1 0 2 11.12.2013 abhi shelat

max flow

Max How

Min Cut

"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

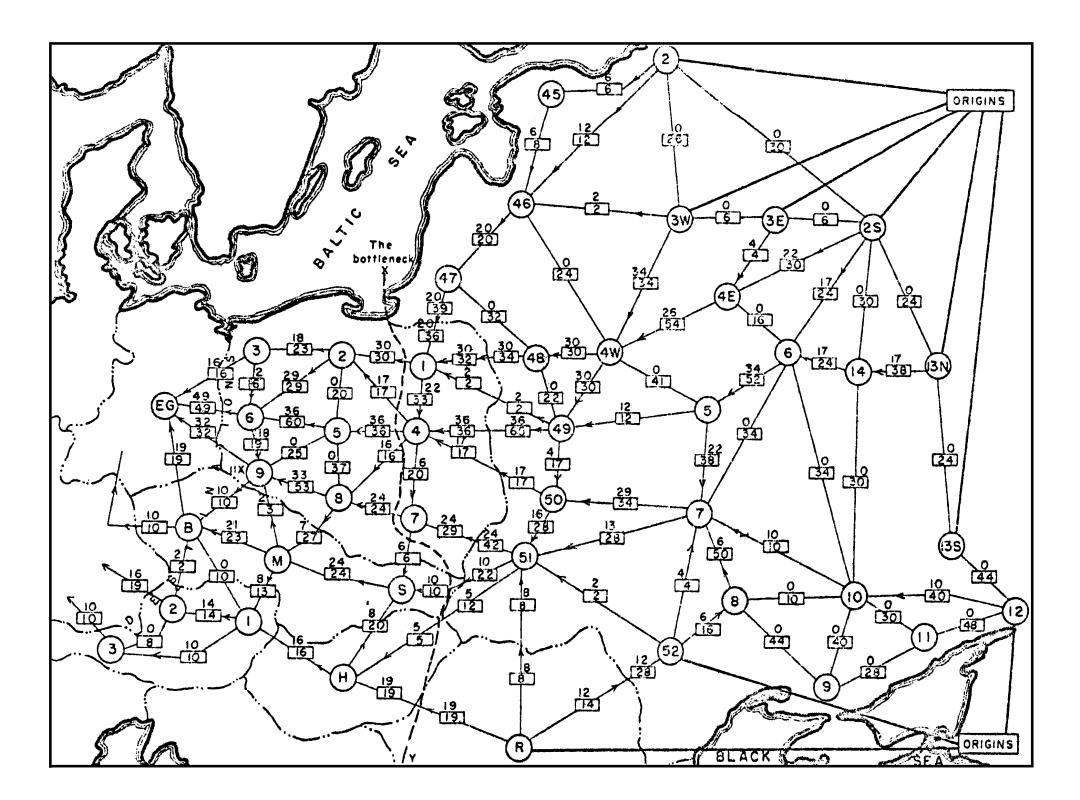


Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons indicated as 'The bottleneck'

courtesy Alexander Schrijver

FLOW NETWORKS

$$G = (V, E)$$

SOURCE + SINK: 5

CAPACITIES: C: E -> Qt / rundional positive numbers

FLOW

MAP FROM EDGES TO NUMBERS:
$$f: E \rightarrow C$$

CAPACITY CONSTRAINT:
$$f(\varrho) \neq c(\varrho)$$

FLOW CONSTRAINT: for every node
$$J \in V - \{5, t\}$$

$$(N(v) = 0 \cup T(v) =) = (v,v) = \sum_{w} f(v,w)$$

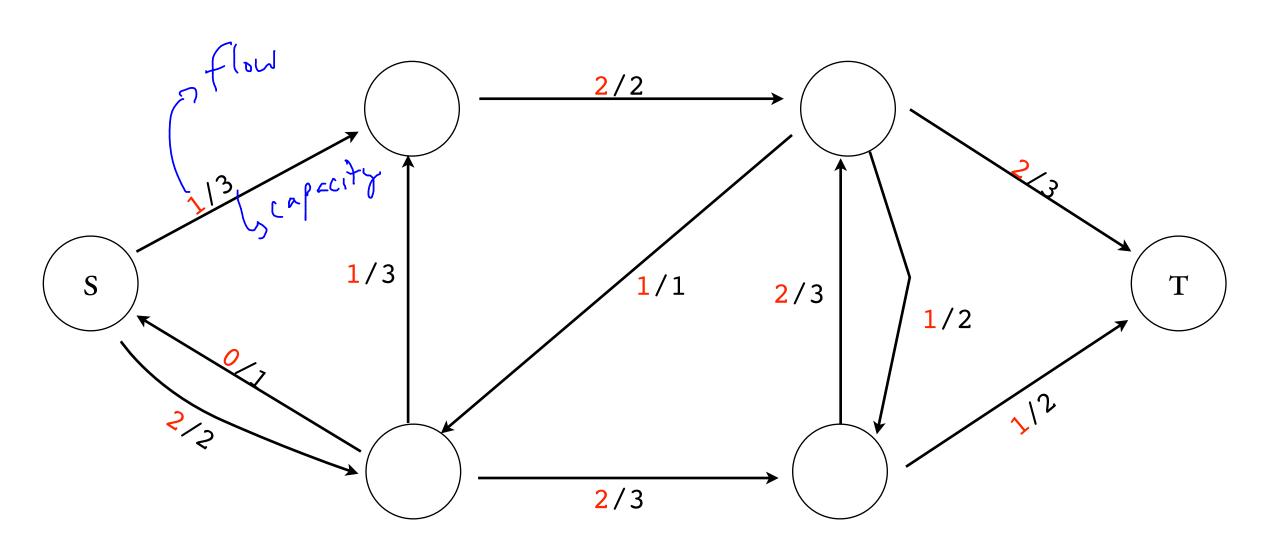
$$|f| = 0 \sqrt{(5) - (4)(5)}$$

MAX FLOW PROBLEM

GIVEN A GRAPH G, COMPUTE

ARGMAX (+)

EXAMPLE of A FLOW



HUNDREDS OF APPLICATIONS

BIPARTITE MATCHING

EDGE-DISJOINT PATHS

NODE-DISJOINT PATHS

SCHEDULING

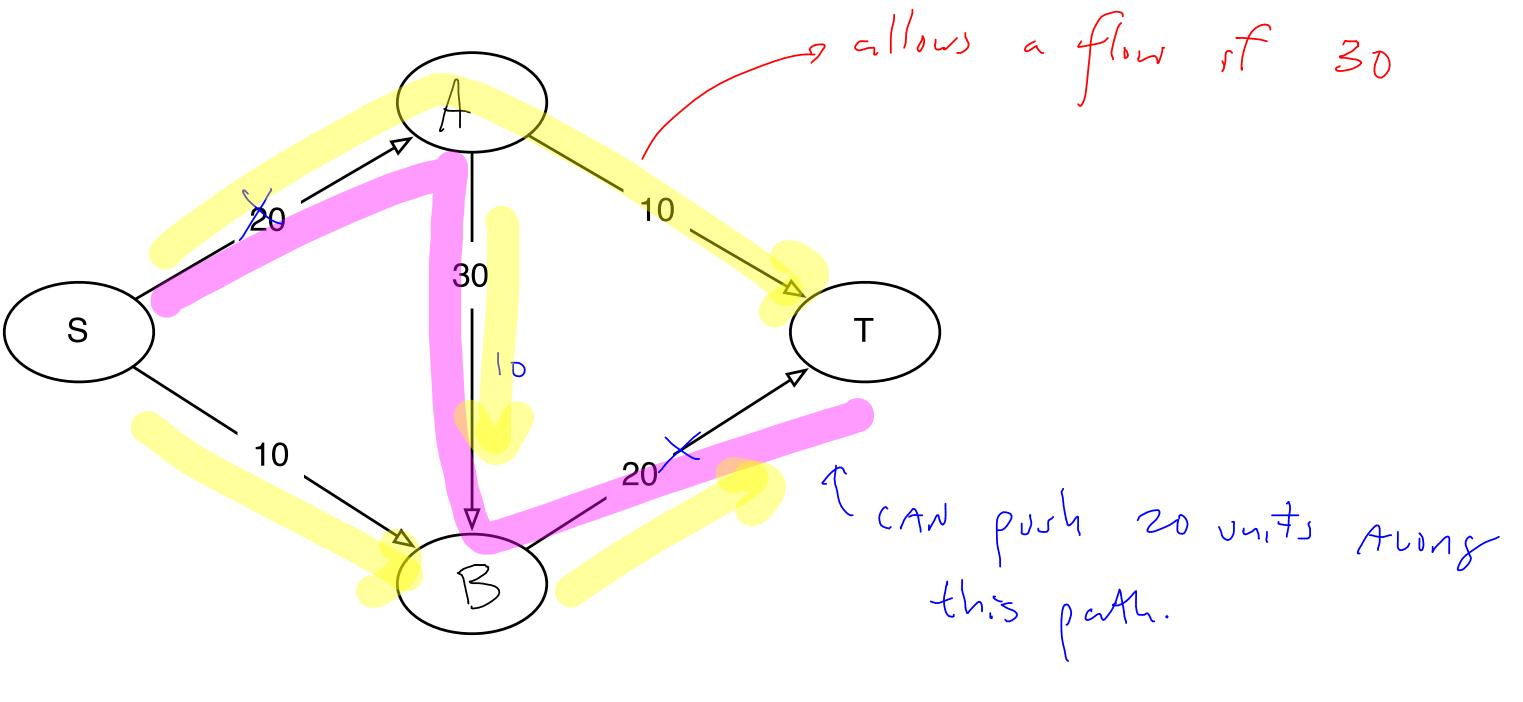
BASEBALL ELIMINATION

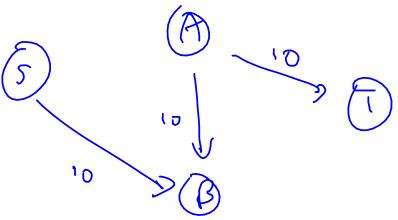
RESOURCE ALLOCATIONS

WILL DISCUSS MANY OF THESE APPLICATIONS IN L22.

ALGORITHMS FOR MAX FLOW

GREEDY FAILS





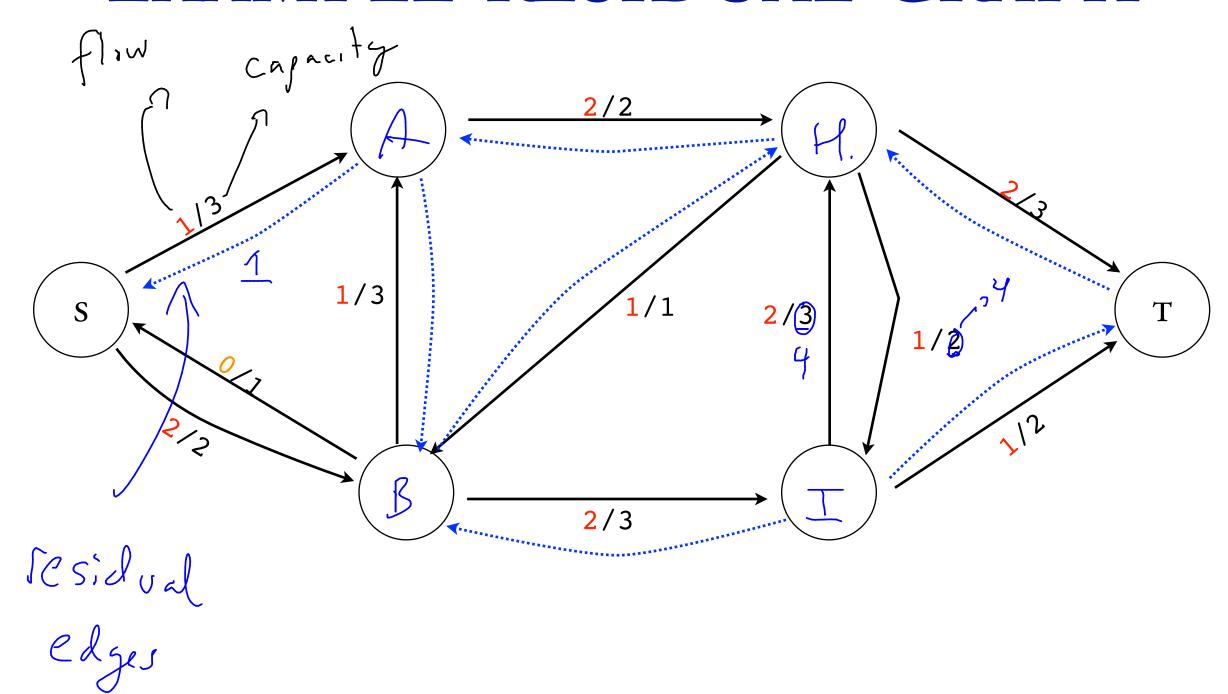
RESIDUAL GRAPHS

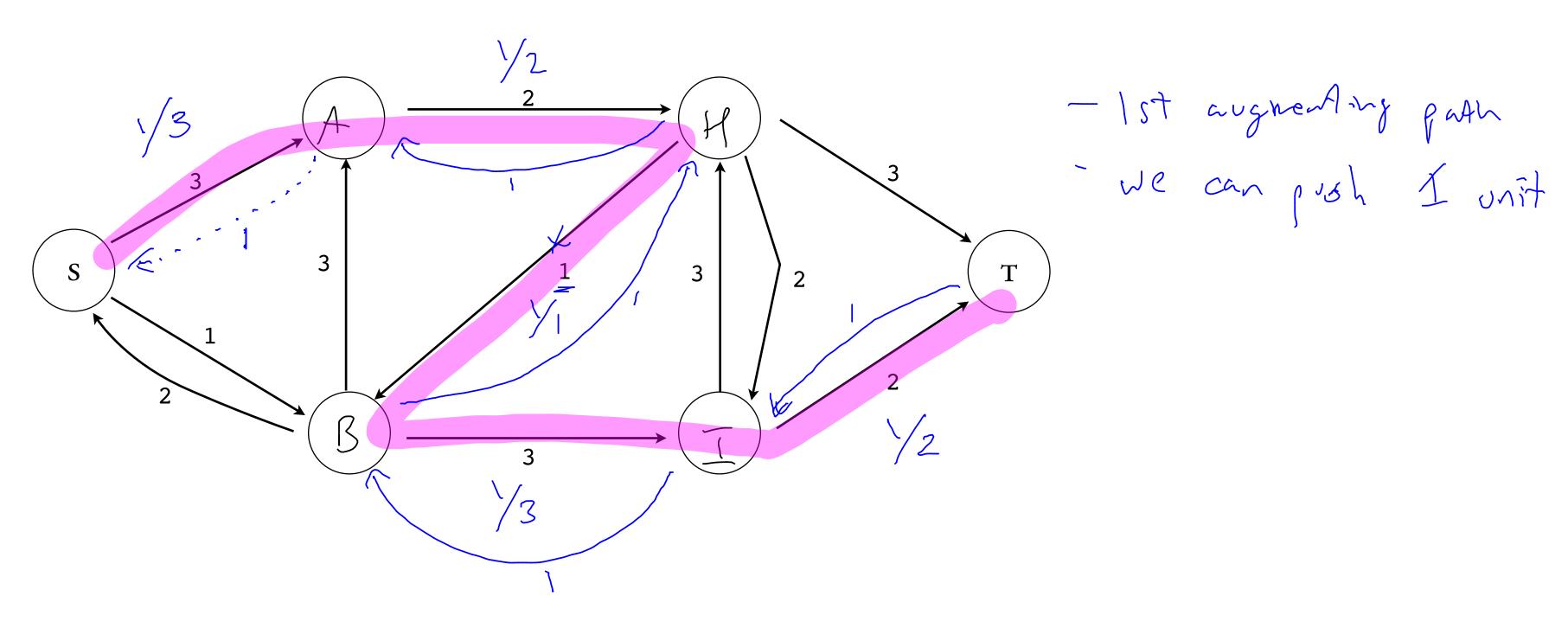
Gf =
$$(V, E_f)$$
 Whenever you push \times units on edge (u_{iv}) , given a flow f , one create a residual edge from (V, u) u/c residual graph G_f using $C_f(u, v) = C_f(u, v)$

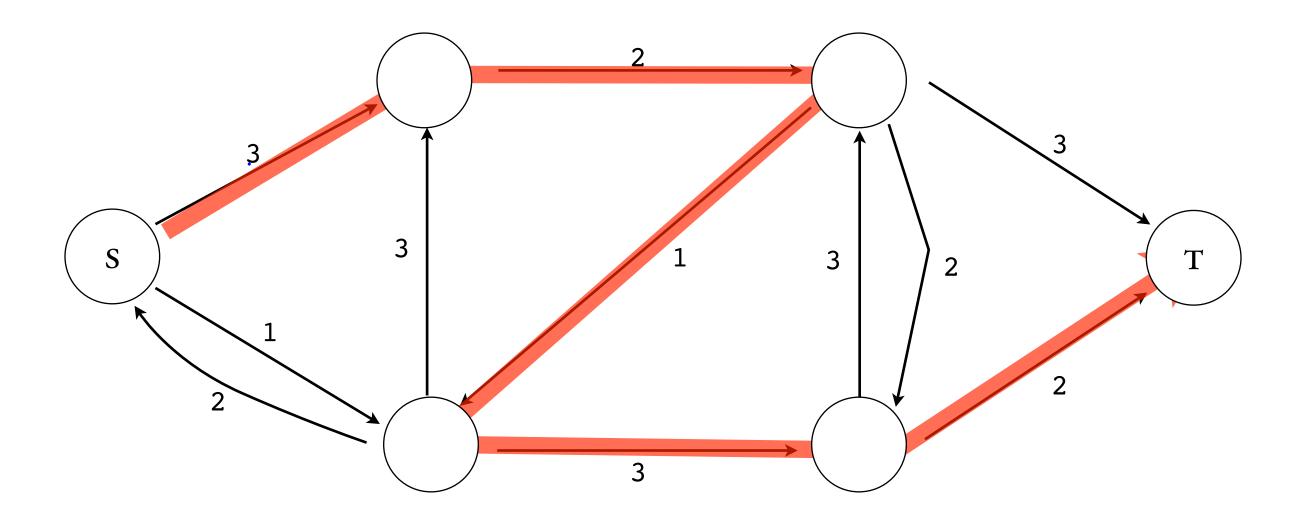
AUGMENTING PATHS

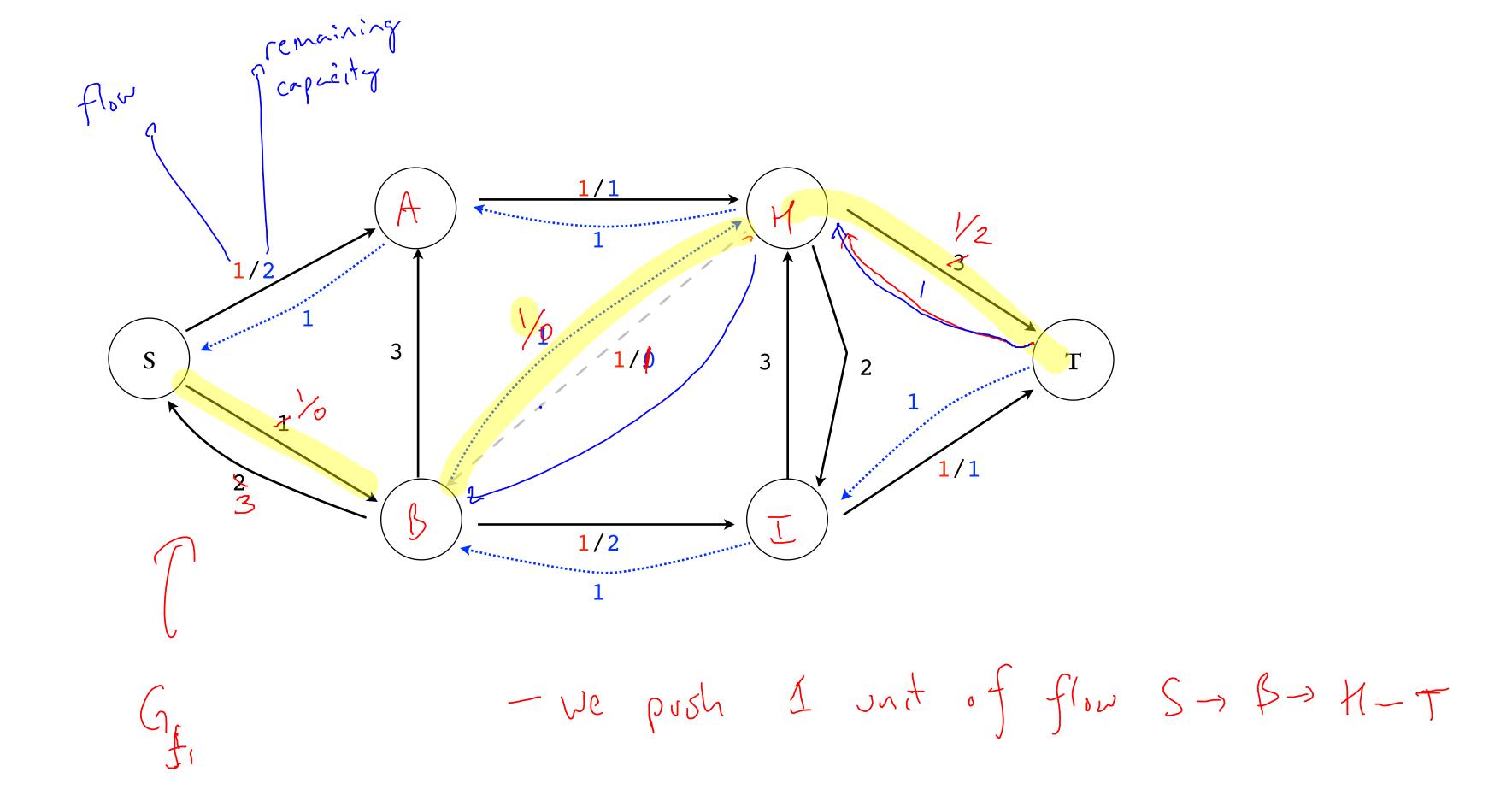
DEF: Any path from 5 to t in a residual graph Gf.

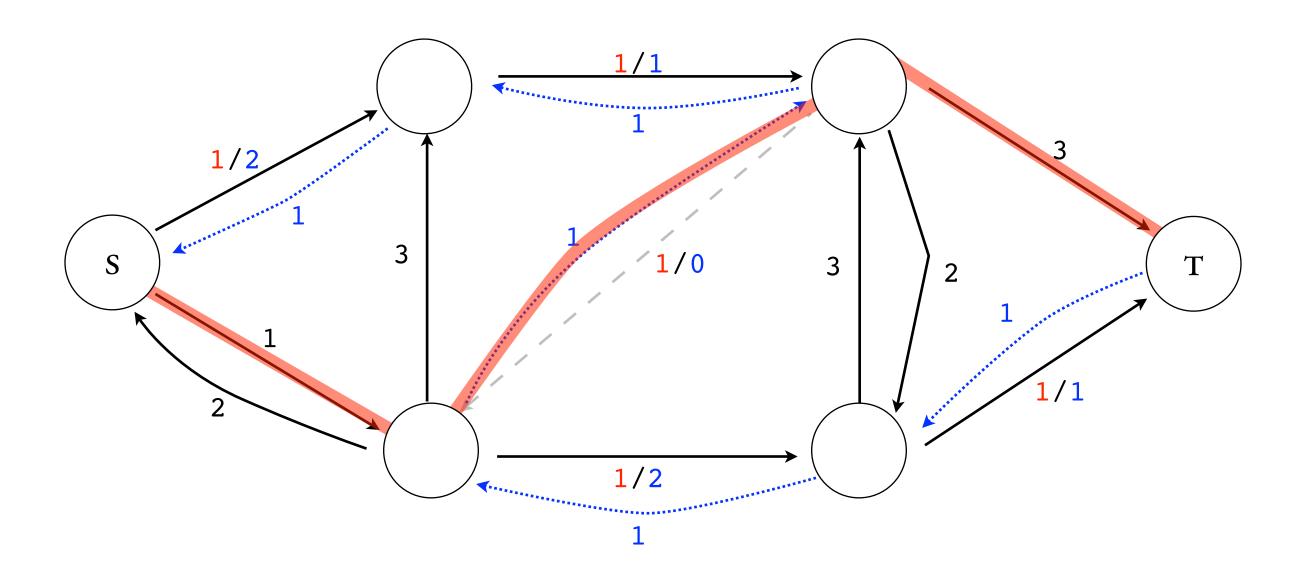
EXAMPLE RESIDUAL GRAPH

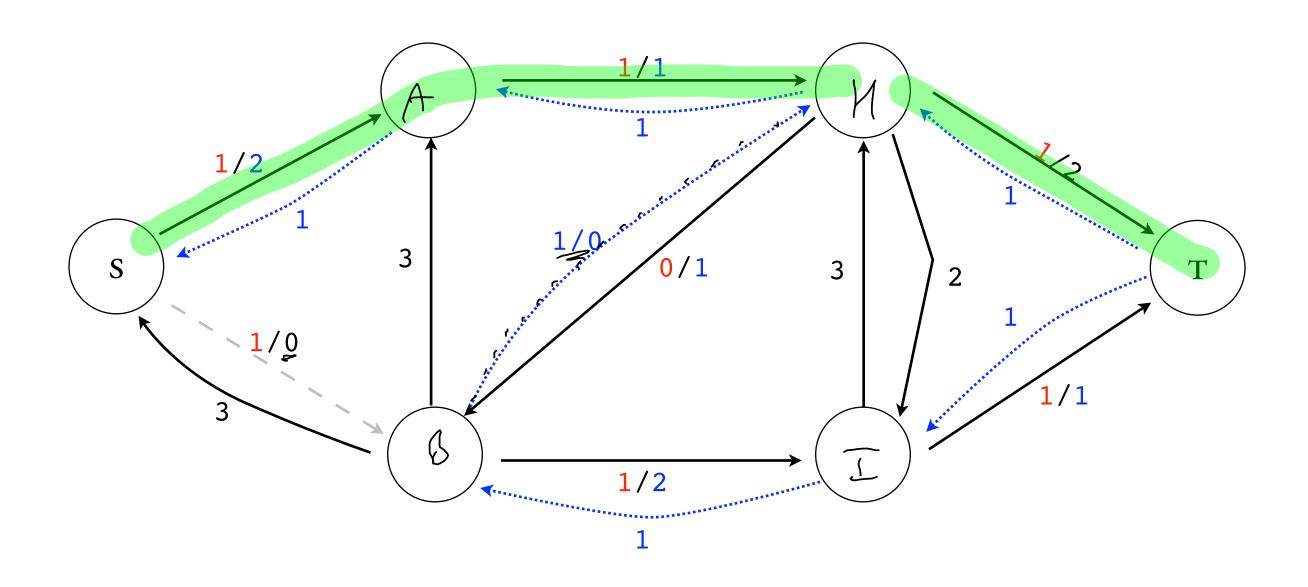


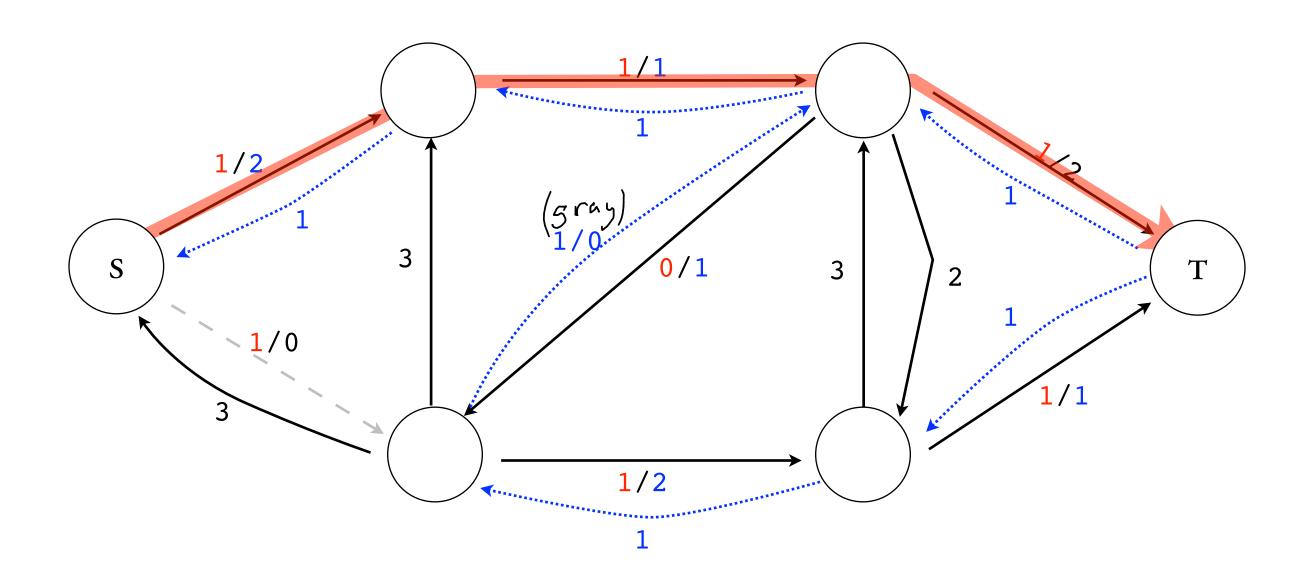


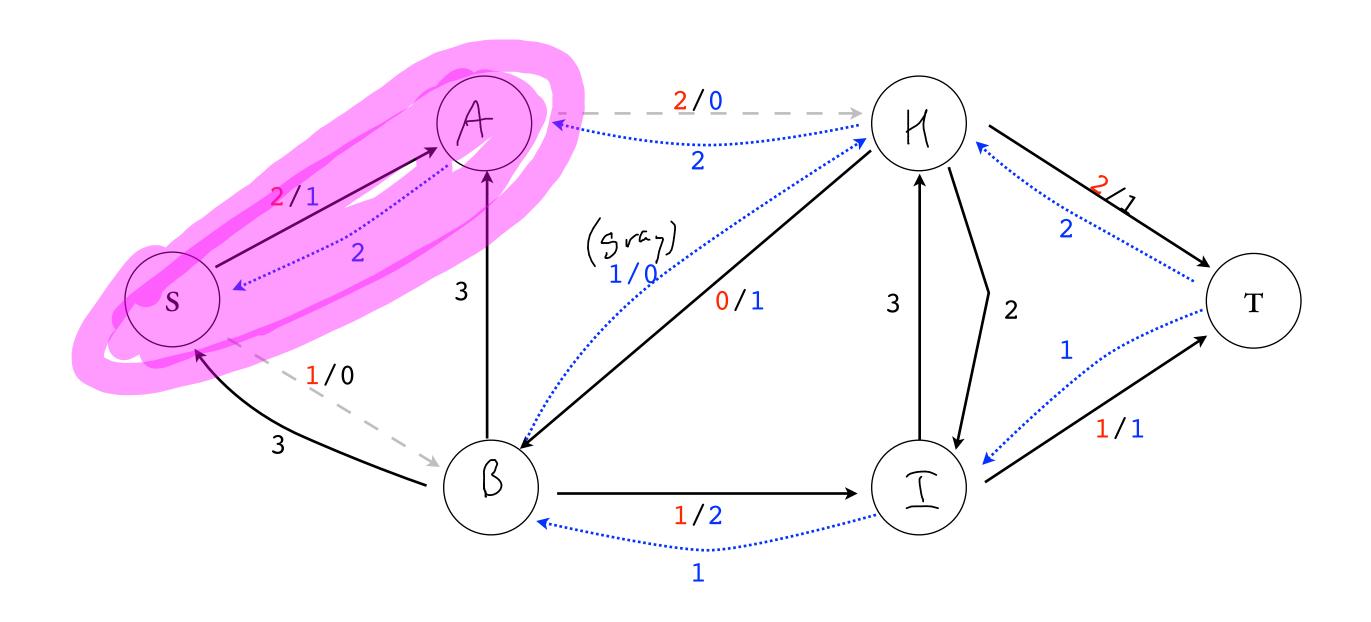






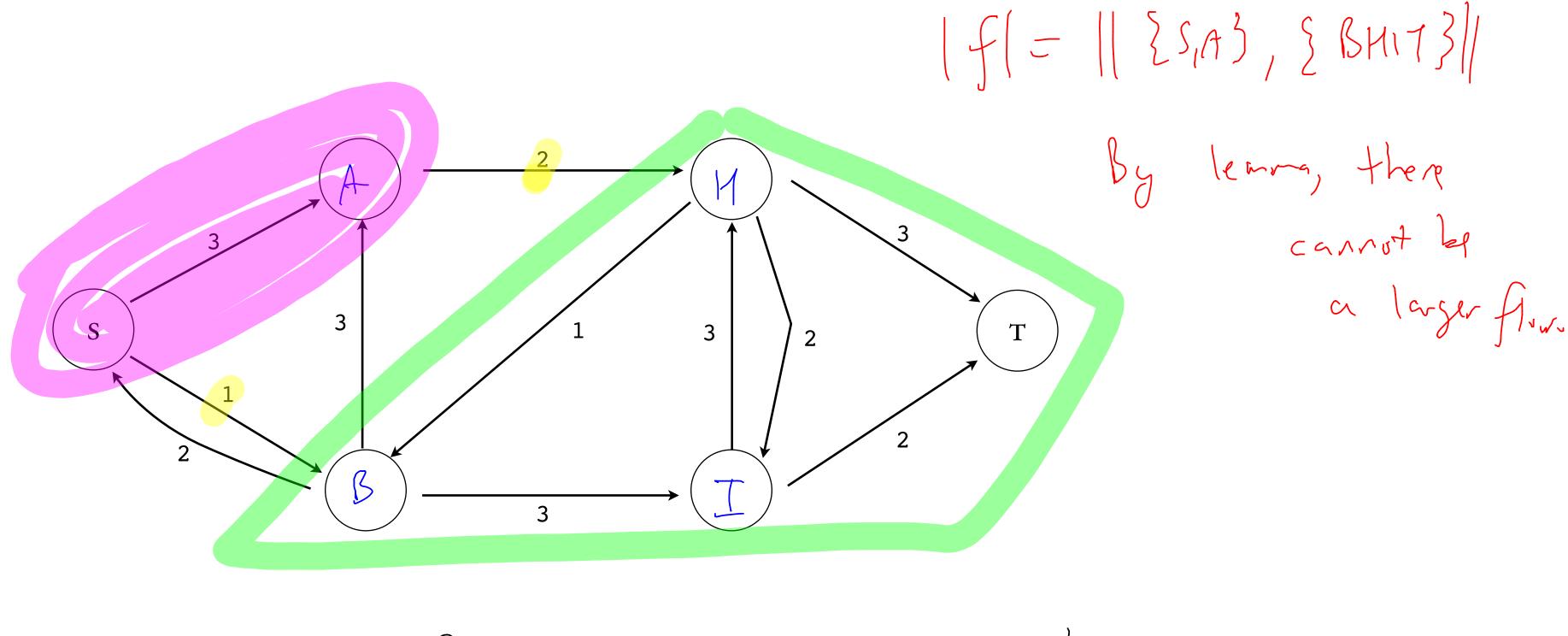




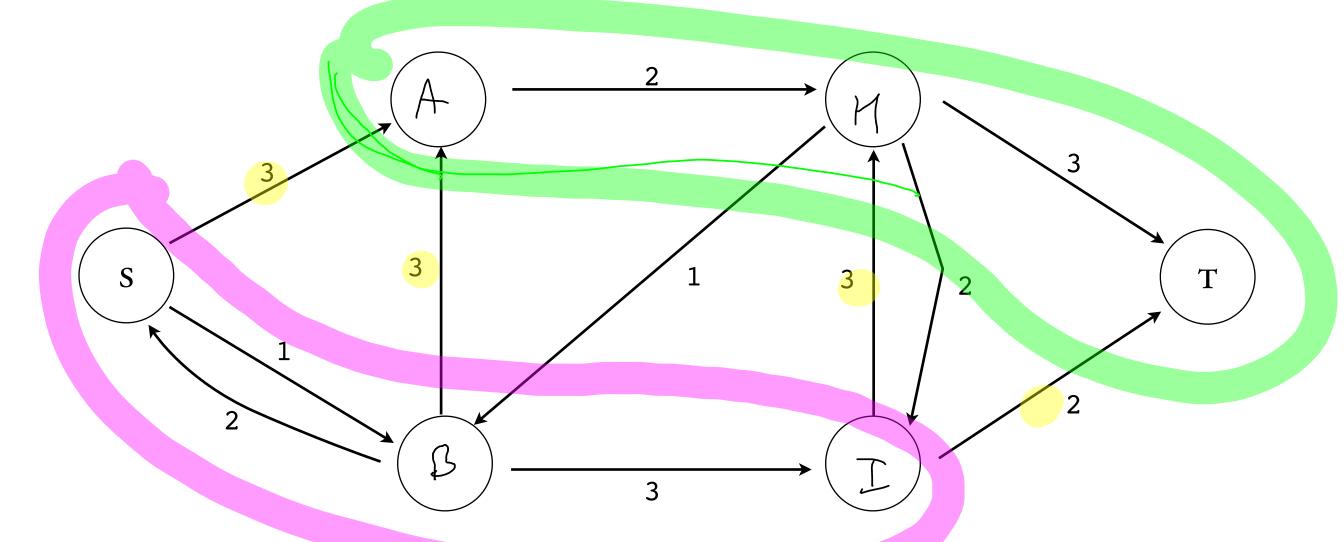


No more augmenting paths from S to t!!

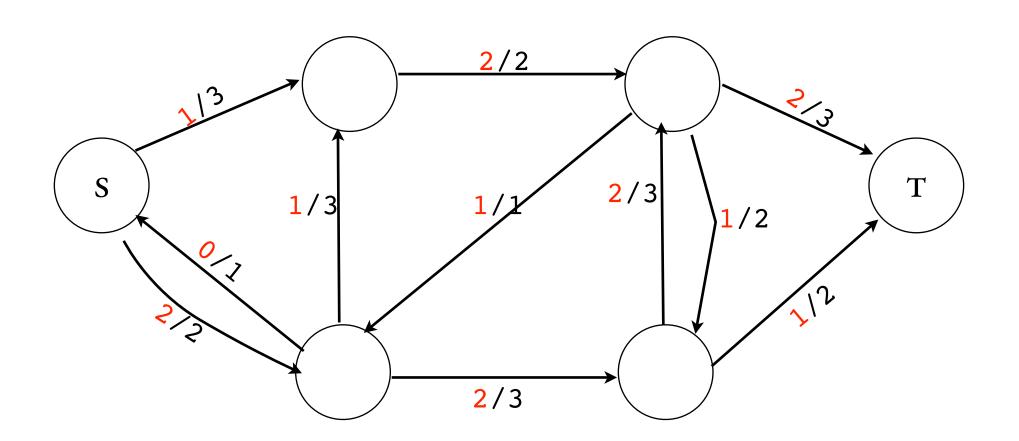
Done.



(S,A) 2BHITZ is ~ graph CUTT. This cut has value 3.



for any f, (S,T) it holds that $|f| \leq ||S,T||$



EXAMPLE:

CUTS

DEF OF A CUT:

COST OF A CUT:

$$||S,T|| = \sum_{u \in S} \sum_{u \in T} c(u,u)$$

LEMMA: [MIN CUT] FOR ANY f, (S,T)

THM: MAX FLOW = MIN CUT

$$\max_{f} |f| = \min_{S,T} ||S,T||$$

IF F IS A MAX FLOW, THEN GF HAS NO AUGMENTING PATHS.

THM: MAX FLOW = MIN CUT

$$\max_{f} |f| = \min_{S,T} ||S,T||$$

FORD-FULKERSON

Initialize
$$f(u,v) \leftarrow 0 \ \forall u,v$$
 while exists an augmenting path p in
$$G_f$$
 augment f with
$$c_f(p) = \min_{(u,v) \in p} c_f(u,v)$$

WHY DOES FF WORK? (HIGH LEVEL)

We simultaneously construct a flow fand cut
$$(S_1,T)$$

 $S_1, |F| = ||S_1,T||$

FORD-FULKERSON

INITIALIZE
$$f(u,v) \leftarrow 0 \ \forall u,v$$

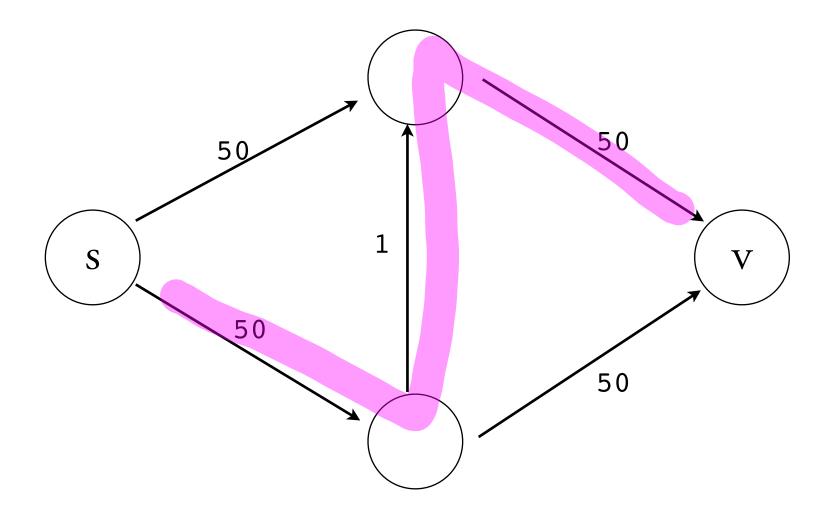
WHILE EXISTS AN AUGMENTING PATH p IN

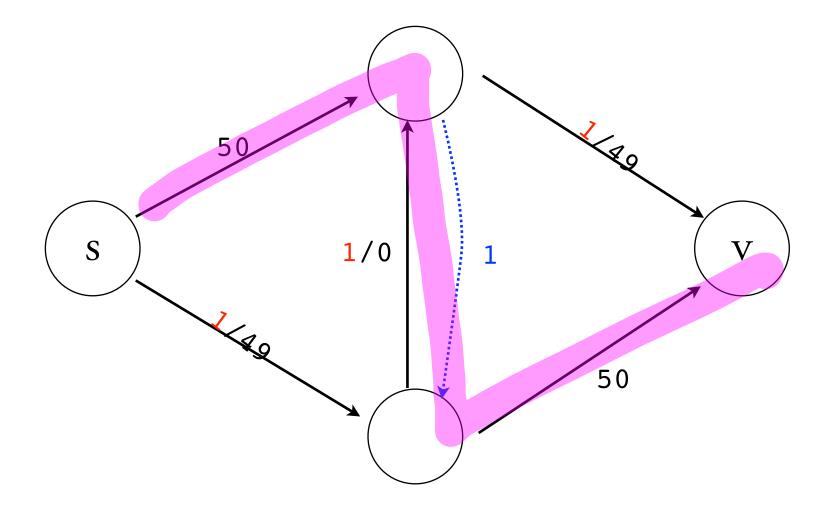
AUGMENT f WITH

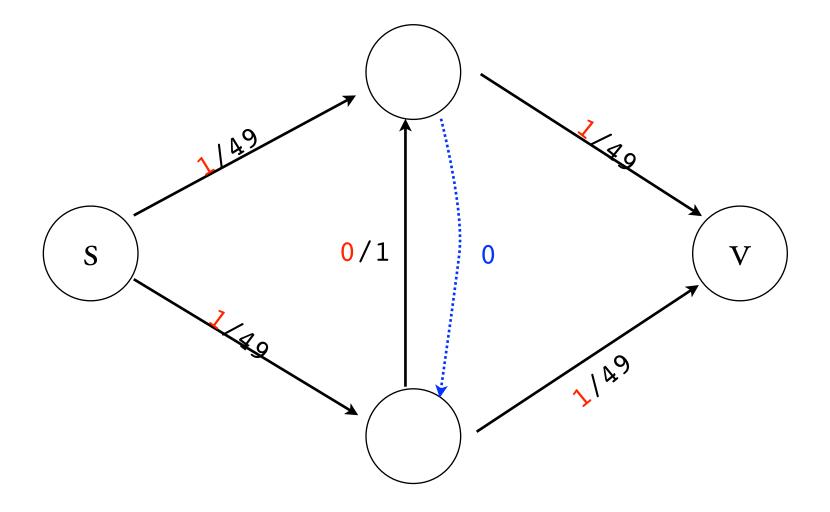
$$c_f(p) = \min_{(u,v)\in p} c_f(u,v)$$

TIME TO FIND AN AUGMENTING PATH:

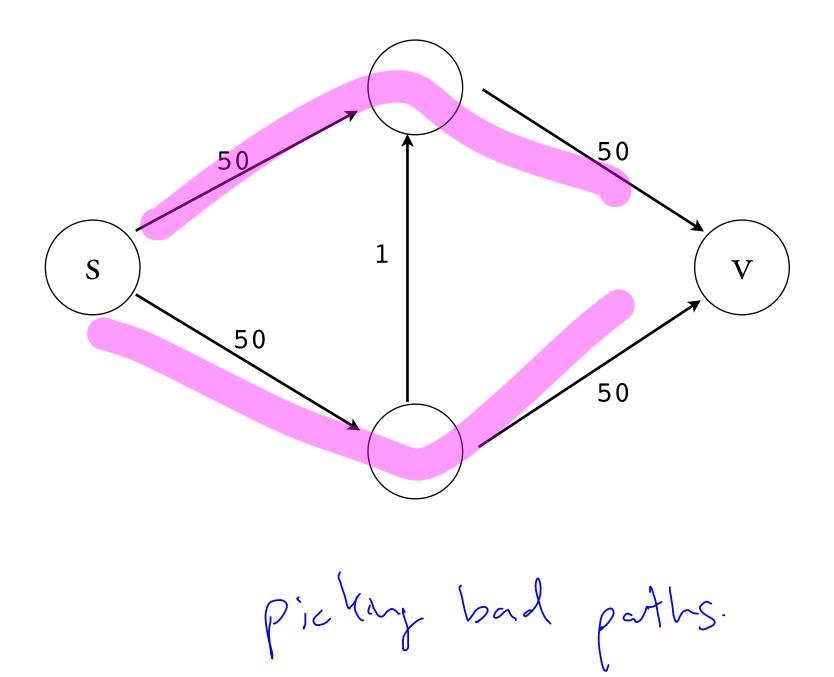
NUMBER OF ITERATIONS OF WHILE LOOP: \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}







ROOT OF THE PROBLEM



EDMONDS-KARP 2

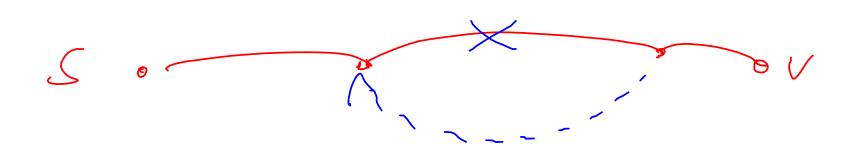
CHOOSE PATH WITH FEWEST EDGES FIRST.

$$\delta_f(x,v)$$
: $\#$ of hips from s to v along the shirtest path in residual graph Gf .

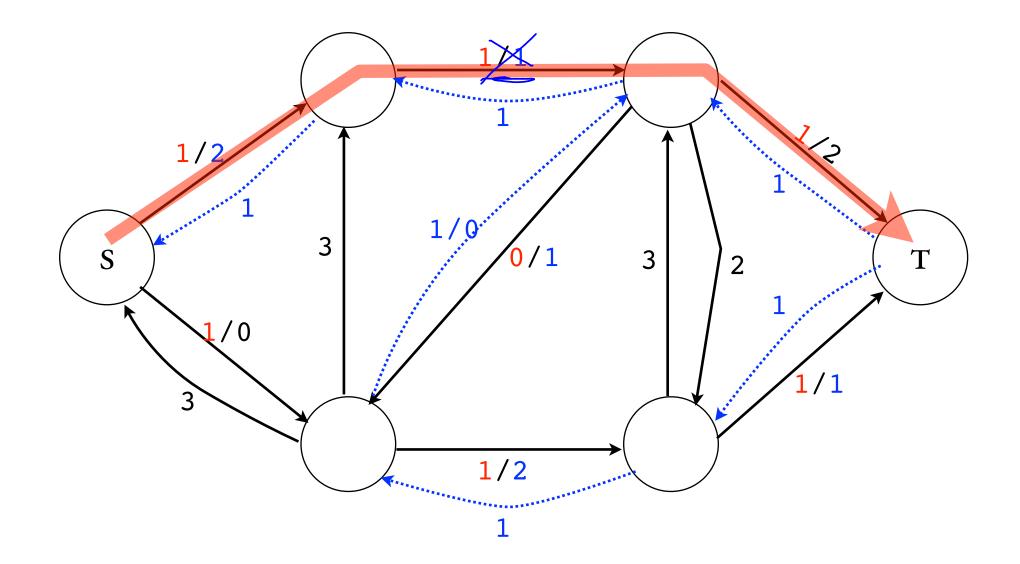
LEMMA:

 $\delta_f(s,v)$ increases monotonically thru exec

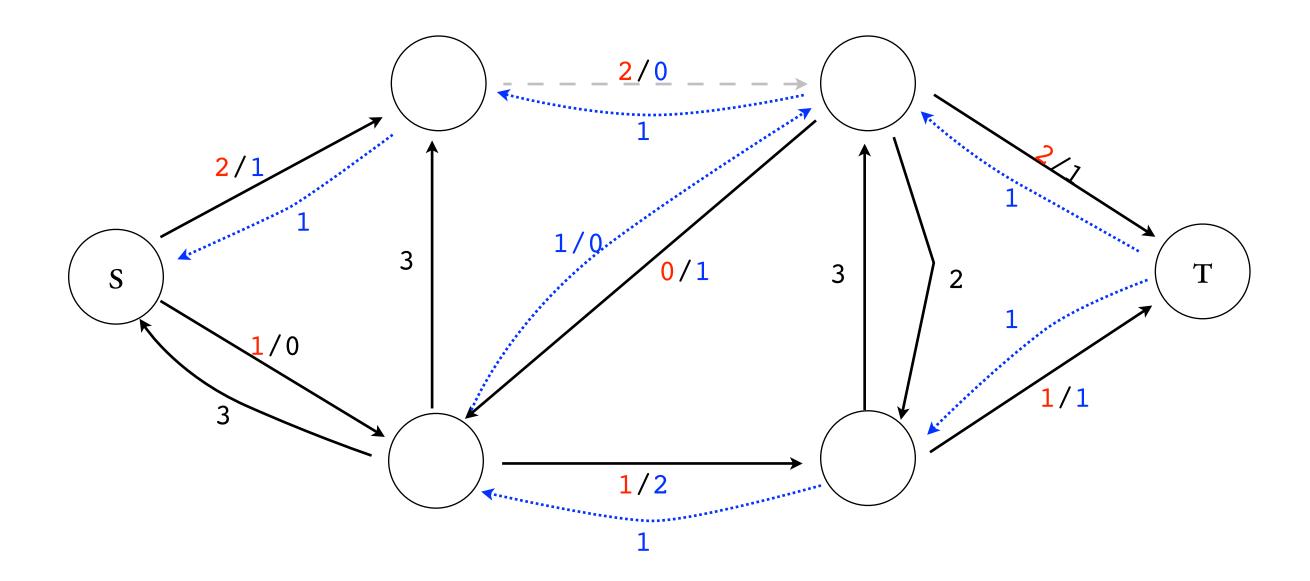
$$\underline{\delta_{i+1}}(v) \geq \underline{\delta_i}(v)$$



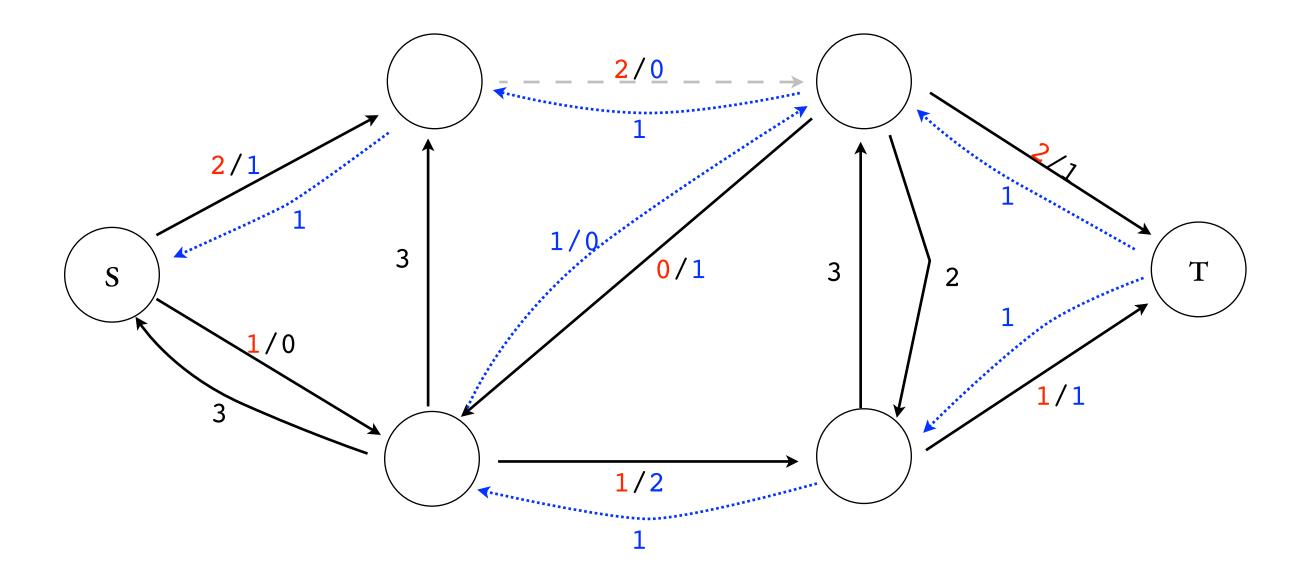
shortest par e è



FOR EVERY AUGMENTING PATH, SOME EDGE IS CRITICAL.



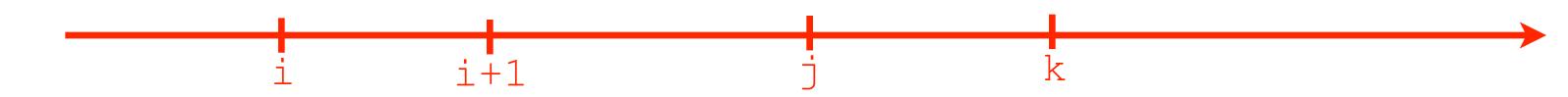
CRITICAL EDGES ARE REMOVED IN NEXT RESIDUAL GRAPH.



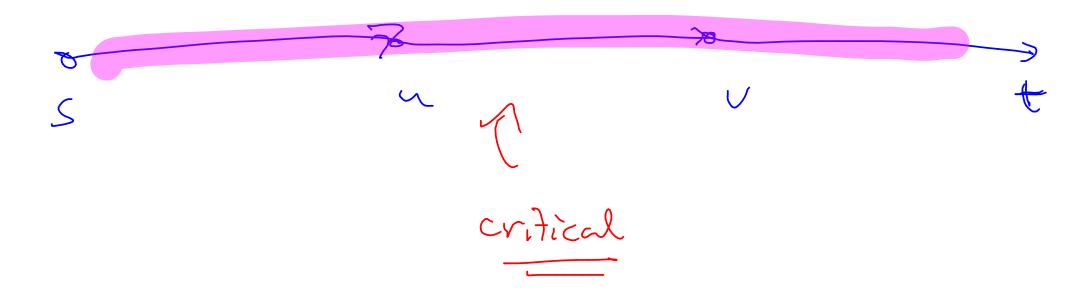
KEY IDEA: HOW MANY TIMES CAN AN EDGE BE CRITICAL?

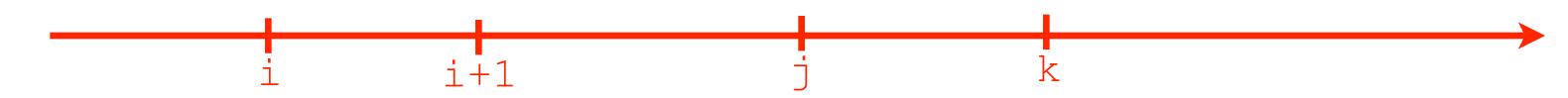
V 2 times

Outline of the argument



first time (u,v) is critical:



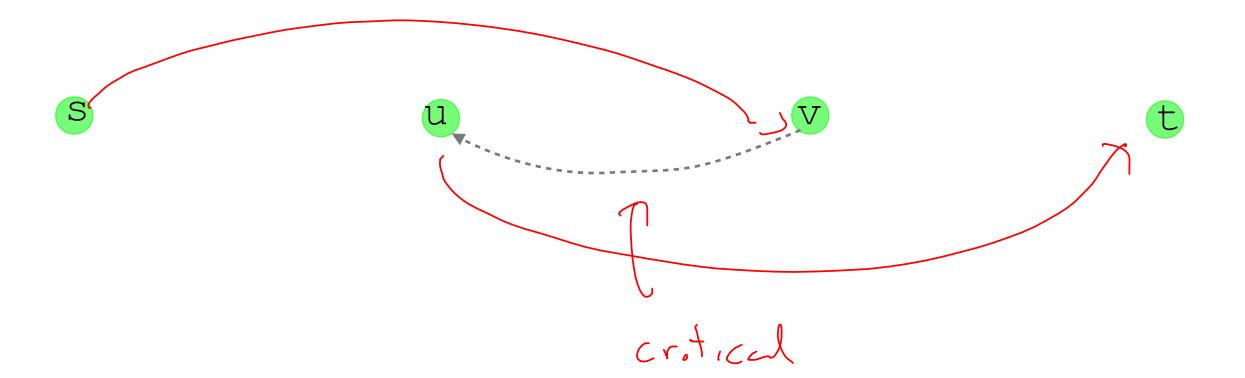


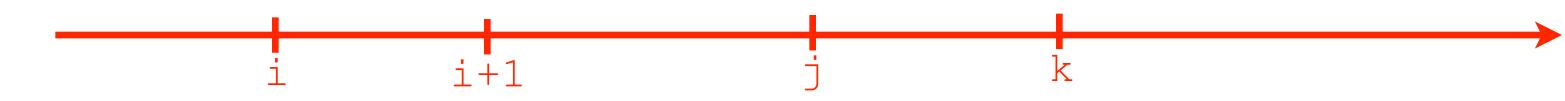
time i+1: (u,v) is critical:

$$\delta_{i+1}(s,v) \ge \delta_i(s,u) + 1$$



time j: Edge (u,v) STRIKES BACK





time i+1: (u,v) is critical:

$$\delta_{i+1}(s,v) \ge \delta_i(s,u) + 1$$

time j: Edge (u,v) STRIKES BACK

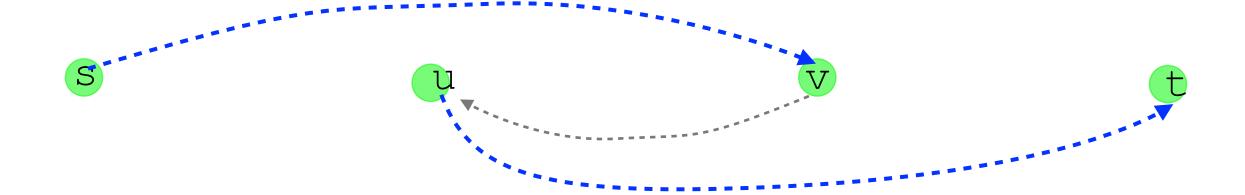
$$\delta_j(s,u) = \delta_j(s,v) + 1$$

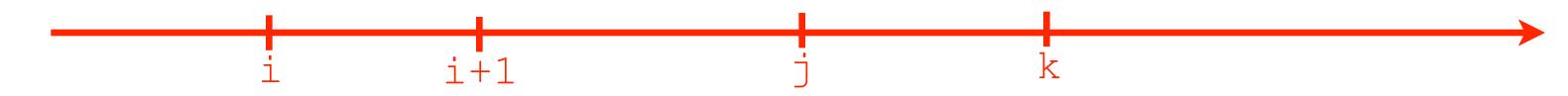
 \mathtt{i} $\mathtt{i}+1$ \mathtt{j} \mathtt{k}

time j: Edge (u,v) STRIKES BACK

$$\delta_{i+1}(s,v) \ge \delta_i(s,u) + 1$$

$$\delta_j(s,u) = \delta_j(s,v) + 1$$





time k: RETURN OF THE (u,v) critical

$$\underline{\delta_k(s,u)} \ge \delta_{\underline{i}}(\underline{s},\underline{u}) + \underline{2}$$

QUESTION: How many times can (u,v) be critical?

- edge critical only times.
- there are only edges.

ergo, total # of augmenting paths:

time to find an augmenting path:

(B) (E+U)

total running time of E-K algorithm:

 $O(E^2V)$

ff

 $O(E|f^*|)$

ek2

(E2V)

