

4102

4.21.2016
abhi shelat

Guns and butter

$\max x+y$

$$
\begin{aligned}
4 x-y & \leq 8 \\
2 x+y & \leq 10 \\
5 x-2 y & \geq-2 \\
x, y & \geq 0
\end{aligned}
$$

Certificate of optimality

$\max x+y$

$$
\begin{array}{rlrl}
4 x-y & \leq 8 \\
2 x+y & \leq 10 \cdot 7 & 14 x+7 y & \leq 70 \\
5 x-2 y & \geq-2 \cdot-1 & -5 x+2 y & \leq 2 \\
x, y & \geq 0 & & 9 x+9 y \leq 72
\end{array}
$$

$x+y \leq 8$

Certificate of optimality

$\max x+y$

$$
\begin{array}{rlrlrl}
4 x-y & \leq 8 & & \\
2 x+y & \leq 10 & 7 & & 14 x+7 y \leq 70 \\
5 x-2 y & \geq-2 & -1 & & -5 x+2 y \leq 2 \\
x, y & \geq 0 & & & \\
& & & & 9 x+9 y \leq 72
\end{array}
$$

	Brownie	Dumpling	Espresso	Roots
cost	5	2	3	8
cals	400	200	150	500
choc	3	2	0	0
sugar	2	2	4	4
fat	2	4	0	5

requirements: 500 calories, 6 oz choc, 10 oz sugar, 8 oz fat

$$
\begin{aligned}
& \min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4} \\
& 400 x_{1}+200 x_{2}+150 x_{3}+500 x_{4} \geqslant 500 \\
& =-
\end{aligned}
$$

	Brownie	Dumpling	Espresso	Roots
cost	5	2	3	8
cals	400	200	150	500
choc	3	2	0	0
sugar	2	2	4	4
fat	2	4	0	5

requirements: 500 calories, 6 _oz choc, 10 oz sugar, 8 oz fat

$$
{ }^{\geqslant}\left[\begin{array}{c}
b 00 \\
6 \\
10 \\
8
\end{array}\right] .\left[\begin{array}{c}
\\
\hline 00
\end{array}\right.
$$

$\min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4}$
$\left[\begin{array}{cccc}400 & 200 & 150 & 500 \\ 3 & 2 & 0 & 0 \\ 2 & 2 & 4 & 4 \\ 2 & 4 & 0 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \geq\left[\begin{array}{c}500 \\ 6 \\ 10 \\ 8\end{array}\right]$

$$
\min 5 x_{1}+2 x_{2}+3 x_{3}+8 x_{4}
$$

$$
\left[\begin{array}{cccc}
400 & 200 & 150 & 500 \\
3 & 2 & 0 & 0 \\
2 & 2 & 4 & 4 \\
2 & 4 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \geq\left[\begin{array}{c}
500 \\
6 \\
10 \\
8
\end{array}\right]
$$

```
H-representation
    begin
8 4 rational
-500 400 200 150 500
\begin{tabular}{lllll}
-6 & 3 & 2 & 0 & 0
\end{tabular}
\begin{tabular}{lllll}
-10 & 2 & 2 & 4 & 4
\end{tabular}
\begin{tabular}{lllll}
-6 & 2 & 4 & 0 & 5 \\
0 & 1 & 0 & 0 & 0
\end{tabular}
\(0 \quad 0 \quad 1 \quad 0 \quad 0\)
\begin{tabular}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{tabular}
end
minimize
0 5 2 3 8
```

```
*Objective function is
    0 + 5 X[1] + 2 X[2] + 3 X[3] + 8 X[4]
*LP status: a dual pair (x, y) of optimal
begin
primal_solution
\(1:\)
\(2:\)
2
\(3:\)
3
4
    dual_solution
    [\begin{array}{l:l}{2}&{:}\\{5}&{-1/4}\\{3}&{-11/4}\\{8}&{-3/4}\\{0}&{-5}\\{0ptimal_value % % }\end{array}|
    *number of pivot operations = 4
```

max flow as lp

min-cost flow as lp

input:

$$
(G, c, s, t) \quad G=(V, E) \quad c: E \rightarrow \mathbb{Z}_{+}
$$

$$
x: E \rightarrow \mathbb{Z}_{+} \quad d
$$

\qquad

min-cost flow as lp

$$
\begin{gathered}
\min _{e} x_{e} \cdot f(e) \\
f(e) \leq c(e) \\
f(e) \geq 0 \\
\sum_{u} f(u, v)=\sum_{w} f(v, w) \\
\sum_{v} f(s, v)-\sum_{v} f(v, s)=d
\end{gathered}
$$

