
stable matching

4102
 abhi

Stable Matching

Image credits: Julia Nikolaeva
definition: matchings

$$
\begin{aligned}
-\underline{M} & =\left\{m_{1} \ldots\right. \\
-\underline{W} & =\left\{\omega_{1} \ldots\right. \\
\underline{S} & =\left\{\omega_{n}\right\} \\
\left.\left(m_{i}, \omega_{j}\right)\right\} & \text { set of pairr. }
\end{aligned}
$$

(1)matching if $\begin{aligned} & m_{i} \\ & \omega_{j}\end{aligned}$ only occur in one pair in S
(2) perfact if $(s)=n$.

$$
W=\left\{w_{1}, \ldots, w_{n}\right\}
$$

$$
S=\left\{\left(m_{i_{1}}, w_{j_{1}}\right), \ldots,\left(m_{i_{k}}, w_{i_{k}}\right)\right\}
$$

Each m_{i} appears only one in a pairing.
A matching is perfect if every m_{i} appears.
definition: preferences

$$
M=\left\{m_{1}, \ldots, m_{n}\right\}
$$

each m_{i} has a preference list on the set W

$$
\text { "w } w_{1} \iota_{m i} w_{2} ": m_{i} \text { prefers } w_{2} \text { to } w_{1}
$$

> example: preferences $M=\left\{m_{1}, \ldots, m_{n}\right\}$
m_{i} has a preference relation on the set W
$\prec_{m_{i}}$

$$
w_{1} \prec_{m_{i}} w_{4} \prec_{m_{i}} w_{2} \prec_{m_{i}} w_{8} \cdots w_{n}
$$

$$
S=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
(\mathrm{O}) & (\mathrm{O}) \\
(\mathrm{O}, \mathrm{~N}) & \left(\mathrm{c}_{\mathrm{o}} \mathrm{H}\right)
\end{array}\right\}
\end{array}\right.
$$

\%i:

$$
S=\left\{\left(\begin{array}{ll}
\left(\sigma^{\omega^{\prime}}\right) & (0)^{-1}
\end{array}\right\}\right.
$$

Sis unstable if $\exists\left(m^{*}, w^{*}\right) \notin S,\left(m^{*}, w^{*}\right),\left(m^{\prime}, w^{*}\right) \in S$ and
(1) \underline{m}^{*} prefers \underline{w}^{*} to ω^{\prime}
(2) \underline{w}^{*} prefers \underline{m}^{*} to m^{\prime}
S is a stable matching if there are no such triples.

$$
\begin{aligned}
& \text { * O 胃 def: instability }
\end{aligned}
$$

$$
\begin{aligned}
& \left({ }^{\circ} \circ\right)\left(m^{m}, w^{2}\right) \& s \\
& w^{\prime} \prec_{m^{*}} w^{*} \\
& m^{\prime} \prec_{w^{*}} m^{*}
\end{aligned}
$$

there exists a stable matching.
proposal algorithm
Start with an empty matching S
While \Rightarrow an unmatched m who has not exhausted his preference list
Let w be the first q on m's list who he has not asked

If w is unpaired, $\quad P A(R(m, w)$
If $\left(m^{\prime}, w\right) \in S$ and w prefers m to m^{\prime}
Breakup (m', w)
Pair (m, w)
$\operatorname{StableMatch}\left(M, W, \prec_{m}, \prec_{w}\right)$
Initialize all m, w to be FREE
while $\exists \operatorname{FrEE}(m)$ and hasn't proposed to all W
do Pick such an m
Let $w \in W$ be highest-ranked to whom m has not yet proposed if $\operatorname{FREE}(w)$
then Make a new pair (m, w)
elseif $\left(m^{\prime}, w\right)$ is paired and $m^{\prime} \prec_{w} m$
do Break pair $\left(m^{\prime}, w\right)$ and make m^{\prime} free
Make pair (m, w)
return Set of pairs
\cdots

\%	\because	*
\square	\%	\cdots
\%	-	9
	*	\%

$$
\begin{aligned}
& \ldots{ }_{0} \mathrm{O}_{\mathrm{o}}
\end{aligned}
$$

$$
\begin{aligned}
& m \\
& \because \text { - 数 }
\end{aligned}
$$

m
W
\because - 组

	$\sqrt{\mathrm{am}} \mathrm{am}$		
\%	\cdots	\%	\%
\cdots	\%	\cdots	**
*붂	\bigcirc	Q	\cdots
Q	\%	*	9

proposal algorithm ends
end m owls \cosh each w once.

$$
(\omega)=n .
$$

$\Rightarrow\left(\theta\left(n^{2}\right)\right.$ iterations of the loop.
each m proposes at most once to each w.
each m proposes at most n times.
size of M is n.
output is a matching
(DEACK m owly pairel whone w.
(2) Why is each w pairel v/only 1 m ?? every tine w is pairel, she is sinfle.

