

4102
 4.19.2016

abhi shelat

Guns and butter

Guns and butter

$\max x+{ }^{10} y$

$$
\begin{aligned}
\frac{4 x}{2}-y & \leq 8 \leftarrow \text { nationdn } \\
2 x+y & \leq 10 \\
m x-2 y & \geq-2 \\
x, y & \geq 0
\end{aligned}
$$

Linear program

$$
\begin{aligned}
\max x & +y \\
4 x-y & \leq 8 \\
2 x+y & \leq 10 \\
5 x-2 y & \geq-2 \\
x, y & \geq 0
\end{aligned}
$$

L

generalization
to many vaniwhle

Certificate of optimality

$\max x+y$

$$
\begin{array}{rlrl}
4 x-y & \leq 8 \\
2 x+y & \leq 10 \cdot 7 & 14 x+7 y & \leq 70 \\
5 x-2 y & \geq-2 \cdot-1 & -5 x+2 y & \leq 2 \\
x, y & \geq 0 & & 9 x+9 y \leq 72
\end{array}
$$

$x+y \leq 8$

45

linear programming saved Berlin

Stigler diet

calories	3000
protein	70 g
calcium	. 8 g
iron	19 mg
vitamin A	5000iu
thiamine	1.8 mg
riboflavin	2.7 mg
niacin	18 mg
ascorbic acid	75 mg

Table A. Nutbitive Valuke of Common Foons pge Dollar of Expmnditure, Augugr 15, 1939