zero-sum games

$$
\sum_{i, j} G_{i j} r_{i} c_{j}
$$

zero-sum games

	colin	
3	-1	
rowena		
rownounces		
her strategy first:		

her strategy first:

zero-sum games

zero-sum games

her strategy first:

$$
\max z
$$

$$
\begin{aligned}
& \frac{z \leq 3 r_{1}-2 r_{2}}{z \leq-r_{1}+2 r_{2}} \\
& r_{1}+\overline{r_{2}=1} \\
& r_{1}, r_{2} \geq 0
\end{aligned}
$$

zero-sum games

his strategy first:

$$
\left(c_{1}, c_{2}\right)
$$

zero-sum games

pick $\left(c_{1}, c_{2}\right)$ so as to $\min \quad \max \left\{3 c_{1}-c_{2},-2 c_{1}+c_{2}\right\}$

zero-sum games

$\min w$

$$
\begin{aligned}
-3 c_{1}+c_{2}+w & \geq 0 \\
2 c_{1}-c_{2}+w & \geq 0 \\
c_{1}+c_{2} & =1 \\
c_{1}, c_{2} & \geq 0
\end{aligned}
$$

zero-sum games

$$
\begin{aligned}
& \max z \\
& -3 r_{1}+2 r_{2}+z \leq 0 \\
& r_{1}-r_{2}+z \leq 0 \\
& r_{1}+r_{2}=1 \\
& r_{1}, r_{2} \geq 0
\end{aligned}
$$

zero-sum games

zero-sum games

$$
\operatorname{coc}(N
$$

Row

$$
\max _{x} \min _{y} \sum_{i, j} G_{i j} x_{i} y_{j}=\min _{y} \max _{x} \sum_{i, j} G_{i j} x_{i} y_{j}
$$

Last update: May 15, 2015

Currently, the C-library version cddlib of cdd packages is the only one being updated, while
standalone codes cdd and cddplus are still useful. To know what cdd, cddplus and cddlib are, please read
cddplus readme
cddlib readme
Manuals (html version):
cdd/cdd+ manua
cddlib manual
Get source codes:
cdd/cddpuls directory click here
cdd package cdd-061 a.tar.gz
cddplus package cdd+-077a.tar.gz (to be compled with g++ 4.1. With more recent g++, try patch) New. With g++ 3.1, use cdd+-077.tar.gz
cddlib package cddlib-094h.tar.gz NEW
To know the implementation:
"The double description revisited" gzipped ps file
To learn the fundamental concepts of Convex Hull, Vornonoi, Delaunay, etc.:
"Polyhedral Computation FAQ" (still experimental) html version or pdf file
Links to cdd/cdd+/cddlib users and more. NEW

how to "evaluate" an lp

$\max c^{T} \vec{x}$

$$
\begin{array}{r}
A \vec{x} \leq \vec{b} \\
\vec{x} \geq 0
\end{array}
$$

simplex
init: of the origin, $(0,0, \ldots 0)$
while a neighbor has a higher value at $c^{\top} \cdot x^{\prime}>c^{\top} t \quad$ greed ALGI!
do:
move to that neighbor (if it has not been visited)
works in practice

$$
\left(\begin{array}{c}
\text { exp-tine in } \\
\text { the } \\
\text { worst case }
\end{array}\right)
$$

Pivot
$\frac{\max 2 x_{1}+5 x_{2}}{2 x_{1}-x_{2} \leq 4} \quad x_{2}$ can go to ∞
$x_{2} \leqslant 4.5$ $x_{2} \leqslant 3$.

Charge of variables.	
$y_{1}=x_{1}$	$\begin{array}{l}\max 2 y_{1}+5\left(3+y_{1}-y_{2}\right) \\ 2 y_{1}-\left(3+y_{1}-y_{2}\right) \leq 4 \\ x_{2}=3+x_{1}-x_{2} \\ y_{1}+2\left(3+y_{2}-y_{2}\right) \leq 9\end{array}$
$-y_{1}+\left(3+y_{1}-y_{2}\right) \leq 3$	
$y_{1} \geqslant 0$	
$y_{2} \geqslant 0$	

\qquad

Change of variables.	
$y_{1}=x_{1}$	
$y_{2}=3+x_{1}-x_{2}$	
$x_{2}=3+y_{1}-y_{2}$	$-y_{1}+\left(3+y_{1}-y_{2}\right) \leq 3$
$y_{1}+2\left(3+y_{1}-y_{2}\right) \leq 9$	
$y_{1} \geqslant 0$	
$y_{2} \geqslant 0$	