If \exists an unmatched m,
Some q has not been asked.

output is perfect

if $\exists m$ who is free, then $\exists w$ who has not been asked
output is stab es
Spae not. That means $\exists\left(m^{*}, w^{*}\right) \notin S$ and $\left(m^{*}, w^{\prime}\right),\left(m^{\prime}, w^{*}\right) \in S$
Such that m^{*} prefers w^{*} to $w^{\prime} \& \omega^{*}$ prefers m^{*} to m^{\prime}.]
\rightarrow Consider the moment when $\left(m^{*}, w^{\prime}\right)$ are paired in the execution. T m^{*} was single. m^{*} most have already asked w^{*}.
w^{*} must have rejected m^{*} in favor of \hat{m}.

$$
\Rightarrow \quad m^{*}<_{\omega^{*}} \hat{m}
$$

\Rightarrow either $m^{\prime}=\hat{m}$ or $\hat{m}<{ }_{\text {wi }} m^{\prime}$
$\Rightarrow m^{*} \leq w^{*} m^{\prime}$ which contradicts

$$
(\text { GALE-SMAPLEY })
$$

$$
\underset{\exists\left(m^{*}, w\right),\left(m, w^{*}\right) \in S}{\operatorname{output}} \text { is } \underset{w \prec_{m^{*} * w^{*}} \text { stablele }}{m \prec_{w^{*}} m^{*}}
$$

m^{*} last proposal was to w
but $\quad w \prec_{m^{*}} w^{*}$ and so m^{*} must have already asked w^{*}
and must have been rejected by

$$
m^{*} \prec_{w^{*}} m^{\prime}
$$

then either
$m^{\prime} \prec_{w^{*}} m$
or $m^{\prime}=m$
which contradicts assumption

$$
m \prec_{w^{*}} m^{*}
$$

Proposer wins

- \%	E
	Y

Remarkable theorem
w is valid for m : J some stable matching S sit. $(m, w) \in S$
best (m): w sit. (m, w) is VAlid any every $w^{*} m^{7} w$ is not valid.

$$
I^{*}=\{(m, b e s t(m))\}_{m \in \mu}
$$

The: GS returns S^{*}. (every execution of it).

GS is man-optimal.
Prof: Consider some execution of GS that returns $S_{\pi} \neq S^{*}$.
\Rightarrow some m is not matched withe their best vAUD match.
\Rightarrow some w must have rejected a VALDD m.
\Rightarrow Consider the first time some w rejects a VALiD m . Q this point, (m,w) hove been matched
But w is valid for n, so $\exists \quad(m, w) \in S^{\prime}$, who does m^{\prime} match with in $S^{\prime} 7.7\left(\underline{m}, w^{\prime}\right) \in S^{\prime}$.
\rightarrow Since this is the first rejection in E, then
w^{\prime} could not have rejected m^{\prime} in E at this point.
(Tole fixed).
$\frac{\text { GS matching vs Wort }}{\text { un }}$ MAN- optical.
-The MAN optimal matching is the worst -possible stable matching for w.

a new technique for algorithm design

MergeSort(n)

<base case>
MergeSort(n/2) <left half>
MergeSort(n/2) <right half>
Merge(left,right) <combine>

MergeSort(n)

<base case>
MergeSort(n/2) <left half>
MergeSort(n/2) <right half>
Merge(left,right) <combine>

$$
T(n)=2 T(n / 2)+O(n)
$$

MergeSort(n) $<f(n) \quad 2$ MergeSort(n/2)

Typesetting

Typesetting

solving BESTn can be reduced to solving n-1 BESTi problems and combining the answer in linear time.