Commodity	Uait	Price Aug. 15, 1989 (cents)	Edible Weight per 81.00 (grams)	Calories $(1,000)$	Protein (gramas)	Calleiara (grame)	$\begin{gathered} \text { Iron } \\ \text { (mge.) } \end{gathered}$	$\begin{gathered} \text { Vitsmin } \mathrm{A} \\ (1,000 \\ 1.0 .) \end{gathered}$	$\begin{aligned} & \text { Thismine } \\ & (\mathrm{mg}) \end{aligned}$	Riboflavin (wig.)	Niscin (mg.)	Ascortic Acid (mg.)
**. Wheat Flour (Ruriched)	10 lb	98.0	12,000	44.7	1,411	2.0	365		35.4	35.8	441	
\&. Maenroni	1 lb .	14.1	3,217	11.5	418	. 7	54		3.2	1.9	65	
3. Wheat Cereal (Eeriched)	$9880 \times$	24.9	5,280	11.8	377	14.4	175		14.4	8.8	114	
4. Corn Flakes	8 oz	7.1	3,104	11.4	258	. 1	86		15.5	2.8	68	
5. Cora Mesl	1 lb .	4.6	9,851	85.0	807	1.7	99	30.9	17.4	7.9	105	
8. Hominy Grits	24 oz,	8.5	8,005	88.8	680	. 8	80		10.6	1.6	110	
7. Rice ${ }^{\text {8 }}$,	1 lb .	7.5	6,018	21.9	460	5.6	41		9.0	4.3	60	
8. Rolled Oats (Enriched)	$1 \mathrm{l}{ }^{1} \mathrm{lb}$,	7.1	6, 359 5,748	25.8 15.0	S077	5.1 8.5	561 115		97.1 15.8	8.9	${ }^{64}$	
10. Whole Wheat Bread	1 fb .	9.1	4,985	12.8	484	2.6 9.7	115		15.8 15.8	8.5 6.4	126 100	
11. Pre Bresd	1 lb 。	9.2	4,930	18.4	489	1.1	88		9.9	8.0	66	
12. Pound Cake	1 lb .	24.8	1,829	8.0	130	-4	91	18.9	\$. 8	3.0	17	
13. Soda Crackery	1 lb .	15.1	3,004	18.6	288	. 5	50					
14. Milk	1 qL	11.0	8,907	6.1	310	10.5	18	16.8	4.0	16.0	,	177
**15. Evaporsted Mik (can)	14.08.	6.7	6,095	8.4	489	15.1	8	20.0	8.0	98.5	11	60
16. Butter	1 lb .	30.8	1,473	10.8	${ }_{17}^{9}$. $\%$	8	44.9		4	4	
*17. Oleomargarine	1 b	16.1	9,817	90.6	17	${ }^{6}$	${ }^{6}$	55.8	- $\frac{1}{8}$			
**10. Ehete (Cheddar)	1 l doz.	32.8	1,357 1,574	\%. 7.4	288	18.0	88	${ }_{28.1}^{18.6}$	2.8	0.5 10.5	1	
90. Сгеars	4 pt .	14.1	1,489	3.5	49	1.7	3	15.9	. 6	9.5		17
11. Peanut Butter	1 lb .	17.9	Q,534	15.7	051	1.0	48		9,8	8.1	471	
92. Msyonnaise	4 pt.	18.7	1,198	8.6	18	. 2	8	t. 7	. 4	. 5		
23. Crisco	1 lb .	90.8	2, 254	10.1								
24. Lard	1 B.	9.8	4,628	41.7				,		. 5	5	
25. Sirloin Steak	1 b	39.6	1,145**	4.9	156	1	54	. 9	2. 1	9.9	69	
96. Round Steak	1 lb .	56.4	1,945*******	2.8	214	1	32	. 4	8.5	2. 4	87	
97. Rib Rosst	1 l	89.8	1,559**	3.4	815	. 1	53			9.0		
29. Chuek Roast	1 m	23.6 14.6	8,007**	8.6	800	. 2	46	4	1.0	4.6	180	
so. Liver (Beef)	1 lb	14.6 $\mathbf{1 0 . 8}$	3,107*****	8.6 9.8	804	. 7	198	169.9	0.98	50.8	316	58.5
S1. Leg of Lamb	1 lb .	27. 8	1,615*	3.1	245	, 1	20		2.8	3.8	86	
Se. Larab Chops (Tib)	1 lb .	\$6.6	1,259*	3.8	140	. 1	15		1.7	8. 7	54	
5s, Pork Chops	1 lb .	30.7	1,477*	3.5	198	. 2	30		17.4	2.7	60	
34. Pork Loin Roast	1 b .	\$4.e	1,874*	4.4	840	. 8	57		18.	3.6	70	
86. Bacos	1 lb .	25.6	1,772*	10.4	159	. 2	23		1.8	1.8	71	
se. Ham-sinoked	1 lb	87.4	1,655*	8.7	412	. 8	31		9.9	3.5	50	
87. Salt Pork	1 b .	16.0	8,895*	18.8	164	.1	20		1.4	1.8		
33, Rossting Chicken	1 lb	30.3	1,497*	1.8	184	. 1	30	. 1	. 9	1.8	${ }^{65}$	45
39. Venil Cutleta (cas)	1 lb .	48.8	1,079*	1.7	156	8. 11	24 45		1.4	9.4	57	
41. Apples, Pink (can)	16 as, 1 lb	15.0 4.4	S, 489	5.8 5.8	705 87	6.8	45 36	3.5 7.5	1.0	4.8	5	
42. Banknas	1 lb .	6.1	4,969	4.9	60	. 4	30	17.4	2,5	3.5	98	498
45. Lemoss	1 dor.	86.0	2,389	1.0	21	. 6	14		. 5		4	959
44. Oranges	1 dos.	30.9	4,439	9.9	40	1.1	18	11.1	5.6	1,3	10	1,998
*45, Greete Besns	1 lb	7.1	5,750	2. 4	138	9.7	80	69.0	4.3	5.8	37	868
${ }^{* * 44 .}$. Cabhage	1 bb .	3.7	8,049	4.6	195	5.0	30	7.2	9.0	4.5	96	5,389
47. Carnote	1 busch	4.7	3,090	\%.7	73	9.8	43	188.5	6.1	4.3	89	608
48. Celery 49. Iettuee	1 stalk	7.8 8.2	3,915 9,257	. 9	${ }_{21}{ }^{2}$	3.0 1.1	89	112.4	1.6	1.4 3.4	11	813 449
*50, Obions	1 lb .	5.6	11,84	5.8	166	8.8	59	16.6	4.7	5.9	21	1,186

