
L25
4102 11.21.2013

Nathan

reductions

1

a new technique
for algorithm

design

2

MergeSort(n)
<base case>

MergeSort(n/2) <left half>

MergeSort(n/2) <right half>

Merge(left,right) <combine>

3

MergeSort(n)
<base case>

MergeSort(n/2) <left half>

MergeSort(n/2) <right half>

Merge(left,right) <combine>

T (n) = 2T (n/2) +O(n)

MergeSort(n) <f(n) 2MergeSort(n/2)

4

Typesetting
best0 + S2

1,n

best1 + S2
2,n

best2 + S2
3,n

bestn�1 + S2
n,n

best⇥�1 + S2
⇥,n

...

...

5

Typesetting
best0 + S2

1,n

best1 + S2
2,n

best2 + S2
3,n

bestn�1 + S2
n,n

best⇥�1 + S2
⇥,n

...

...

solving BESTn can be reduced to solving n-1 BESTi problems and combining the
answer in linear time.

6

HUFFMAN
Finding an optimal code for an X character alphabet

can be reduced to

Finding an optimal code for an X-1 character alphabet

solved by

7

WE HAVE BEEN SOLVING PROBLEM A
BY SOLVING SMALLER VERSIONS OF

PROBLEM A

8

GENERAL IDEA:
SOLVE PROBLEM A BY SOLVING

PROBLEM B

9

problema �f(n) problemb

REDUCTION

10

problem a reduces to problem b. “A solution to problem B implies there is a solution to A”
The time it takes to solve A(n) is <= f(n) + time it takes to solve B(n)

problema �f(n) problemb

T(problema(n)) � f(n) + cT(problemb(dn))
�c, d

REDUCTION

11

notice this is a very natural generalization of divide and conquer...in which case A and B are THE SAME problem

MAXIMUM BIPARTITE MATCHING

12
Can solve maxbipartite by solving max-flow, min-cut.

f

c

d

h

b

a

e
i

g

z

EDGE-DISJOINT PATHS

13

MAXBIPARTITE MAXFLOW<E+V

MAXEDGEDISJ MAXFLOW<E+V

14

(xi, xj, xk)

xi + xj + xk = 0

TRIPLET PROBLEM
given numbers

determine whether there is a triplet

such that

(x1, . . . , xn)

15

3,-6, 5 ,2,6,8,-1,12,7,-10,-3,14

16

O(n3)

EASY TO SOLVE IN

17

now ask the class to spend 5-7 minutes thinking about a way to solve this problem in n^2 time.
after two minutes: hint: the answer must involve either one negative and 2 positives, or one pos and two negatives.
for each negative, how much time does it take to determine if this negative is part of a solution?
can you do it in O(n)?

O(n2)EASY TO SOLVE IN

3,-6, 5 ,2,6,8,-1,12,7,-10,-3,14

...-1-3-6-10 2 3 5 6 7 8

18

Every triplet needs two neg and one pos or vice versa. Split the input into negs and pos. Sort these. now lets test if the solution
consists of two negs and a pos. In particular, lets test if the solution consists of first neg, another neg, and a pos. keep a left
pointer at the second neg, and a right pointer at the first pos. in O(n) steps, we can see if there is a solution involving this first
negative as follows: if n1+n2 + p1 <0, then move right pointer (selecting a larger pos). else, move left pointer selecting a
smaller neg n2. if equality, you are done. at most 2n steps to get to the end of both lists. since there are n possible inputs,
O(n^2) time.

COLINEARITY
given points in the plane

determine whether any 3 are co-linear but not horizontal.

((x1, y1), . . . , (xn, yn))

19

finding lines in a set of points...

20

example of the problem... very interesting practical problem...what does it have to do with 3sum?
we are going to show an interesting connection

HOW CAN WE COMPARE
2 PROBLEMS?

problema �f(n) problemb

T(problema(n)) � f(n) + cT(problemb(dn))

21

3,-6,5,2,6,8,-1,12,7,-10,-3,14

22

3,-6,5,2,6,8,-1,12,7,-10,-3,14T= { }

23

take every number x in the set T and add the points (x,0), (-x/2,1), (x,2).
If T has a triplet (a,b,c), st a+b+c=0, then (a,0) (-b/2,1), (c,2) are on a line.
(-b/2-a) is the “run” in the first step
(c-(-b/2)) is the “run” in the second step. = (c+b/2) = (-b/2-a) because (c+b/2)+(b/2)+a = 0.
Similarly, if there is a line (x,0)(y,1)(z,2), then one can map this to a triple, x,2y,z in the set that adds to zero.