HUFFMAN

Finding an optimal code for an X character alphabet

solved by
can be reduced to

Finding an optimal code for an X - 1 character alphabet

WE HAVE BEEN SOLVING PROBLEM A bY SOLVING SMALLER VERSIONS OF PROBLEM A

GENERAL IDEA:

 SOLVE PROBLEM A BY SOLVING PROBLEM B
REDUCTION

PROBLEM $_{\mathrm{a}} \leq_{\mathrm{f}(\mathrm{n})}$ PROBLEM $_{\mathrm{b}}$

REDUCTION

PROBLEM $_{\mathfrak{a}} \leq_{\mathfrak{f}(\mathfrak{n})}$ PROBLEM $_{\mathfrak{b}}$
$\exists \mathrm{c} . \mathrm{d}$
$T\left(\operatorname{PROBLEM}_{\mathfrak{a}}(\mathrm{n})\right) \leq f(\mathrm{n})+\mathrm{cT}\left(\operatorname{PROBLEM}_{\mathrm{b}}(\mathrm{dn})\right)$

MAXIMUM BIPARTITE MATCHING

EDGE-DISJOINT PATHS

maxBIPARTITE maxedgedisj
maxflow
maxflow

TRIPLET PROBLEM

given numbers $\quad\left(x_{1}, \ldots, x_{n}\right)$
determine whether there is a triplet

$$
\left(x_{i}, x_{j}, x_{k}\right)
$$

such that

$$
x_{i}+x_{j}+x_{k}=0
$$

$$
3,-6,5,2,6,8,-1,12,7,-10,-3,14
$$

EASY TO SOLVE IN
$\mathrm{O}\left(\mathrm{n}^{3}\right)$

EASY TO SOLVE IN O(n $\left.{ }^{2}\right)$

$$
3,-6,5,2,6,8,-1,12,7,-10,-3,14
$$

COLINEARITY

given points in the plane $\quad\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$
determine whether any 3 are co-linear but not horizontal.

HOW CAN WE COMPARE 2 PROBLEMS?

PROBLEM $_{\mathrm{a}} \leq_{\mathrm{f}(\mathrm{n})}$ PROBLEM $_{\mathrm{b}}$
$T\left(\operatorname{PROBLEM}_{\mathbf{a}}(\mathfrak{n})\right) \leq f(\mathfrak{n})+\mathrm{cT}\left(\operatorname{PROBLEM}_{\mathfrak{b}}(\mathrm{dn})\right)$

$$
T=\{3,-6,5,2,6,8,-1,12,7,-10,-3,14
$$

$$
\mathrm{T}=\{3,-6,5,2,6,8,-1,12,7,-10,-3,14
$$

$P=$

$$
\mathrm{T}=\{3,-6,5,2,6,8,-1,12,7,-10,-3,14
$$

T is a TRIPLET-set if and only if P is a COLINEAR set.

SEGMENT PARTITION

SEGMENT PARTITION

SEGMENT PARTITION

Problem: Given a set of line segments in the plane, determine if there exists a line that partitions the segments into two sets.

SEGMENT PARTITION

WHY DO WE CARE?

ANOTHER EXAMPLE

3SAT PROBLEM

input:

3SAT EXAMPLE

$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

PARTY PROBLEM

国

INDEPENDENT SET

INDEPENDENT SET

```
a set S\subseteqV is an independent set if
no two nodes i| are joined by an edge.
```

EXAMPLE

GOAL: given a graph G ,

3 SAT \leq_{p} INDSET

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

what must we do to?

$3 \mathrm{SAT} \leq_{p}$ INDSET

$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$
$3 \mathrm{SAT} \leq_{p}$ INDSET
$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

$\phi \in \mathrm{SAT} \Longrightarrow$

$(\mathrm{G}, \mathrm{k}) \in \operatorname{INDSET} \Longrightarrow$

COMPLEXITY THEORY

Theory of NP

DEFINITION OF NP

A language L

DEFINITION OF NP

a language L belongs to the class NP iff \exists A.c such that

$$
\mathrm{L}=\left\{x \in\{0,1\}^{*} \mid \exists y \in\{0,1\}^{|x|^{c}} \text { s.t. } A(x, y)=1\right\}
$$

WHY IS TRIPLETS IN NP?

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

WHY IS INDSET IN NP?

COMPLEXITY CLASSES

NP
P

COOK-LEVIN THEOREM

THE IMPLICATION OF THIS

BASEBALL

a vertex cover of a graph is a sef $\subseteq \mathrm{V}$
such that $\forall(x, y) \in E$ either $x \in C$ or $y \in C$

GOAL: given a graph G ,

MAXINDSET $\leq \mathrm{O}(\mathrm{V})$ MINVERTEXCOVER