${ }_{*}^{* 51 .}$ Potatora	15 mb .	34.0	18,810		14.5		396	1.8	118	6.7	99.4		7.1		198	R,542
*59, Spinach	1 lb .	8.1	4,509		1.1		108		138	918.4	8.7		13.8		38	Q,755
*5SS. Smeet Potstoes	1 lb .	5.1	7,849		9.6		198	1.7	54	\$00.7	8.4		6.4		88	1,912
54. Peaches (can)		16.8	4,884		8.7		90	4	10	91.5	. 5		1.0		91	196
55. Pears (can)	No. $\frac{1}{1}$	90.4	4,090		3.0		8	. 3	8	. 8	. 8		. 8		5	81
58. Pinespple (can)	No. 2 ;	21,9	3,993		9.4		16	. 4	8	Q. 0	9.8		. 8		7	999
37. Aapkragus (can)	No. ${ }^{\text {P }}$	97.7	1,945		4		33	. 9	18	18.9	1.4		4.1		17	272
68, Green Beana (can)	No. 2	10.0	5,388		1.0		54	9.0	65	65.9	1.6		4.3		38	451
59. Pork and Beans (can)	16 oz .	7.1	6,380		7.5		984	4.0	134	3.5	8.3		7.7		56	
80. Corn (can)	No. 2	10,4	5,451		5.8		136	. 2	16	12.0	1.6		Q. 7		42	\%18
61. Pean (can)	No. 2	18.8	4,100		2. 3		198	. 6	45	84.9	4.9		9,5		37	570
eq. Tomstoes (can)	No. 2	8.6	8,283		1.3		Es	. 7	35	53.2	3.4		2. 5		3	1,253
64. Tomato Soup (ean)	104, oz,	7.8	8,017		1.6		71	. 7	43	57.9	8.8		8.4		97	802
*64. Peaches, Dried	1 lt .	15.7	2,989		8.5		st	1.7	173	86.8	1.8		4.3		55	57
*65. Pruses, Dried	15 lb .	9.9	4,284		18.8		90	2.5	154	85.7	3.9		4.3		65	957
69, Ravisa, Dried	15 ca ,	8.4	4,524		13.5		104	P. 5	19\%	4.5	6.3		1.4		24	136
**es. Peas, Drima Brans, Dried	1 lb .	7.9	5,742		20.0		,367	4.2	345	2.9	98.7		18.4		168	
**es, Lita Brans, Dried	1 lb .	8.9	8,007		17.4		,025	8.7	459	5.1	*8. ${ }^{\text {c }}$		98,2		93	
**9. Nayy Beens, Dried	1 b .	8.9	7,688		25.9		,691	11.4	798		38.4		94.6		817	
${ }^{70}$. Colfee	1 lb .	28.4	2,025								4.0		5.1		50	
$71 . \mathrm{Te}$	tibs	17,4	65t		-		-						2. 3		48	
72. Coeot	$8{ }^{\text {of. }}$	8.6	9,657		8.7		237	3.0	79		¢.0		11.9		40	
73. Chocolate	8 oz	18.9	1,400		8.0		77	1.3	se		. θ		8.4		14	
75. Sugaz	10 fb	51.7	8,773		85.0											
75, Corn Sirup 76. Molawea	34 ca .	15.7	4,968		14.7		-	, 5	74						5	
7\%. Molaweberry Prewerves	18 ot	13.6	3,730		9.0			10.3	94		1.9		7.5		146	
77. Strswberry Prewerves	1 lb .	q0. 5	2,213		6.4		11	. 4	7	. 2	. 2		. 4		3	
${ }^{*}$ Quantitiea ineluding inedibie portions.																
Table B. Nutmitive Values of Common Foods rer Dollar of Exprenditure, Auguet 15, 194																
Commodity	$\begin{gathered} \text { Price } \\ \text { Aug. } 15, \\ \text { (ecots } \end{gathered}$			Protein (grama)		Calefum (grams)		$\begin{aligned} & \text { Iron } \\ & \text { (mg. } \end{aligned}$	$\begin{aligned} & \text { Vitamin A } \\ & \text { (1,000 I.U. }) \end{aligned}$	$\begin{gathered} \text { Thismine } \\ (\text { mg. }) \end{gathered}$		iboflavis (mg.)		$\begin{gathered} \text { Nischn } \\ (\mathrm{mg} .) \end{gathered}$		Ascarbic Acid (mg.)
1. Wheat Flour	64.6			786		1.1		208		30.9		18.6		246		
3. Wheat Cereal	83, 6			398 655		18.0		188 79	*8, 8	15.0		9.8		119		
8. Ralled Onta	9.9			931		3.7		46		\$5. 5		6.4		46		
15. Evaporated Mi3k	10.0			988		10.1		6	17.4	2.0		15.7		7		40
40. Cubakge	4.9			94		8.0		87	3.4	6.8		3.4		80		4,054
51. Potators	80.1			145		. 8		50	2.8	12.5		3.0		84		1,071
58. Epinsch	11.6			74				96	641.3	4.0		9.6		23		1,944
5s. Seeet Potatora	10.9			87		1.1		+19	180.5	9.5		$\underline{9.8}$		368080		793
69. Ninyy Beans	10.8			924		6.2		438		21.0		18.4		119		
78. Sugar	87.0 18.8			470		18.1		$\stackrel{\rightharpoonup}{40}$								
79. Beeta ${ }^{\text {a }}$ (${ }^{\text {a }}$	7.8			85		1.1		70	138.3	9.9		8.8		89		885
80. Liver (Pork)' ${ }^{\text {d }}$	\$1.9			408		. 2		518	145.0	10.4		51.5		674		530

