FASTER PUSH-RELABEL

Bipartite

maximum bipartite matching



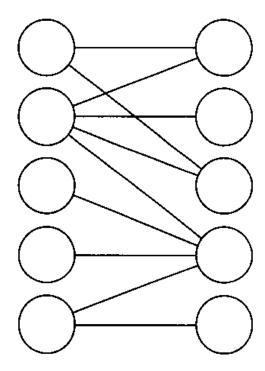
maximum bipartite matching



bipartite matching

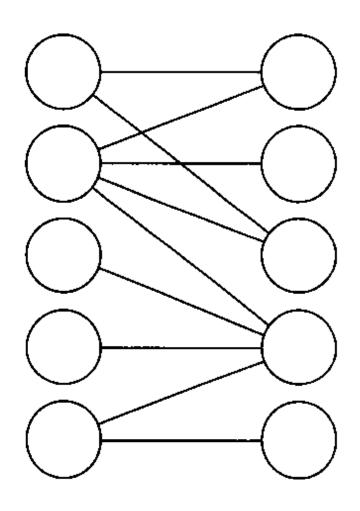
problem:

algorithm



algorithm

- I. MAKE NEW G' FROM INPUT G.
- 2. RUN FF ON G'
- 3. OUTPUT ALL MIDDLE EDGES WITH FLOW F(E)=1.



correctness

IF G HAS A MATCHING OF SIZE K, THEN

correctness

IF G' HAS A FLOW OF K, THEN

integrality theorem

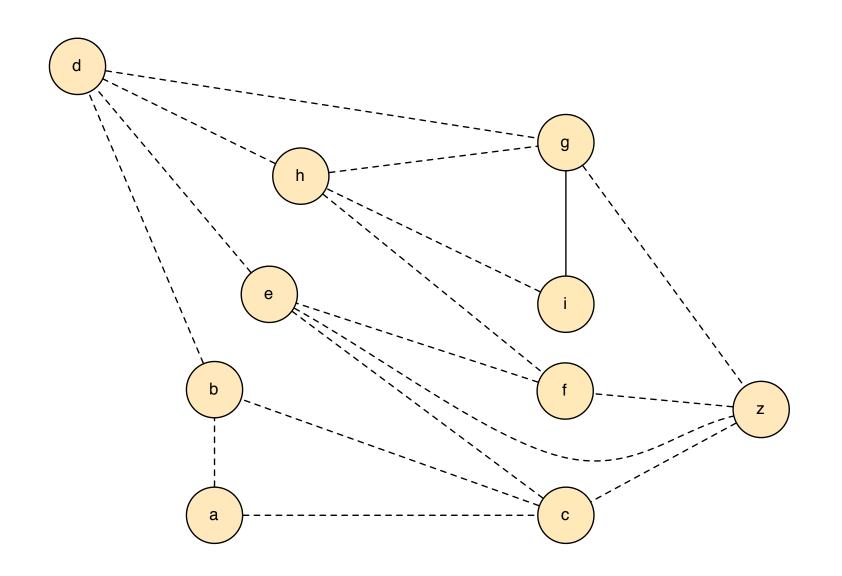
IF CAPACITIES ARE ALL INTEGRAL, THEN

correctness

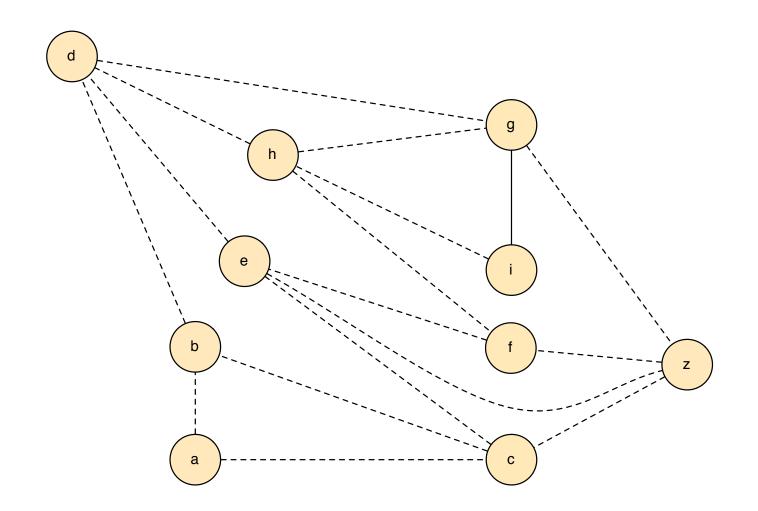
HAS A FLOW OF K, THEN G HAS K-MATCHING.

running time

edge-disjoint paths



algorithm



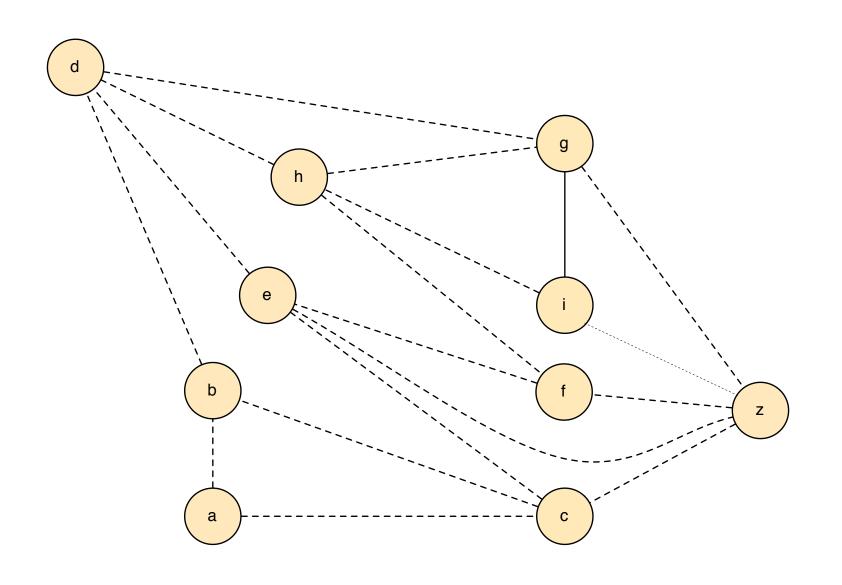
analysis

IF G HAS K DISJOINT PATHS, THEN

analysis

G' HAS A FLOW OF K, THEN

vertex-disjoint paths



baseball elimination

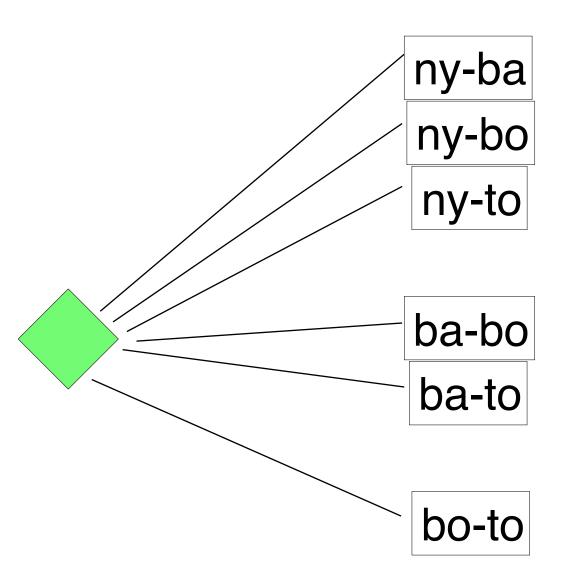
•	
Agair	1St

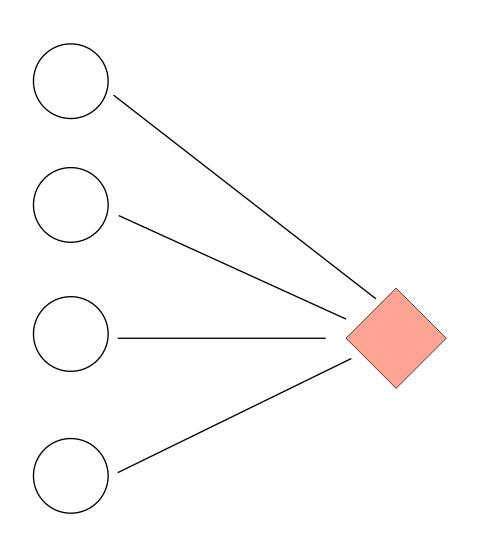
	W	L	Left	A	Р	N	M
ATL	83	7 I	8	=	I	6	I
PHL	80	79	3	I	-	0	2
NY	78	78	6	6	0	-	0
MONT	77	82	3	I	2	0	-

baseball elimination

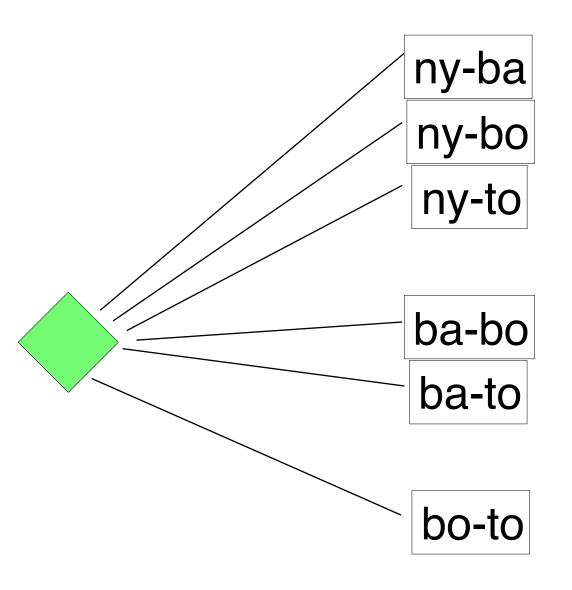
Against

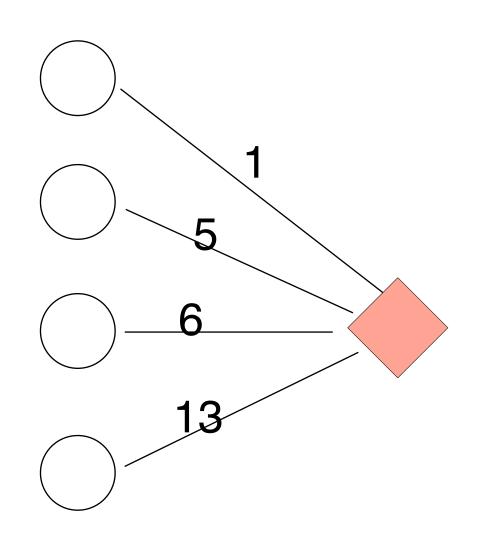
	W	L	Left	N	В	Во		D	
NY	75	59	28		3	8	7	3	
BAL	7 I	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				





	W	L	Left	N	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				





	W	L	Left	N	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				