3,-6,5,2,6,8,-1,12,7,-10,-3,14T= { }

P=

24

3,-6,5,2,6,8,-1,12,7,-10,-3,14T= { }

P=

T is a TRIPLET-set if and only if P is a COLINEAR set.

25

SEGMENT PARTITION

26

given line segments in the plane, determine if there is a line that cleanly partitions the segments into two sets.

SEGMENT PARTITION

27

SEGMENT PARTITION
Problem: Given a set of line segments in the plane, determine
if there exists a line that partitions the segments into two sets.

28

this problem is related to motion planning..or avoiding asteroids in star wars, etc... the partition is a way to cleanly avoid the
obstacles, etc...

SEGMENT PARTITION

29

Algorithms Non-Lecture H: Reductions

H.7 . . . to Segment Splitting . . .

Consider the following segment splitting problem: Given a collection of line segments in the plane,
is there a line that does not hit any segment and splits the segments into two non-empty subsets?

To show that this problem is 3SUM-hard, we start with the collection of points produced by our
last reduction. Replace each point by a ‘hole’ between two horizontal line segments. To make sure
that the only way to split the segments is by passing through three colinear holes, we build two
‘gadgets’, each consisting of five segments, to cap off the left and right ends as shown in the figure
below.

Top: 3n points, three on a non-horizontal line.
Bottom: 3n + 13 segments separated by a line through three colinear holes.

This reduction could be performed in linear time if we could make the holes infinitely small, but
computers can’t really deal with infinitesimal numbers. On the other hand, if we make the holes
too big, we might be able to thread a line through three holes that don’t quite line up. I won’t go
into details, but it is possible to compute a working hole size in O(n log n) time by first computing
the distance between the closest pair of points.

Thus, we have a valid reduction from 3SUM to segment splitting (by way of colinearity):

set of n numbers
O(n)
���⇧ set of 3n points

O(n log n)
�����⇧ set of 3n + 13 segments⇤⇤⌅ SPLITTABLE?

TRUE or FALSE
trivial
⌅��� TRUE or FALSE

trivial
⌅����� TRUE or FALSE

T3SUM(n) ⇥ Tsplit(3n + 13) + O(n log n) =⌃ Tsplit(n) ⇤ T3SUM

�n� 13
3

⇥
�O(n log n).

H.8 . . . to Motion Planning

Finally, suppose we want to know whether a robot can move from one position and location to
another. To make things simple, we’ll assume that the robot is just a line segment, and the environ-
ment in which the robot moves is also made up of non-intersecting line segments. Given an initial
position and orientation and a final position and orientation, is there a sequence of translations
and rotations that moves the robot from start to finish?

To show that this motion planning problem is 3SUM-hard, we do one more reduction, starting
from the set of segments output by the previous reduction algorithm. Specifically, we use our earlier
set of line segments as a ‘screen’ between two large rooms. The rooms are constructed so that the
robot can enter or leave each room only by passing through the screen. We make the robot long
enough that the robot can pass from one room to the other if and only if it can pass through three
colinear holes in the screen. (If the robot isn’t long enough, it could get between the ‘layers’ of the
screen.) See the figure below:

5

image: erickson

30

3SUM <= SEGMENTS.
solve an instance of colin
so this problem is as hard as the 3-sum problem

Algorithms Non-Lecture H: Reductions

H.7 . . . to Segment Splitting . . .

Consider the following segment splitting problem: Given a collection of line segments in the plane,
is there a line that does not hit any segment and splits the segments into two non-empty subsets?

To show that this problem is 3SUM-hard, we start with the collection of points produced by our
last reduction. Replace each point by a ‘hole’ between two horizontal line segments. To make sure
that the only way to split the segments is by passing through three colinear holes, we build two
‘gadgets’, each consisting of five segments, to cap off the left and right ends as shown in the figure
below.

Top: 3n points, three on a non-horizontal line.

Bottom: 3n + 13 segments separated by a line through three colinear holes.

This reduction could be performed in linear time if we could make the holes infinitely small, but
computers can’t really deal with infinitesimal numbers. On the other hand, if we make the holes
too big, we might be able to thread a line through three holes that don’t quite line up. I won’t go
into details, but it is possible to compute a working hole size in O(n log n) time by first computing
the distance between the closest pair of points.

Thus, we have a valid reduction from 3SUM to segment splitting (by way of colinearity):

set of n numbers
O(n)

���! set of 3n points
O(n log n)

�����! set of 3n + 13 segmentsww� SPLITTABLE?

TRUE or FALSE
trivial
 ��� TRUE or FALSE

trivial
 ����� TRUE or FALSE

T3SUM(n)  Tsplit(3n + 13) + O(n log n) =) Tsplit(n) � T3SUM

⇣n� 13

3

⌘
�O(n log n).

H.8 . . . to Motion Planning

Finally, suppose we want to know whether a robot can move from one position and location to
another. To make things simple, we’ll assume that the robot is just a line segment, and the environ-
ment in which the robot moves is also made up of non-intersecting line segments. Given an initial
position and orientation and a final position and orientation, is there a sequence of translations
and rotations that moves the robot from start to finish?

To show that this motion planning problem is 3SUM-hard, we do one more reduction, starting
from the set of segments output by the previous reduction algorithm. Specifically, we use our earlier
set of line segments as a ‘screen’ between two large rooms. The rooms are constructed so that the
robot can enter or leave each room only by passing through the screen. We make the robot long
enough that the robot can pass from one room to the other if and only if it can pass through three
colinear holes in the screen. (If the robot isn’t long enough, it could get between the ‘layers’ of the
screen.) See the figure below:

5

31

hidden slide...for your own understanding of hte problem

WHY DO WE CARE?

32

because now we can study the 3sum problem---a simply stated one, and see if we can find a lower bound on its complexity.
if we can, then we know a lot about other problems...in particular, motion planning for a robot may also require n^2 time...
currently, we only know very weak lower-bounds on 3sum. NLOGN in a standard model,...n^2 in a specific, limited model of
computation....we also only know an n^2 algorithm. so progress in either direction is important: either faster algorithm or better
lower bound.

Algorithms Non-Lecture H: Reductions

H.6 3SUM to Colinearity. . .

Unfortunately, lower bounds are relatively few and far between. There are thousands of computa-
tional problems for which we cannot prove any good lower bounds. We can still learn something
useful about the complexity of such a problem by from reductions, namely, that it is harder than
some other problem.

Here’s an example. The problem 3SUM asks, given a sequence of n numbers x
1

, . . . , xn, whether
any three of them sum to zero. There is a fairly simple algorithm to solve this problem in O(n2

)

time (hint, hint). This is widely believed to be the fastest algorithm possible. There is an ⌦(n2

)

lower bound for 3SUM, but only in a fairly weak model of computation.4

Now consider a second problem: given a set of n points in the plane, do any three of them lie on
a common non-horizontal line? Again, there is an O(n2

)-time algorithm, and again, this is believed
to be the best possible. The following reduction from 3SUM offers some support for this belief.
Suppose we are given an array A of n numbers as input to 3SUM. Replace each element a 2 A with
three points (a, 0), (�a/2, 1), and (a, 2). Thus, we replace the n numbers with 3n points on three
horizontal lines y = 0, y = 1, and y = 2.

If any three points in this set lie on a common non-horizontal line, they consist of one point on
each of those three lines, say (a, 0), (�b/2, 1), and (c, 2). The slope of the common line is equal to
both �b/2 � a and c + b/2; since these two expressions are equal, we must have a + b + c = 0.
Similarly, is any three elements a, b, c 2 A sum to zero, then the resulting points (a, 0), (�b/2, 1),
and (c, 2) are colinear.

So we have a valid reduction from 3SUM to the colinear-points problem:

set of n numbers
O(n)

���! set of 3n pointsww� COLINEAR?

TRUE or FALSE
trivial
 ��� TRUE or FALSE

T3SUM(n)  Tcolinear(3n) + O(n) =) Tcolinear(n) � T3SUM(n/3)�O(n).

Thus, if we could detect colinear points in o(n2

) time, we could also solve 3SUM in o(n2

) time, which
seems unlikely. Conversely, if we could prove an ⌦(n2

) lower bound for 3SUM in a sufficiently
powerful model of computation, it would imply an ⌦(n2

) lower bound for the colinear points
problem as well.

The existing ⌦(n2

) lower bound for 3SUM does not imply a lower bound for finding colinear
points, because the model of computation is too weak. It is possible to prove an ⌦(n2

) lower bound
directly using an adversary argument, but only in a fairly weak decision-tree model of computation.

Note that in order to prove that the reduction is correct, we have to show that both yes answers
and no answers are correct: the numbers sum to zero if and only if three points lie on a line.
Even though the reduction itself only goes one way, from the ‘easier’ problem to the ‘harder’
problem, the proof of correctness must go both ways.

Anka Gajentaan and Mark Overmars5 defined a whole class of computational geometry prob-
lems that are harder than 3SUM; they called these problems 3SUM-hard. A sub-quadratic algorithm
for any 3SUM-hard problem would imply a subquadratic algorithm for 3SUM. I’ll finish the lecture
with two more examples of 3SUM-hard problems.

4The ⌦(n2
) lower bound holds in a decision tree model where every query asks for the sign of a linear combination of

three of the input numbers. For example, ‘Is 5x1 + x42 � 17x5 positive, negative, or zero?’ See my paper ‘Lower bounds
for linear satisfiability problems’ (http://www.uiuc.edu/⇠jeffe/pubs/linsat.html) for the gory(!) details.

5A. Gajentaan and M. Overmars, On a class of O(n2
) problems in computational geometry, Comput. Geom. Theory

Appl. 5:165–185, 1995. ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1993/1993-15.ps.gz

4

33

3sum hard

ANOTHER EXAMPLE

34

3SAT PROBLEM
input:

output: “

35

input: boolean formula phi in cnf 3 vars per clause
output: YES OR NO. Is there a way to assign t/f to variables that makes every clause satisfiable??

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

3SAT EXAMPLE

36

x,y,u true, z false.

this seems like a total nerd problem. who cares? but it turns out that this simple combinatorial logic problem is related to
thousands of important practical problems...we shall see it is the hardest problem in the class “NP”

PARTY PROBLEM

37

for example...3sat is related to the following problem. You are having a party with all of your friends...
but not all of your friends are friends of each other.

INDEPENDENT SET

38

write out def of the problem

S � V

S

INDEPENDENT SET

a set is an independent set if

no two nodes in are joined by an edge.

39

example

40
find an ind set on this graph...

goal: given a graph G,

41
find the largest independent set

actually...we are going to modify the goal slightly...and make hte problem (G,k): YES if G has an independent set of size k.
we just want to know the SIZE of the largest party we can have.

3sat �p indset

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

what must we do to?

42

43

3sat �p indset

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

44

3sat �p indset

x

y z

x

y y

u

y z

x

y z

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

x

z u

45

x

y z zu

xx

y y

u

y z

x

yz

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

46

make a triangle for each clause. connect each node to its opposites. make sure that the graph has an independent set of size #
of clauses.

x

y z zu

xx

y y

u

y z

x

yz

� � sat =�

47

each clause is satisfied. pick one variable that makes each clause true and add to INDSET. its negation will never be selected,
and therefore we have an INDSET Of size k.

x

y z zu

xx

y y

u

y z

x

yz

(G, k) � indset =�

48

each triangle has one node selected only. if k can be selected, each clause has one. make this variable true.

why do we care? because now we know something about hardness of this problem...we shall see it is as
hard as any other important problem in the class NP

COMPLEXITY THEORY

49

one will spend roughly 1/2 of 3102 on these types of reductions...
the key idea for complexity theory is a tool from algorithms however...the reduction.

Theory of NP

50

DEFINITION OF NP
A language L

51

belongs to the class NP if and only if

�A, c

DEFINITION OF NP

a language L belongs to the class NP iff

such that

L = {x 2 {0, 1}⇤ | 9y 2 {0, 1}|x|
c

s.t.A(x, y) = 1}

52

means that we can “check” whether the instance satisfies some property in poly time.

(x1, x2, . . . , xn)

WHY IS TRIPLETS IN NP?

53

WHY IS INDSET IN NP?
1

2
6

3

5

4

7

8

9

54

P

NP

COMPLEXITY CLASSES

55

COOK-LEVIN THEOREM

56

for all L in NP, L <= SAT

THE IMPLICATION OF THIS

57

baseball

58

baseball

59

a vertex cover of a graph is a

60

such that

C � V

⇥ (x, y) � E

x � C y � C

a vertex cover of a graph is a set

either or

61

example

62

goal: given a graph G,

63

1

2
6

3

5

4

7

8

9

maxindset �O(V) minvertexcover

64