UUA diet

	x_{1}	x_{2}	x_{3}	x_{4}
	Brownie	Dumpling	Espresso	Roots
cost	5	2	3	8
cals	400	200	150	500
choc	3	2	0	0
sugar	2	2	4	4
fat	2	4	0	5

requirements: $\quad 500$ calories, 6 oz choc, 10 oz sugar, 8 oz fat
MIN $5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4}$
$\underline{\underline{L P}}$
shortest paths as \square
inputs: $G=\left(V_{1} E\right), S$, and $l(e) \rightarrow \mathbb{N}^{+}$
opts: du for each $v \in V$ du= length of the shortest path from $s \sim u$
shortest paths as LP

$$
\left({\max d_{t}}_{\underline{d_{y}-d_{x} \leq l(x, y)}}^{\underline{\underline{d_{s}=0}}} \quad d_{\underline{t}}=\sum_{v \in v} d_{v}\right.
$$

$d y \leqslant d x+l(x y)$
$\max d_{t}$
$d_{y}-d_{x} \leq l(x, y) \quad \forall e=(x, y) \in E$
$\mathrm{dt}=30$
max flow as lp
input:

$$
\begin{array}{ll}
(G, c, s, t) & G=(V, E) \subseteq: E \rightarrow \mathbb{Z}_{+} \\
\max \quad \sum_{v} f(s, v)-\sum_{v} f(v, s) \\
& f(e)<c(e) \quad \text { for every } e \in E \\
\sum_{v \in V} f(u, v)-\sum_{v \in v} f(v, u)=0 \text { for } u \in V-\{s, t\} \\
\quad f(u, v) \geqslant 0
\end{array}
$$

max flow as Ip

$$
\max \sum_{v} f(s, v)-\sum_{v} f(v, s)
$$

$$
\begin{array}{ll}
f(u, v) \leq c(u, v) & \text { for }(u, v) \text { in } \mathrm{E} \\
\sum_{u} f(u, v)=\sum_{w} f(v, w) & \forall v \\
f(u, v) \geq 0 & \text { for }(u, v) \text { in } \mathrm{E}
\end{array}
$$

min-cost flow as Ip

input:

min-cost flow as lp
$\min f_{e} \cdot x_{e} \longrightarrow$ flow or for that edge
st.

