

4102 4.21.2016

abhi shelat

•

Guns and butter

http://i16.photobucket.com/albums/b20/safebuy/ak47/ak47-electric_lg.jpg

http://2.bp.blogspot.com/ NX4zcMNX4VE/Sb8MQfffllI/AAAAAAAAAAA0/eu4J0dfFhJE/s400/gourmet-butter.jpg

- $5x-2y \geq -2$ $x, y \geq 0$

Certificate of optimality

$$\max \underbrace{x + y}_{4x - y} \leq 8$$

$$2x + y \leq 10 \quad 7$$

$$5x - 2y \geq -2 \quad 1$$

$$x, y \geq 0$$

$$14x + 7y = 70$$

$$-5x + 2y = 2$$

$$7x + 9y = 72$$

$$x + y = 0$$

Certificate of optimality

- $\max x + y$
- $4x y \leq 8$ $2x + y \leq 10$ $x, y \geq 0$
- $7 \quad 14x + 7y \le 70$ $5x - 2y \ge -2 -1 -5x + 2y \le 2$ $9x + 9y \leq 72$

	Brownie	Dumpling	Espresso	Ro
cost	5	2	3	
cals	400	200	150	5
choc	3	2	0	
sugar	2	2	4	
fat	2	4	0	

requirements:

500 calories, 6 oz choc, 10 oz sugar, 8 oz fat

Min 5x1 + 2x2 + 3x3 + 8x4

400x, -1 200x2+ 150x3+ 500xy 7 500

	Brownie	Dumpling	Espresso	Rc
cost	5	2	3	
cals	400	200	150	5
choc	3	2	0	
sugar	2	2	4	
fat	2	4	0	

requirements: 500 calories, 6 oz choc, 10 oz sugar, 8 oz fat

$$\begin{bmatrix} A \\ 400 & 200 & 150 & 500 \\ 3 & 2 & 0 & 0 \\ 2 & 2 & 4 & 4 \\ 2 & 4 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 500 \\ 6 \\ 10 \\ 8 \end{bmatrix}$$

$$\min 5x_1 + 2x_2 + 3x_3 + 8x_4$$

$$\begin{bmatrix} 400 & 200 & 150 & 500 \\ 3 & 2 & 0 & 0 \\ 2 & 2 & 4 & 4 \\ 2 & 4 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 500 \\ 6 \\ 10 \\ 8 \end{bmatrix}$$

				ľ	$\min 5x$	$x_1 + 2x$	$c_2 + $	$-3x_{3}$	$+8x_{4}$	
			$ \begin{array}{c} 400 \\ 3 \\ 2 \\ 2 \end{array} $	$200 \\ 2 \\ 2 \\ 4$	$150\\0\\4\\0$	$500 \\ 0 \\ 4 \\ 5$		$egin{array}{c} x_1 \ x_2 \ x_3 \ x_4 \end{array}$	V,	500 6 10 8
H-re begi (8(4)	orese n ratio	entat onal	tion					XI X2 X3	アフシ	0 0 2
<u>-500</u> -6	<u>400</u> 3	<u>200</u> 2	<u>150</u> 0	500 0				×γ	17	0
-10	2	2	4	4						
-0	2 1	4 0	0	5 0						
0 0	0	1 0	0 1	0 0						
0	0	0	0	1						
end minimize 0 5 2 3 8										

				ľ	$\min 5a$	$x_1 + 2x_2 + 3x_3 + 8x_4$				
			$ \begin{array}{c} 400 \\ 3 \\ 2 \\ 2 \end{array} $	$200 \\ 2 \\ 2 \\ 4$	$150\\0\\4\\0$	$\begin{bmatrix} 500\\0\\4\\5\end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix} \ge \begin{bmatrix} 500\\6\\10\\8\end{bmatrix}$				
H-rep begin 8 4 1	orese n ratio	enta onal	tion		:	<pre>*Objective function is 0 + 5 X[1] + 2 X[2] + 3 X[3] + *LP status: a dual pair (x, y) o</pre>				
-500	400	200	150	500		begin				
-6	3	2	0	0		primal_solution				
-10	2	2	4	4						
-6	2	4	0	5		$2 \cdot 3$				
0	1	0	0	0		$\frac{3}{4}$				
0	0	1	0	0		_dual_solution				
0	0	0	1	0		2 : -1/4				
0	0	0		1		5: -11/4				
	V	U	V	T		3: -3/4				
ena						0: -5				
minin	nize					end				
052	2 3 8	3			:	<pre>*number of pivot operations = 4</pre>				

8 X[4] of optimal

max flow as lp

- $f_1 f_2 f_2 = 0$

- (A)(B)
- (C) (\mathbb{D})

min-cost flow as lp

input: (G, c, s, t) G = (V, E) $c : E \to \mathbb{Z}_+$ $x : E \to \mathbb{Z}_+$ d

min-cost flow as lp

 $\min x_e \cdot f(e)$ e $f(e) \le c(e)$ $f(e) \ge 0$ $\sum_{u} f(u, v) = \sum_{w} f(v, w)$ $\sum f(s,v) - \sum f(v,s) = d$ \boldsymbol{v}

rowena

rowena announces her strategy first:

$$(r_1, r_2) \qquad \min\{ \begin{array}{ccc} z & z \\ 3r_1 - 2r_2, & -r_1 + r_2 \end{array} \}$$

_

rowena

rowena announces her strategy first:

$$\begin{array}{l}
 max \ z \\
 z \leq 3r_1 - 2r_2 \\
 z \leq -r_1 + 2r_2 \\
 r_1 + r_2 = 1 \\
 r_1, r_2 \geq 0
\end{array}$$

colin announces his strategy first:

 (c_1, c_2)

pick (c_1, c_2) so as to min

 $\max\{3c_1 - c_2, -2c_1 + c_2\}$

rowena

colin announces his strategy first:

minw

- $\begin{array}{rcl} -3c_1 + c_2 + w & \geq & 0\\ 2c_1 c_2 + w & \geq & 0 \end{array}$
 - $c_1 + c_2 = 1$
 - $c_1, c_2 \geq 0$

$\max Z \\ -3r_1 + 2r_2 + z &\leq 0 \\ r_1 - r_2 + z &\leq 0 \\ r_1 + r_2 &= 1 \\ r_1, r_2 &\geq 0$

min w

- $\begin{array}{rcl} -3c_1 + c_2 + w & \geq & 0 \\ 2c_1 c_2 + w & \geq & 0 \\ c_1 + c_2 & = & 1 \end{array}$
 - $c_1, c_2 \geq 0$

Alice

81 miry

fou

 $\max_{x} \min_{y} \sum_{i,j} G_{ij} x_i y_j = \min_{y} \max_{x} \sum_{i,j} G_{ij} x_i y_j$

read

how to "evaluate" an Ip

 $\max c^T \vec{x}$ $A\vec{x} \le \vec{b}$ $\vec{x} \ge 0$

simplex

greeds Alla!! Works in practice (exp.-fine in the worst case)

 $x_1 \ge 0$ $x_2 \ge 0$

 $x_1 \ge 0$ $x_2 \ge 0$

 $x_1 \ge 0$ $x_2 \ge 0$

N constraints in 2d, =) $O(n^2)$ vertices N constraints 2 variables =) 0 (n) n exp mn

- $2x_1 x_2 \le 4$
- $x_1 + 2x_2 \le 9$

 - $x_1 \ge 0$
 - $x_2 \ge 0$

 $\max 2y_1 + 5(3 + y_1 - y_2)$ $2y_1 - (3 + y_1 - y_2) \in 4$ $Y_{1} + 2(3 + y_{1} - y_{2}) \le 9$ $-y_1 + (3+y_1-y_2) \leq 3$ 4120 4270
Pivot

$$\max 2x_{1} + 5x_{2}$$

$$2x_{1} - x_{2} \le 4$$

$$x_{1} + 2x_{2} \le 9$$

$$-x_{1} + x_{2} \le 3$$

$$x_{1} \ge 0$$

$$x_{2} \ge 0$$

$$y_1 = x_1, y_2 = 3 + x_1 - x_2$$

pivot

$$\max \frac{7y_{1}}{y_{1}} - \frac{5y_{2}}{y_{1}} + \frac{15}{y_{1}}$$
$$\frac{y_{1} + y_{2}}{3y_{1} - 2y_{2}} \le 3$$
$$\frac{y_{2}}{y_{1}} \ge 0$$
$$-y_{1} + y_{2} \le 3$$

$$z_1 = \zeta - \zeta_{y_1} + \zeta_{y_2}$$

 $z_2 = \zeta_2$

$$\max 7y_1 - 5y_2 + 15$$

$$y_1 + y_2 \le 7$$

$$3y_1 - 2y_2 \le 3$$

$$y_2 \ge 0$$

$$y_1 \ge 0$$

$$-y_1 + y_2 \le 3$$

$$z_1 = 3 - 3y_1 + 2y_2, z_2 = y_2$$

 $\max 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \longrightarrow 22$ $-\frac{1}{3}z_2 + \frac{5}{3}z_2 \le 6$ $z_1 \ge 0$ $z_2 \ge 0$ $\frac{1}{3}z_1 - \frac{2}{3}z_2 \le 1$ $\frac{1}{3}z_1 + \frac{1}{3}z_2 \le 4$ 2=0 22-0

$$\max 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \\ -\frac{1}{3}z_2 + \frac{5}{3}z_2 \le 6 \\ z_1 \ge 0 \\ z_2 \ge 0 \\ \frac{1}{3}z_1 - \frac{2}{3}z_2 \le 1 \\ \frac{1}{3}z_1 + \frac{1}{3}z_2 \le 4$$

$$z_1 = 3 - 3y_1 + 2y_2, z_2 = y_2$$
$$y_1 = x_1, y_2 = 3 + x_1 - x_2$$

Optimality

 $=) \quad \frac{7}{3}x_{1} + \frac{14}{3}x_{2} \leq \frac{63}{3} \\ -\frac{1}{3}x_{1} + \frac{1}{3}x_{2} \leq \frac{1}{3}$ $\frac{6}{2\times 1} + \frac{15}{3\times 2} = 22$ $2 \times 1 \quad 5 \times 2 = 22$

simple fact: origin is optimal if and only if

C 15 négative.

problems

initial vertex

no solution?

run time

WE HAVE BEEN SOLVING PROBLEM A BY SOLVING SMALLER VERSIONS OF PROBLEM A

GENERAL IDEA: SOLVE PROBLEM A BY SOLVING PROBLEM B

Bipartite Matching Algorithm

1. MAKE NEW G' FROM INPUT G.

2. RUN FF ON G'

3. OUTPUT ALL MIDDLE EDGES WITH FLOW F(E)=I.

Loving for M

G'

6 has a MAXFLOW

site K

IF G HAS A MATCHING OF SIZE K, THEN GI has a MARFLOU of K.
Prof: Let Mt be the metalog of size K for G.
(Dither) Construct flow
$$f$$
 to be
 $f(e) = 1$ if $e \in M^{\times}$, and if $e = (uq)$
 $f(e) = 1$ if $e \in M^{\times}$, and if $e = (uq)$
 $f(y_t) = 1$
 $= 1$ flow f satisflog $()$ constraint
 $(v_{1} \neq v_{2}) = 1$
 $(v_{2} \neq v_{2}) = 0$
 $(v_{1} \neq v_{2}) = 1$
 $(v_{2} \neq v_{2}) = 0$
 $(v_{1} \neq v_{2}) = 1$
 $(v_{2} \neq v_{2}) = 0$
 $(v_{1} \neq v_{2}) = 0$
 $(v_{2} \neq v_{2}) = 0$
 $(v_{1} \neq v_{2}) = 0$
 $(v_{2} \neq v_{2}) = 0$
 $(v_{1} \neq v_{2}) = 0$

G'
HAS A FLOW OF K, THEN G HAS K-MATCHING.
D' Dur algorithm uses FF, stflow for G' is integral.
Now define M. Ze | f(e)=1 and e=(x,y) sit xelytr}
Prove that M is a metaling.
- All flows are integral & copicity
$$\underline{C(e)}=1$$
. so $f(e) = 0$ or I for eEE.
Thus for all vely V is incident to at most ledge in M.
by the flow constraint. By cits, $|M|=K$

?EE. M,

PROBLEM 2 Classrooms

Before the start of the Spring semester, the Registrar must assign each class to a time and a classroom. The classroom must be larger than the class it holds to properly seat all the students. Suppose there are *n* classes such that class *i* has s_i students enrolled. The university has *m* rooms, and room *j* can hold r_j students. Finally, there are non-overlapping time slots t_1, \ldots, t_k for the classes. For example t_1 is "MW9-10.15" and t_2 is "MW10.30-11.45" and so on. Given all this data, namely, given $(s_1, \ldots, s_n), (r_1, \ldots, r_m), (t_1, \ldots, t_k)$, design an efficient algorithm that assigns classes to times and classrooms. Analyze the running time and argue correctness.

PROBLEM 2 Classrooms

Before the start of the Spring semester, the Registrar must assign each class to a time and a classroom. The classroom must be larger than the class it holds to properly seat all the students. Suppose there are *n* classes such that class *i* has s_i students enrolled. The university has *m* rooms, and room *j* can hold r_j students. Finally, there are non-overlapping time slots t_1, \ldots, t_k for the classes. For example t_1 is "MW9-10.15" and t_2 is "MW10.30-11.45" and so on. Given all this data, namely, given $(s_1, \ldots, s_n), (r_1, \ldots, r_m), (t_1, \ldots, t_k)$, design an efficient algorithm that assigns classes to times and classrooms. Analyze the running time and argue correctness.

$$(s_1, \ldots, s_n) \ (r_1, \ldots, r_m) \ (t_1, \ldots, t_k)$$

$\operatorname{PROBLEM}_a \leq_{f(n)} \operatorname{PROBLEM}_b$

 $\exists c, d$ $T(PROBLEM_a(n)) \le f(n) + cT(PROBLEM_b(dn))$

Maximum bipartite

edge-disjoint paths

party problem

independent set

independent set

a set $\underbrace{S \subseteq V}_{\text{no two nodes in S}}$ is an independent set if no two nodes in S are joined by an edge.

example

goal:

given a graph G, MAX INDEPENDENT SET, "most peak you can sit a your wedding table"

CH(Uet

a vertex cover of a graph is a set it nodes South that

for each edge e=(xi) eiter

XES or yES.

a vertex cover of a graph is a set $C \subseteq V$ such that $\forall (x, y) \in E$ either $x \in C$ or $y \in C$

example

given a graph G,

MAXINDSET $\leq_{O(V)}$ MINVERTEXCOVER

A solution to VC can be used to solve INDSET.

thm: set S is an independent set of G iff V-S is a vertex cover.

