
L24
4102
4.19.2016

abhi shelat



http://i16.photobucket.com/albums/b20/safebuy/ak47/ak47-electric_lg.jpg

http://2.bp.blogspot.com/_NX4zcMNX4VE/Sb8MQfffllI/AAAAAAAAAL0/eu4J0dfFhJE/s400/gourmet-butter.jpg

Guns and butter



http://i16.photobucket.com/albums/b20/safebuy/ak47/ak47-electric_lg.jpg

http://2.bp.blogspot.com/_NX4zcMNX4VE/Sb8MQfffllI/AAAAAAAAAL0/eu4J0dfFhJE/s400/gourmet-butter.jpg

Guns and butter

max x + y
4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0



max x + y
4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0

Linear program



4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0

x

y



4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0

x

y



4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0

x

y



4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0

x

y



4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0

x

y



Certificate of optimality
max x + y
4x� y ⇥ 8
2x + y ⇥ 10

5x� 2y ⇤ �2
x, y ⇤ 0



40S 47 79 84 0675

KHACHIYAN

KARMARKAR





ussr
uk

fr
us



france

netherlands

belgium

poland

cz

aus
switz

lux

ussr
uk

fr
us



berlin



linear programming 
saved Berlin

image:stamford

image:history of air cargo



Stigler diet
calories 3000
protein 70g
calcium .8g
iron 19mg
vitamin A 5000iu
thiamine 1.8mg
riboflavin 2.7mg
niacin 18mg
ascorbic acid 75mg







Brownie Dumpling Espresso Roots
cost 5 2 3 8
cals 400 200 150 500
choc 3 2 0 0
sugar 2 2 4 4

fat 2 4 0 5
500 calories, 6 oz choc, 10 oz sugar, 8 oz fat requirements: 



shortest paths as LP

inputs:



ds = 0

max dt
d

y

� d

x

 l(x, y) 8e = (x, y) 2 E

shortest paths as LP



8

3

7

-3

5

9

-4

2

5

6

b

a -4

-12

e

d

fc 1

i

g

h

10

s
5

7

344

7

8

-8

dt = 30
ds = 0

max dt
d

y

� d

x

 l(x, y) 8e = (x, y) 2 E

0



G = (V, E) c : E� Z+(G, c, s, t)

max flow as lp

input: 



f (u, v) � c(u, v)

�
u

f (u, v) = �
w

f (v, w) �v

f (u, v) � 0

max Â
v

f (s, v)� Â
v

f (v, s)

max flow as lp

for (u,v) in E

for (u,v) in E



min-cost flow as lp

input: 

s t
1/
3

2/2

2/3

1/
2

1/2
2/31/11/3

0/1
2/2

2/3

dx : E� Z+G = (V, E) c : E� Z+(G, c, s, t)



min-cost flow as lp



min
e

xe · f (e)
f (e) � c(e)

f (e) � 0

�
u

f (u, v) = �
w

f (v, w)

min-cost flow as lp

X

v

f(s, v)�
X

v

f(v, s) = d



max
x � xici

� aijxi � bi

xi � 0

standard form



� aijxi � bi

xi � 0

min
x � xici

getting to standard form



xi � 0

� aijxi � bi

getting to standard form

max
x � xici



xi � 0

� aijxi = bi

getting to standard form

max
x � xici



� aijxi � bi

getting to standard form

max
x � xici

(non-negative)
ie, what if there 

is 
no constraint

on x?



zero-sum games
! " #

!
"
#



zero-sum games

3,-3 -1,1

-2,2 1,-1

ROWENA

COLIN



zero-sum games

3,-3 -1,1

-2,2 1,-1

ROWENA

COLIN



r1

r2

zero-sum games

3 -1

-2 1

ROWENA

COLIN



r1

r2

zero-sum games

3 -1

-2 1

ROWENA

COLIN

�

i,j

Gijricj



zero-sum games

3 -1

-2 1
rowena

colin

rowena announces 
her strategy first:



min{ 3r1 � 2r2, �r1 + r2 }(r1, r2)

zero-sum games

3 -1

-2 1
rowena

colin

rowena announces 
her strategy first:



max z
z ⇥ 3r1 � 2r2

z ⇥ �r1 + 2r2

r1, r2 � 0

zero-sum games

3 -1

-2 1
rowena

colin

rowena announces 
her strategy first:

r1 + r2 = 1



(c1, c2)

zero-sum games

rowena

colin

colin announces 
his strategy first:

3 -1

-2 1



(c1, c2) max{3c1 � c2, �2c1 + c2}

zero-sum games

rowena

colin

colin announces 
his strategy first:

3 -1

-2 1

pick so as to min



�3c1 + c2 + w ⇥ 0
2c1 � c2 + w ⇥ 0

c1 + c2 = 1
c1, c2 ⇥ 0

min w

zero-sum games

rowena

colin

colin announces 
his strategy first:

3 -1

-2 1



zero-sum games

rowena

colin
3 -1

-2 1

�3r1 + 2r2 + z ⇥ 0
r1 � r2 + z ⇥ 0

r1 + r2 = 1
r1, r2 ⇤ 0

max z



�3r1 + 2r2 + z ⇥ 0
r1 � r2 + z ⇥ 0

r1 + r2 = 1
r1, r2 ⇤ 0

zero-sum games

rowena

colin
3 -1

-2 1max z
�3c1 + c2 + w ⇥ 0

2c1 � c2 + w ⇥ 0
c1 + c2 = 1

c1, c2 ⇥ 0

min w



zero-sum games

rowena

colin

value of the game is : 1/7

3/7

4/7

2/7 5/7
3 -1

-2 1



max

x

min

y

X

i,j

G

ij

x

i

y

j

= min

y

max

x

X

i,j

G

ij

x

i

y

j







H-representation 
begin 
24 13 rational 
0 0 0 0 0 0 1/2 5/12 1/3 1/4 1/6 1/12 -1 
0 0 0 0 0 7/22 5/22 5/33 1/11 1/22 1/66 0 -1 
0 0 0 0 0 7/44 1/11 1/22 1/55 1/220 0 0 -1 
0 0 0 0 14/99 7/99 1/33 1/99 1/495 0 0 0 -1 
0 0 0 0 7/99 7/264 1/132 1/792 0 0 0 0 -1 
0 0 0 1/11 1/33 1/132 1/924 0 0 0 0 0 -1 
0 0 0 1/22 1/99 1/792 0 0 0 0 0 0 -1 
0 0 1/11 1/55 1/495 0 0 0 0 0 0 0 -1 
0 0 1/22 1/220 0 0 0 0 0 0 0 0 -1 
0 1/6 1/66 0 0 0 0 0 0 0 0 0 -1 
0 1/12 0 0 0 0 0 0 0 0 0 0 -1 
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 
-1 1 1 1 1 1 1 1 1 1 1 1 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
end 
maximize 
0 0 0 0 0 0 0 0 0 0 0 0 1 



* Compiled for Rational Exact Arithmetic with GMP 
*cdd LP Result 
*cdd input file : 12.ine  (24 x 13) 
*LP solver: Dual Simplex 
*LP status: a dual pair (x, y) of optimal solutions found. 
*maximization is chosen. 
*Objective function is 
 0 + 0 X[1] + 0 X[2] + 0 X[3] + 0 X[4] + 
 0 X[5] + 0 X[6] + 0 X[7] + 0 X[8] + 0 X[9] + 
 0 X[10] + 0 X[11] + 1 X[12] 
*LP status: a dual pair (x, y) of optimal solutions found. 
begin 
  primal_solution 
  1 :  280/1643 
  2 :  4217/14787 
  3 :  130/477 
  4 :  280/1643 
  5 :  120/1643 
  6 :  140/4929 
  7 :  0 
  8 :  0 
  9 :  0 
  10 :  0 
  11 :  0 
  12 :  70/4929 
  dual_solution 
  24 :  383/29574 
  21 :  599/73935 
  20 :  74/14787 
  22 :  1003/98580 
  23 :  173/14787 
  1 :  74/4929 
  3 :  99/1643 
  5 :  264/1643 
  7 :  462/1643 
  9 :  1540/4929 
  11 :  280/1643 
  12 :  70/4929 
  optimal_value : 70/4929 
end 
*number of pivot operations = 8 
*Computation starts     at Tue Apr 19 12:54:03 2016 
*            terminates at Tue Apr 19 12:54:03 2016 
*Total processor time = 0 seconds 
*                     = 0h 0m 0s 
closing the file 12.lps 
closing the file 12.ddl



max cT ⇤x
A⌅x � ⌅b

⇥x � 0

how to “evaluate” an lp



definitions

feasible point:

vertex:

neighbor of vertex v:



simplex

init:

while
do:





Because f is a max flow, then Gf has no more augmenting paths. Define the set S
to be the nodes that can be reached from s that have positive residual capacity, i.e.

S = {v | ⌃p from s � v, c f (p) > 0}

Define T = V � S. It follows that | f | = ||S, T|| since (S, T) is a cut. Now consider
any pair (u, v) such that u ⇧ S, and v ⇧ T. Observe that c f (u, v) = 0 because
otherwise v would be in S. Therefore

c(u, v)� f (u, v) = 0 =⌅ c(u, v) = f (u, v)

Therefore
| f | = �

v⇧S
�

w⇧T
f (u, v) = �

v⇧S
�

w⇧T
c(u, v) = ||S, T||

This implies that (S, T) is a minimal cut since | f | ⇥ ||S, T|| for all cuts.