$$
\sum_{v \in V} f(s, v)-\sum_{v \in v} f(u, s)=d
$$

(same constraints as previous flow)

min-cost flow as Ip

$$
\begin{gathered}
\min _{e} x_{e} \cdot f(e) \\
f(e) \leq c(e) \\
f(e) \geq 0
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{u} f(u, v)=\sum_{w} f(v, w) \\
& \sum_{v} f(s, v)-\sum_{v} f(v, s)=d
\end{aligned}
$$

!s standard form

$$
\left\{\begin{array}{l}
\underline{\max } \sum \\
\frac{\sum a_{i j} x_{i} \leq b_{i}}{x_{i} \geq 0}
\end{array}\right.
$$

$$
\begin{aligned}
& x=\left(x_{1} \ldots x_{n}\right) \\
& c=\left(c_{1} \ldots c_{n}\right) \text { given }
\end{aligned}
$$

$$
\max x^{t} \cdot c
$$

getting to standard form

$$
\min _{\substack{\bar{x} \\ \sum a_{i, i} \leq b_{i} \\ x_{i} \geq 0}} \sum x_{i} c_{i} \longrightarrow \max _{x} \sum-x_{i} \cdot c_{i}
$$

getting to standard form

$\max _{x} \sum x_{i} c_{i}$

getting to standard form

$$
\begin{array}{ll}
\max _{x} \sum x_{i} c_{i} & \sum a_{i j} x_{i} \leq b_{i} \\
\sum a_{i, j}=b_{i} \\
i_{i \geq 0} & \sum-a_{i j} x_{i} \leq b_{i}
\end{array}
$$

getting to standard form

zero-sum games

zero-sum games

COLIN

zero-sum games

COLIN

zero-sum games

$$
\begin{gathered}
3 r_{1} c_{1}+\left(-1 r_{1} \cdot c_{2}+(-2) r_{2} \cdot c_{1}\right. \\
+r_{2} c_{2} \\
T \text { valve of the } \\
\text { game. }
\end{gathered}
$$

zero-sum games

COLIN

ROWENA

r_{1}	3	

$$
\sum_{i, j} G_{i j} r_{i} c_{j}
$$

zero-sum games

her strategy first:

$$
\begin{gathered}
\max \quad \min \left\{\begin{array}{c}
3 r_{1}-2 r_{2} \\
z
\end{array}\right. \\
\max z \\
z \equiv 3 r_{1}-2 r_{2} \\
z \leq-r_{1}+r_{2} \\
r_{1}+r_{2}=1
\end{gathered}
$$

zero-sum games

rowena

rowena announces | 3 | -1 |
| :---: | :---: |
| -2 | 1 |

her strategy first:

$$
\left(r_{1}, r_{2}\right) \quad \min \left\{3 r_{1}-2 r_{2},-r_{1}+r_{2}\right\}
$$

zero-sum games

	colin	
3 $-I$ rowena -2		

her strategy first:

$$
\begin{gathered}
\text { na } \\
z \leq 3 r_{1}-2 r_{2} \\
z \leq-r_{1}+2 r_{2} \\
r_{1}+r_{2}=1 \\
r_{1}, r_{2} \geq 0
\end{gathered}
$$

zero-sum games

zero-sum games

	colin	
3 $-I$ cowena colin announces	-2	1

pick $\underline{\underline{\left(c_{1}, c_{2}\right)} \text { so as to } \min \underline{\max \left\{3 c_{1}-c_{2},-2 c_{1}+c_{2}\right\}}}$

$$
\begin{aligned}
& \min w \\
& w \geqslant 3 c_{1}-c_{2} \\
& w \geqslant-2 c_{1}+c_{2}
\end{aligned}
$$

zero-sum games

zero-sum games

$$
\begin{aligned}
-3 r_{1}+2 r_{2}+z & \leq 0 \\
r_{1}-r_{2}+z & \leq 0 \\
r_{1}+r_{2} & =1 \\
r_{1}, r_{2} & \geq 0
\end{aligned}
$$

zero-sum games

zero-sum games

$$
\max _{x} \min _{y} \sum_{i, j} G_{i j} x_{i} y_{j}=\min _{y} \max _{x} \sum_{i, j} G_{i j} x_{i} y_{j}
$$

