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1. what is the general approach to solving a max-flow problem?

2. when FF finishes, how do we know the answer is correct?



Max flow
Min Cut



ford-fulkerson
initialize

while exists an augmenting path p in 

augment f with  



why does FF work? (high level)



edmonds-karp
initialize

while exists an augmenting path p in 

augment f with  

(use BFS to find it)
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for every augmenting path, some edge is critical.
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critical edges are removed in next residual graph.
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key idea: how many times can an edge be critical?

s t



i i+1 j k

Outline of the argument



first time (u,v) is critical:
i i+1 j k



time i+1: (u,v) is critical:
i i+1 j k

s u v t

time j: Edge (u,v) STRIKES BACK

s u v t

�i+1(s, v) � �i(s, u) + 1



i i+1 j k

time j: Edge (u,v) STRIKES BACK

s u v t

�j(s, u) = �j(s, v) + 1

time i+1: (u,v) is critical:

s u v t

�i+1(s, v) � �i(s, u) + 1



i i+1 j k

time j: Edge (u,v) STRIKES BACK

s u v t

�j(s, u) = �j(s, v) + 1
�i+1(s, v) � �i(s, u) + 1



i i+1 j k

time k: RETURN OF THE  (u,v) critical 

s u v t

�k(s, u) � �i(s, u) + 2

QUESTION: How many times can  (u,v) be critical? 



edge critical only                    times.

there are only                           edges.

ergo, total # of augmenting paths: 

time to find an augmenting path: 

total running time of E-K algorithm:



ff

ek2

push-relabel

faster push-relabel



applications of max flow



Bipartite
Matchings



maximum bipartite matching



maximum bipartite matching



bipartite matching

problem:



Chapter 7 Network Flow

& The Problem

One of our original goals i a developing the Maximum-Flow Problem was to

be able to solve the Bipartite Matching Problem, and we now show how to

do this. Recall that a bipartite graph G = (V, E) is an undirected graph whose

node set can be partitioned as V = X U Y, with the property that every edge

e E E has one end in X anJ the other end in Y. A matching M in G is a subset

of the edges M C E such that each node appears in at most one edge in M.

The Bipartite Matching Prcblem is that of finding a matching in G of largest

possible size.

0 Designing the Algorithm

The graph defining a matching problem is undirected, while flow networks are

directed; but it is actually riot difficult to use an algorithm for the Maximum-

Flow Problem to find a ma imum matching.

Beginning with the graph G in an instance of the Bipartite Matching

Problem, we construct a flow network G' as shown in Figure 7.9. First we

direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node

in Y to t. Finally, we give each edge in G' a capacity of 1.

We now compute a maximum s-t flow in this network G'. We will discover

that the value of this maxn mum is equal to the size of the maximum matching

in G. Moreover, our analysis will show how one can use the flow itself to

recover the matching.

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities
equal to 1.
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ALGORITHM
1. MAKE NEW G’
FROM INPUT G.

2. RUN FF ON G’

3. OUTPUT ALL MIDDLE EDGES
WITH FLOW F(E)=1.





CORRECTNESS
IF G HAS A MATCHING OF SIZE K, THEN



CORRECTNESS
IF G’ HAS A FLOW OF K, THEN



INTEGRALITY THEOREM
IF CAPACITIES ARE ALL INTEGRAL, THEN 



CORRECTNESS
IF G’ HAS A FLOW OF K, THEN G HAS K-MATCHING.



RUNNING TIME
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EDGE-DISJOINT PATHS
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ANALYSIS
IF G HAS K DISJOINT PATHS, THEN 



ANALYSIS
IF G’ HAS A FLOW OF K, THEN 
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vertex-disjoint paths



baseball elimination
W L Left A P N M

ATL 83 71 8 - 1 6 1

PHL 80 79 3 1 - 0 2

NY 78 78 6 6 0 - 0

MONT 77 82 3 1 2 0 -

Against



baseball elimination
W L Left N B Bo T D

NY 75 59 28 3 8 7 3

BAL 71 63 28 3 2 7 4

BOS 69 66 27 8 2

TOR 63 72 27 7 7

DET 49 86 27 3 4

Against
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ny-ba

ny-bo

ny-to

ba-bo
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