Pivot

$$
\begin{aligned}
\max 2 x_{1}+5 x_{2} & \\
2 x_{1}-x_{2} & \leq 4 \\
x_{1}+2 x_{2} & \leq 9 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

$$
y_{1}=x_{1}, y_{2}=3+x_{1}-x_{2}
$$

OiVOt

$$
\begin{array}{r}
\begin{array}{r}
\max \underline{y_{1}}-\underline{5 y_{2}}+15 \\
y_{1}+y_{2} \leq 7 \\
3 y_{1}-2 y_{2} \leq 3 \\
\underbrace{}_{2} \geq 0 \\
y_{1} \geq 0 \\
-y_{1}+y_{2} \leq 3
\end{array}
\end{array} \quad(0,0)
$$

$$
\begin{aligned}
\max 7 y_{1}-5 y_{2}+15 & \\
y_{1}+y_{2} & \leq 7 \\
3 y_{1}-2 y_{2} & \leq 3 \\
y_{2} & \geq 0 \\
y_{1} & \geq 0 \\
-y_{1}+y_{2} & \leq 3
\end{aligned}
$$

$$
z_{1}=3-3 y_{1}+2 y_{2}, z_{2}=y_{2}
$$

$$
\begin{gathered}
\max 22-\frac{7}{3} z_{1}-\frac{1}{3} z_{2} \rightarrow 22 \\
-\frac{1}{3} z_{2}+\frac{5}{3} z_{2} \leq 6 \\
z_{1} \geq 0 \\
z_{2} \geq 0 \\
\frac{1}{3} z_{1}-\frac{2}{3} z_{2} \leq 1 \\
\frac{1}{3} z_{1}+\frac{1}{3} z_{2} \leq 4 \\
z_{1}=0 \\
z_{2}=0
\end{gathered}
$$

$$
\begin{aligned}
\max 22 & z_{1}=3-3 y_{1}+2 y_{2}, z_{2}=y_{2} \\
-\frac{1}{3} z_{2}+\frac{5}{3} z_{2} \leq 6 & y_{1}=x_{1}, y_{2}=3+x_{1}-x_{2} \\
z_{1} \geq 0 & \\
z_{2} \geq 0 & \\
\frac{1}{3} z_{1}-\frac{2}{3} z_{2} \leq 1 & \\
\frac{1}{3} z_{1}+\frac{1}{3} z_{2} \leq 4 &
\end{aligned}
$$

Optimality

$$
\begin{aligned}
& \max \frac{2 x_{1}+5 x_{2}}{2 x_{1}-x_{2}} \leq 4 \\
& \rightarrow \begin{array}{r}
\rightarrow \begin{array}{r}
x_{1}+2 x_{2} \leq 9 \\
-x_{1}+x_{2} \leq 3 \\
x_{1} \geq 0
\end{array} \\
x_{1} \geq 0
\end{array} \\
& x_{2} \geq 0 \\
& \begin{aligned}
\frac{7}{3} \\
\frac{1}{3}
\end{aligned} \quad \begin{aligned}
& \frac{7}{3} x_{1}+\frac{14}{3} x_{2} \leq \frac{63}{3} \\
& \frac{-\frac{1}{3} x_{1}}{}+\frac{1}{3} x_{2}<1 \\
& \frac{6}{3} x_{1}
\end{aligned}+\frac{15}{3} x_{2} \leq 22 \\
& 2 x_{1}+5 x_{2} \leq 22
\end{aligned}
$$

simplex
simple fact: origin is optimal if and only if

problems

initial vertex
no solution?
run time

WE HAVE BEEN SOLVING

 problem A by solving SMALLER VERSIONS OF PROBLEM A
GENERAL IDEA:

SOLVE PROBLEM A BY SOLVING

 PROBLEM B
Bipartite Matching Algorithm

$\mathrm{BP}(\mathrm{L}, \mathrm{R}, \mathrm{E})$?

I. MAKE NEW G' FROM INPUT G.
2. RUN FF ON G'
3. OUTPUT ALL MIDDLE EDGES WITH FLOW $F(E)=I$.

Bipartite

Matching
Instance (4, RE) transform

IF G HAS A MATCHING OF SIZE K, THEN G ' has a MAXFLOw of K.
Proof: Let μ^{*} be the matching of size K for G, (outline) Construct flow f to be

$$
\begin{array}{r}
f(e)=1 \text { if } \underline{e \in M^{*}} \text {, and if } e=(x, y) \\
\text { then } \begin{array}{l}
f(s, x)=1 \\
f(y, t)=1
\end{array}
\end{array}
$$

\Rightarrow flow of sutisflion (1) capacity constrains
(2) flow constraint

$$
\begin{aligned}
\operatorname{inflow}(x) & =\operatorname{outfliw}(x) \\
\mid f(& =K .
\end{aligned}
$$

HAS A FLOW OF K, THEN G HAS K-MATCHING.
(1) Our algorithm uses FF, so flow for G^{\prime} is integral.

Now define $M:\{e \mid f(e)=1$ and $e=(x, y)$ sit $x \in L y \in R\}$
Prove that M is a matching

- All flows are integral 4 capacity $c(e)=1$. so $f(e)=0$ ar 1 for $e \in E$.

Thus for all $\frac{v \in L}{V \in R}, V$ is incident to at moot I edge in M, By the flow constraint. By miN. cots, $|\mu|=K$

Before the start of the Spring semester, the Registrar must assign each class to a time and a classroom. The classroom must be larger than the class it holds to properly seat all the students. Suppose there are n classes such that class i has s_{i} students enrolled. The universty has m rooms, and room j can hold r_{j} students. Finally, there are non-overlapping time slots t_{1}, \ldots, t_{k} for the classes. For example t_{1} is "MW9-10.15" and t_{2} is "MW10.30-11.45" and so on. Given all this data, namely, given $\left(s_{1}, \ldots, s_{n}\right),\left(r_{1}, \ldots, r_{m}\right),\left(t_{1}, \ldots, t_{k}\right)$, design an efficient algorithm that assigns classes to times and classrooms. Analyze the running time and argue correctness.

your algorithm does this mapping

if $C R E$ has
Bipartite Matching

a mathis of size

problem 2 Classrooms

Before the start of the Spring semester, the Registrar must assign each class to a time and a classroom. The classroom must be larger than the class it holds to properly seat all the students. Suppose there are n classes such that class i has s_{i} students enrolled. The university has m rooms, and room j can hold r_{j} students. Finally, there are non-overlapping time slots t_{1}, \ldots, t_{k} for the classes. For example t_{1} is "MW9-10.15" and t_{2} is "MW10.30-11.45" and so on. Given all this data, namely, given $\left(s_{1}, \ldots, s_{n}\right),\left(r_{1}, \ldots, r_{m}\right),\left(t_{1}, \ldots, t_{k}\right)$, design an efficient algorithm that assigns classes to times and classrooms. Analyze the running time and argue correctness.

$$
\begin{gathered}
\left(s_{1}, \ldots, s_{n}\right) \\
\left(r_{1}, \ldots, r_{m}\right) \\
\left(t_{1}, \ldots, t_{k}\right)
\end{gathered}
$$

$M F, B l, E D P, \cup D \vec{J}$

Reduction

PROBLEM $_{d} \leq_{\underline{f(n)}}$ ROBLEM $_{b}$

PROBLEM $_{\mathrm{a}} \leq_{\mathrm{f}(\mathrm{n})}$ PROBLEM $_{\mathrm{b}}$

\exists c. d

$T\left(\operatorname{PROBLEM}_{a}(n)\right) \leq f(n)+c T\left(\operatorname{PROBLEM}_{b}(\mathrm{dn})\right)$

Maximum bipartite

edge-disjoint paths

maxBIPARTITE $<_{\text {rev }}$ maxFLOW

мaxEDGEDISJ
 $<_{\text {bev }}$ maxFLOW

party problem
conflicts

independent set

independent set

a set $\xlongequal{S \subseteq V}$ is an independent set if no two nodés in S are joined by an edge.

example

goal:
given a graph G, MAX in DEPENDENT SET, "mort people you con sit a your wedding tale"
baseball

CHCHet

a vertex cover of a graph is a set it nodes S such that for each elge e- $\left(x_{1}\right)$ either

$$
x \in S \text { ar } y \in S \text {. }
$$

a vertex cover of a graph is a set $C \subseteq V$ such that $\forall(x, y) \in E$ either $x \in C$ or $y \in C$

example

goal:
given a graph G ,

MAXINDSET $\leq_{\mathrm{O}}(\mathrm{V})$ MINVERTEXCOVER
A solution to VC can be used to solve INDSET.
thm: set S is an independent set of G iff V - S is a vertex cover.

SET COVER IND SET

Sexcover Road Map