Welcome to the cdd and cddplus Homepage

Last update: May 15, 2015

Currently, the C-library version cddlib of cdd packages is the only one being updated, while standalone codes cdd and cddplus are still useful. To know what cdd, cddplus and cddlib are, please read
cddplus readme
cddlib readme
Manuals (html version):
cdd/cdd+ manual
cddlib manual
Get source codes:
cdd/cddpuls directory click here
cdd package cdd-061 a.tar.gz
cddplus package cdd+-077a.tar.gz (to be compled with g++ 4.1. With more recent g++, try
patch) New. With g++ 3.1, use cdd+-077.tar.gz
cddlib package cddlib-094h.tar.gz NEW
To know the implementation:
"The double description revisited" gzipped ps file
To learn the fundamental concepts of Convex Hull, Vornonoi, Delaunay, etc.:
"Polyhedral Computation FAQ" (still experimental) html version or pdf file
Links to cdd/cdd+/cddlib users and more. New

H-representation
begin
2413 rational
$\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 1 / 2 & 5 / 12 & 1 / 3 & 1 / 4 & 1 / 6 & 1 / 12 & -1\end{array}$
$000007 / 225 / 225 / 331 / 111 / 221 / 660-1$
$000007 / 441 / 111 / 221 / 551 / 22000-1$
$000014 / 997 / 991 / 331 / 991 / 495000-1$
$00007 / 997 / 2641 / 1321 / 7920000-1$
$0001 / 111 / 331 / 1321 / 92400000-1$
$0001 / 221 / 991 / 792000000-1$
$001 / 111 / 551 / 4950000000-1$
$001 / 221 / 22000000000-1$
$01 / 61 / 66000000000-1$
$01 / 120000000000-1$
$1-1 \begin{array}{llllllllllll}1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 0\end{array}$
-11111111111111111110
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
end
maximize
0000000000001
cdd input file : 12.ine
*LP solver: Dual Simplex
*LP status: a dual pair (x, y) of optimal solutions found.
*maximization is chosen.
*Objective function is
$0+0 \mathrm{X}[1]+0 \mathrm{X}[2]+0 \mathrm{X}[3]+0 \mathrm{X}[4]+$
$0 X[5]+0 X[6]+0 X[7]+0 X[8]+0 X[9]+$
$0 X[10]+0 X[11]+1 X[12]$
*LP status: a dual pair (x, y) of optimal solutions found.
begin
primal solution
280/1643
4217/14787
$3: 130 / 477$
4 : 280/1643
$5: 120 / 1643$
6 : 140/4929
7 : 0
8 : 0
9: 0
11 : 0
12 : 70/4929
duat_solution
24: 383/29574
: 599/73935
20 : 74/14787
22 : 1003/98580
23 : 173/14787
1 : 74/4929
3 : 99/1643
5 : 264/1643
7 : 462/1643
$9: 1540 / 4929$
11 : 280/1643
12 : 70/4929
optimal_value: 70/4929
end
*number of pivot operations $=8$
*Computation starts at Tue Apr 19 12:54:03 2016

* terminates at Tue Apr 19 12:54:03 2016
*Total processor time $=0$ seconds
$=0 \mathrm{~h} 0 \mathrm{~m} 0 \mathrm{~s}$
closing the file $12 . \mathrm{lps}$
closing the file 12.ddl

how to "evaluate" an Ip

$\max c^{T} \vec{x}$

$$
\begin{array}{r}
A \vec{x} \leq \vec{b} \\
\vec{x} \geq 0
\end{array}
$$

definitions

feasible point:
vertex:
neighbor of vertex v :

simplex

init:
while do:

