

1. what is the general approach to solving a max-flow problem?
finding augineting pathic in residua graphs.
2. when FF finishes, how do we know the answer is correct?

Because we can identify a cut associded with the resulting flow such that $|f|=\|S, T\|$. By MAX-flow-mincut hm, this $\Rightarrow f$ is max. userid:

Max flow

Min Cut

FORD-FULKERSON

$$
\begin{aligned}
& \text { Initialize } \frac{f(u, v) \leftarrow 0 \forall u, v}{\text { while exists an augmenting path } p \text { in }} G_{f} \\
& \qquad \underline{\text { aUGMENT } f \text { with } c_{f}}(p)=\min _{(u, v) \in p} c_{f}(u, v)
\end{aligned}
$$

why does FF work? (high level)

EDMONDS-KARP

$$
\begin{aligned}
& \text { Initialize } f(u, v) \leftarrow 0 \forall u, v \\
& \text { While exists an augmenting path } p \text { in } G_{f} \xlongequal{\text { (use BFS to find it) }} \begin{array}{l}
\text { aUGMENT } f \text { with } c_{f}(p)=\min _{(u, v) \in p} c_{f}(u, v)
\end{array}
\end{aligned}
$$

FOR EVERY AUGMENTING PATH, SOME EDGE IS CRITICAL.

CRITICAL EDGES ARE REMOVED IN NEXT RESIDUAL GRAPH.

KEY IDEA: HOW MANY TIMES CAN AN EDGE BE CRITICAL?

e becomes
critical
Outline of the argument

first time (u, v) is critical:

time i+1: (u,v) is critical: $\quad \delta_{i+1}(s, v) \geq \delta_{i}(s, u)+1$

time j: Edge (u,v) STRIKES BACK

time $\mathrm{i}+\mathrm{r}:(\mathrm{u}, \mathrm{v})$ is critical:

$$
\delta_{i+1}(s, v) \geq \delta_{i}(s, u)+1
$$

time j: Edge (u,v) STRIKES BACK

time j: Edge (u,v) STRIKES BACK

$$
\begin{aligned}
\delta_{i+1}(s, v) & \geq \delta_{i}(s, u)+1 \\
\delta_{j}(s, u) & =\delta_{j}(s, v)+1
\end{aligned}
$$

time k : RETURN OF THE (u, v) critical

QUESTION: How many times can (uv) be critical?
\Rightarrow edge e can become critical $\leq \frac{\sqrt{2}}{2}$ time
b / c after $\frac{J}{2}$ times $\delta(5, u) ? V$,
thus e cannot be on a simple path free $S \sim t$.
edge critical only $\quad \sqrt{2}$ times.
there are only $\quad E \quad$ edges.
ergo, total \# of augmenting paths:

$$
\frac{E V}{2}
$$ time to find an augmenting path:

$$
\theta(E+U) \quad(B F S)
$$

total running time of $\mathrm{E}-\mathrm{K}$ algorithm:

$$
\theta\left(E^{2} U\right)
$$

ff

APPLICATIONS OF MAX FLOW

Bipartite
 Matchings

MAXIMUM BIPARTITE MATCHING

MAXIMUM BIPARTITE MATCHING

BIPARTITE MATCHING
problem: Given a graph $\left(L_{T}, R_{C} E\right)$, find the largest set rods
of edges $M \subseteq E$ such that
each vertex is incident to at mort one edge in M.

(1) $\theta(u)$
(2) \qquad
(3) $\theta(E+v)$

ALGORITHM

I. MAKE NEW G' FROM INPUT G.
2. RUN FF ON G'
3. OUTPUT ALL MIDDLE EDGES WITH FLOW $\mathrm{F}(\mathrm{E})=\mathrm{I}$.

Why does this work??

Need to show:
G has a matching $|M|=K \Leftrightarrow G^{\prime}$ has MaxFlow K.

CORRECTNESS
$\stackrel{\mu}{\operatorname{IF} \text { G HAS A mATCHING OF SIZE K, THEN }} \underset{\sim}{\Rightarrow} G_{0}$ has a flow of K.
(1) for each edge $e=(x, y) \in M$, set $\quad f(e)=1$ in G.

$$
\begin{aligned}
& f(s, x)=1 \\
& f(y, t)=1
\end{aligned}
$$

(2) Verify that this is a prows.
flow constraint capacity constraint
$|m|=k \quad \Rightarrow$ outgoing flow free S is k

$$
\Rightarrow \quad|f|=k
$$

CORRECTNESS
IF G' HASA FLOW OF K, THEN G has a matching of size K. tricky example:

flow if I unit.

$$
C(e)=l \text { for all edges. }
$$

INTEGRALITY THEOREM
IF CAPACITIES ARE ALL INTEGRAL, THEN \exists a MAXFLOW that will be integral
(i.e all flow values will be integers)

Why is this true??
Consider what FF does. At the start, capacities are integral. t flow See this is true for the fint k iterations of the ff 100 p . On the next loop, the augmenting path will have an integer as the bottleneck edge:
\Rightarrow next residua graph will have integral capacities.
\Rightarrow flow will be integral

CORRECTNESS

IF G' HAS A FLOW OF K, THEN G HAS K-MATCHING.
U) Jan integral flow with valve K.
\Rightarrow since capacities are 1 , then the $f(e)=0$ or I
\Rightarrow Now, consider all middle edges $e=(x, y)$ sit. $f(e)=1$

$$
M=\{e \mid f(e)=1 \& e=(\underset{\sim}{x}(y)\}
$$

properties of flow,
flow constraint.
only ore edge only one edge form S to $x \rightarrow$, in M that touche, x.

RUNNING TIME
$\theta(E U)$
En E
\max flow $|f| \leq U$, by ff anayges, the

$$
\begin{gathered}
\text { sunning time is } \theta(t \cdot f+1) \\
\Rightarrow \theta(E \cdot U)
\end{gathered}
$$

EDGE-DISJOINT PATHS

ALGORITHM

ANALYSIS
IF G HAS K DISJOINT PATHS, THEN G) has a flow with value K.

If G has a flow of vale $k, \Rightarrow J$ disjoint paths firm s to t.

ANALYSIS

VERTEX-DISJOINT PATHS
(d)

- edge disjoint, but mot vertex disjoint

BASEBALL ELIMINATION

			Against				
	W	L	Left	A	P	N	M
ATL	83	71	8	-	1	6	I
PHL	80	79	3	1	-	0	2
NY	78	78	6	6	0	-	0
MONT	77	82	3	1	2	0	-

BASEBALL ELIMINATION

	W	L	Left	N	B	Against		
						Bo	T	D
NY	75^{76}	59	28		3	$8{ }^{(1)}$	7	37
BAL	7 PY 710	63	28	3		2	7	4
BOS	6976	66	27	78	2			
TOR	6370	72	27	707	76			
DET	49	86	$\underline{27}$	3	4			
	76							

BASEBALL ELIMINATION

	W	L	Left	N	B	Bo	T	D
NY	75	59	28		3	8	7	3
BAL	71	63	28	3		2	7	4
BOS	69	66	27	8	2			
TOR	63	72	27	7	7			
DET	49	86	27	3	4			

	W	L	Left	N	B	Bo	T	D
NY	75	59	28		3	8	7	3
BAL	71	63	28	3		2	7	4
BOS	69	66	27	8	2			
TOR	63	72	27	7	7			
DET	49	86	27	3	4			