8 Linear Programming

max 2x1 + 5x2

2x1 � x2 ⇥ 4
x1 + 2x2 ⇥ 9
�x1 + x2 ⇥ 3

x1 ⇤ 0
x2 ⇤ 0

10



Because f is a max flow, then Gf has no more augmenting paths. Define the set S
to be the nodes that can be reached from s that have positive residual capacity, i.e.

S = {v | ⌃p from s � v, c f (p) > 0}

Define T = V � S. It follows that | f | = ||S, T|| since (S, T) is a cut. Now consider
any pair (u, v) such that u ⇧ S, and v ⇧ T. Observe that c f (u, v) = 0 because
otherwise v would be in S. Therefore

c(u, v)� f (u, v) = 0 =⌅ c(u, v) = f (u, v)

Therefore
| f | = �

v⇧S
�

w⇧T
f (u, v) = �

v⇧S
�

w⇧T
c(u, v) = ||S, T||

This implies that (S, T) is a minimal cut since | f | ⇥ ||S, T|| for all cuts.

8 Linear Programming

max 2x1 + 5x2

2x1 � x2 ⇥ 4
x1 + 2x2 ⇥ 9
�x1 + x2 ⇥ 3

x1 ⇤ 0
x2 ⇤ 0

10



Because f is a max flow, then Gf has no more augmenting paths. Define the set S
to be the nodes that can be reached from s that have positive residual capacity, i.e.

S = {v | ⌃p from s � v, c f (p) > 0}

Define T = V � S. It follows that | f | = ||S, T|| since (S, T) is a cut. Now consider
any pair (u, v) such that u ⇧ S, and v ⇧ T. Observe that c f (u, v) = 0 because
otherwise v would be in S. Therefore

c(u, v)� f (u, v) = 0 =⌅ c(u, v) = f (u, v)

Therefore
| f | = �

v⇧S
�

w⇧T
f (u, v) = �

v⇧S
�

w⇧T
c(u, v) = ||S, T||

This implies that (S, T) is a minimal cut since | f | ⇥ ||S, T|| for all cuts.

8 Linear Programming

max 2x1 + 5x2

2x1 � x2 ⇥ 4
x1 + 2x2 ⇥ 9
�x1 + x2 ⇥ 3

x1 ⇤ 0
x2 ⇤ 0

10



Because f is a max flow, then Gf has no more augmenting paths. Define the set S
to be the nodes that can be reached from s that have positive residual capacity, i.e.

S = {v | ⌃p from s � v, c f (p) > 0}

Define T = V � S. It follows that | f | = ||S, T|| since (S, T) is a cut. Now consider
any pair (u, v) such that u ⇧ S, and v ⇧ T. Observe that c f (u, v) = 0 because
otherwise v would be in S. Therefore

c(u, v)� f (u, v) = 0 =⌅ c(u, v) = f (u, v)

Therefore
| f | = �

v⇧S
�

w⇧T
f (u, v) = �

v⇧S
�

w⇧T
c(u, v) = ||S, T||

This implies that (S, T) is a minimal cut since | f | ⇥ ||S, T|| for all cuts.

8 Linear Programming

max 2x1 + 5x2

2x1 � x2 ⇥ 4
x1 + 2x2 ⇥ 9
�x1 + x2 ⇥ 3

x1 ⇤ 0
x2 ⇤ 0

10



Because f is a max flow, then Gf has no more augmenting paths. Define the set S
to be the nodes that can be reached from s that have positive residual capacity, i.e.

S = {v | ⌃p from s � v, c f (p) > 0}

Define T = V � S. It follows that | f | = ||S, T|| since (S, T) is a cut. Now consider
any pair (u, v) such that u ⇧ S, and v ⇧ T. Observe that c f (u, v) = 0 because
otherwise v would be in S. Therefore

c(u, v)� f (u, v) = 0 =⌅ c(u, v) = f (u, v)

Therefore
| f | = �

v⇧S
�

w⇧T
f (u, v) = �

v⇧S
�

w⇧T
c(u, v) = ||S, T||

This implies that (S, T) is a minimal cut since | f | ⇥ ||S, T|| for all cuts.

8 Linear Programming

max 2x1 + 5x2

2x1 � x2 ⇥ 4
x1 + 2x2 ⇥ 9
�x1 + x2 ⇥ 3

x1 ⇤ 0
x2 ⇤ 0

10