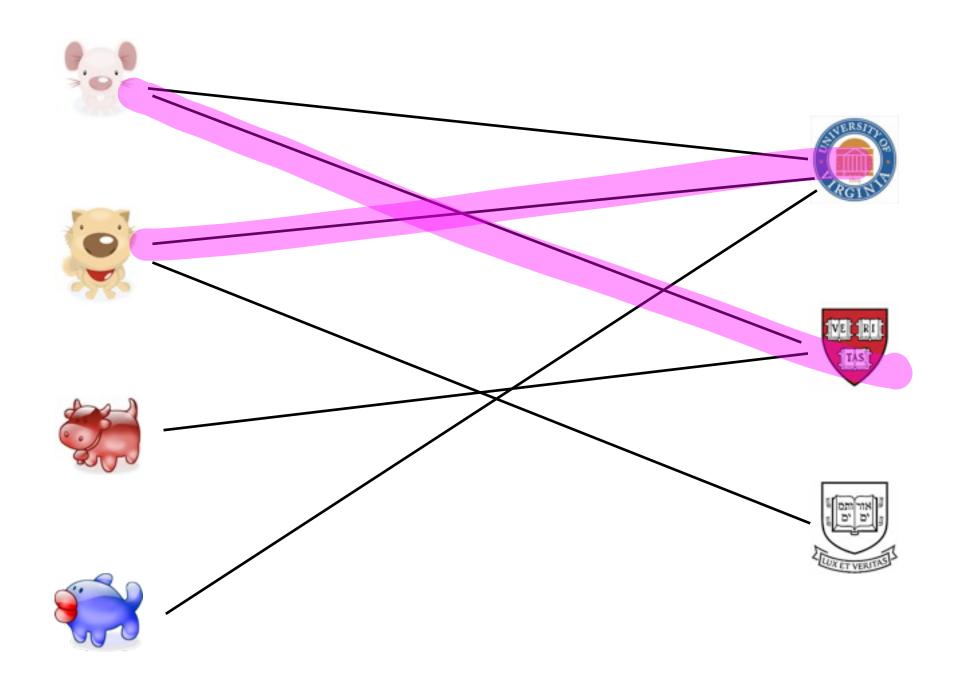
Tarian push-relabel

 $\Theta(EV^2)$

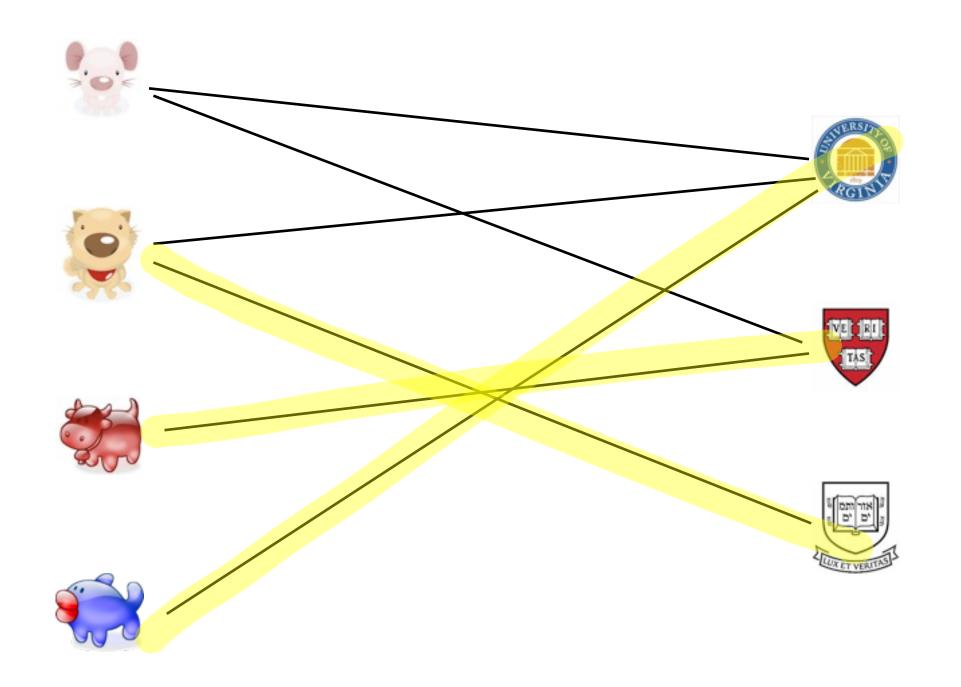
faster push-relabel \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

APPLICATIONS OF MAX FLOW

MAXIMUM BIPARTITE MATCHING



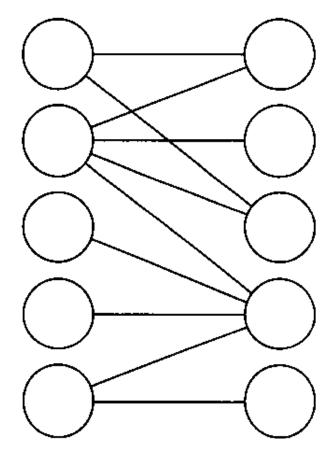
MAXIMUM BIPARTITE MATCHING



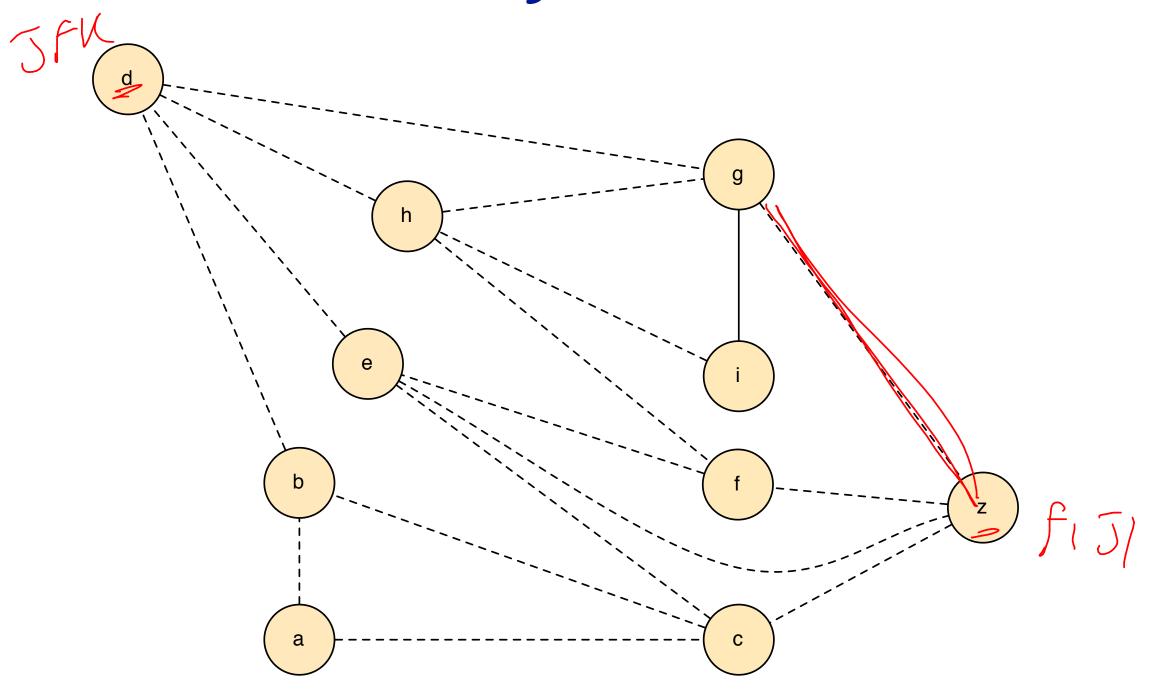
BIPARTITE MATCHING

PROBLEM:

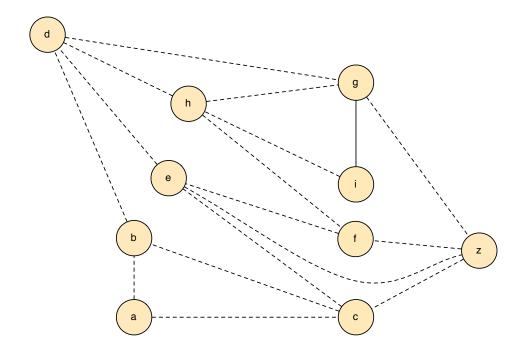
ALGORITHM



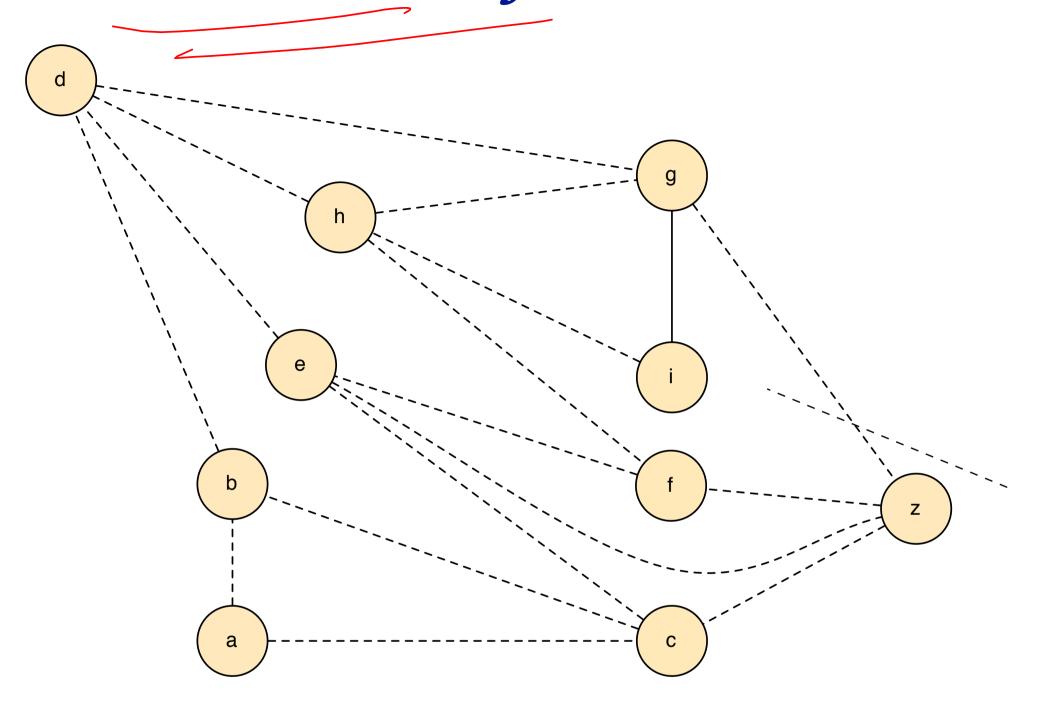
EDGE-DISJOINT PATHS



ALGORITHM



VERTEX-DISJOINT PATHS



BASEBALL ELIMINATION

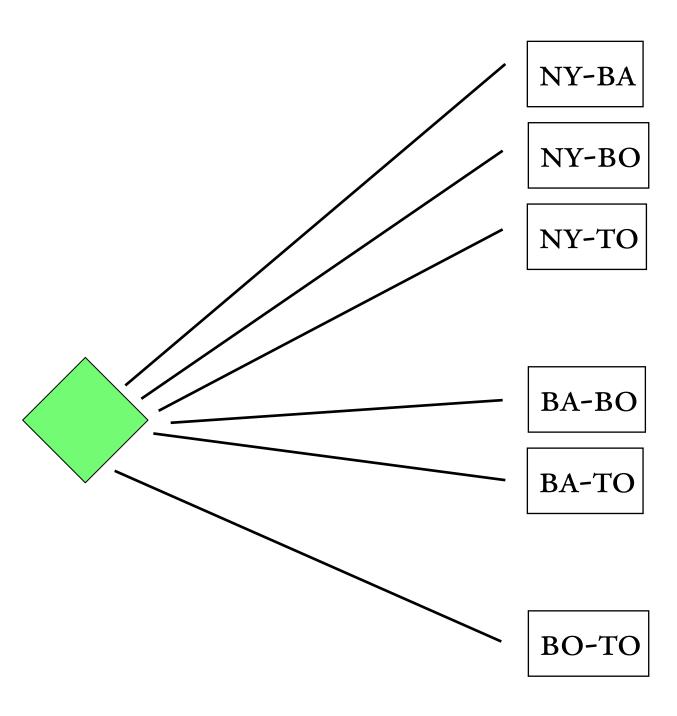
Against

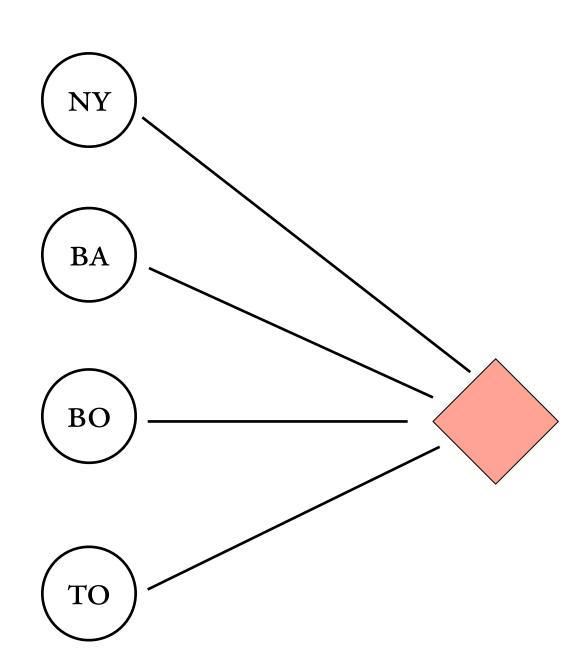
	W	L	Left	A	Р	Ν	M
ATL	83	71	8	-	I	6	I
PHL	80	79	3	ĺ	-	0	2
NY	78	78	6	6	0	-	0
MONT	77	82	3	I	2	0	-

BASEBALL ELIMINATION

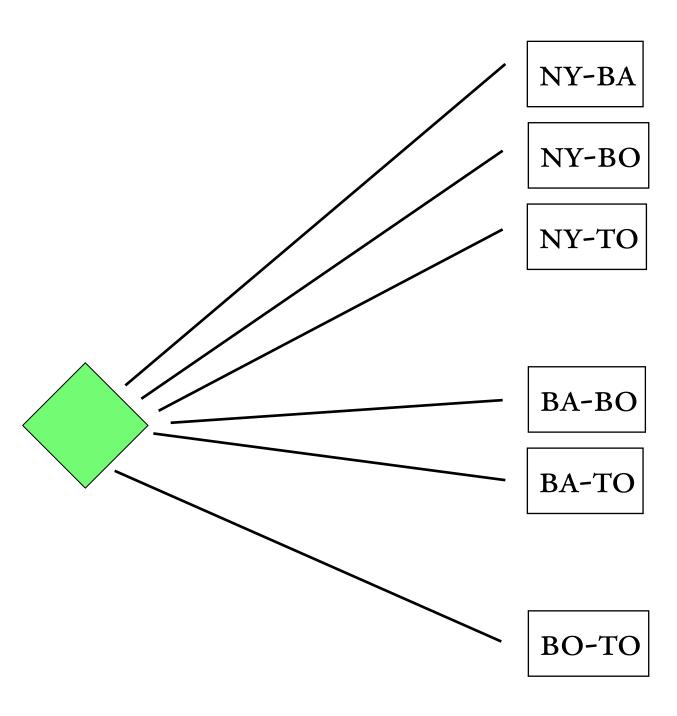
Against

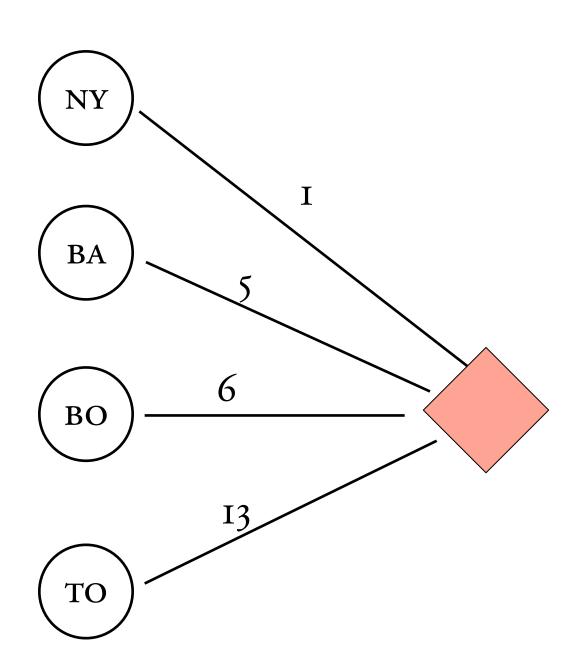
	W	L	Left	Ν	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				



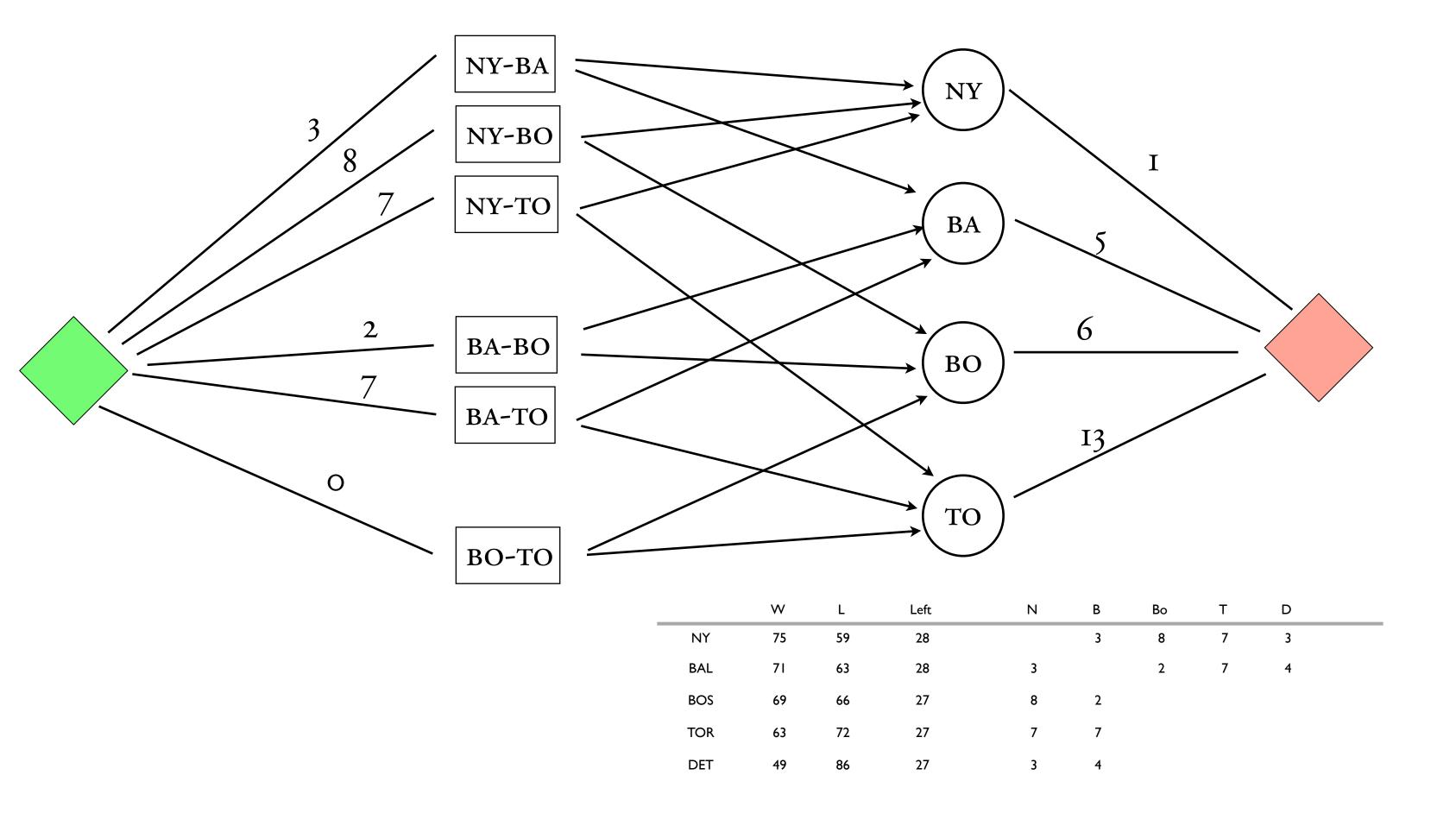


	W	L	Left	N	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				





	W	L	Left	N	В	Во	Т	D	
NY	75	59	28		3	8	7	3	
BAL	71	63	28	3		2	7	4	
BOS	69	66	27	8	2				
TOR	63	72	27	7	7				
DET	49	86	27	3	4				



ALGORITHMS FOR MAX FLOW

CUTS

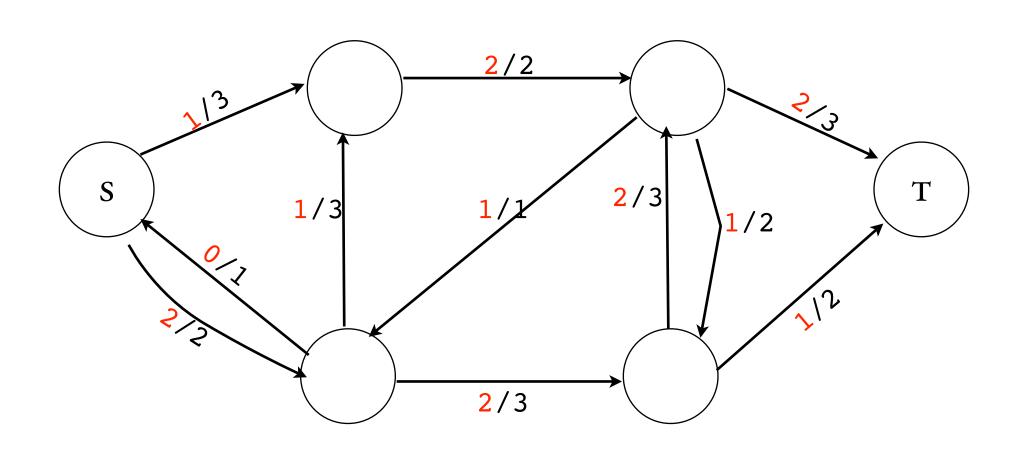
DEF OF A CUT:

COST OF A CUT:

$$||S,T|| =$$

LEMMA: [MIN CUT] for any f, (S, T)

for any f,(S,T) it holds that $|f| \leq ||S,T||$



EXAMPLE: