

abhi

stable matching

Stable Matching

Image credits: Julia Nikolaeva

Image credits: Julia Nikolaeva

definition: matchings

 $-M = \{M, \dots, M, n\}$ $-W=\frac{1}{2}\omega_{1}$ $\omega_{n}\frac{2}{3}$ $S= \int (m_{i,v_{i}})^{2} \int set of point.$ Omatching if mi only occur in one pair in S (z) perfect if (S) = n.

definition: matchin
$$M = \{m_1, \dots, m, w\}$$

$$S = \{ (m_{i_1}, w_{j_1}), \dots, (m_{i_k}) \}$$

Each m_i appears only one in a pairing. A matching is perfect if every m_i appears.

 $\left\{ \begin{array}{c} 1 \\ n \\ n \end{array} \right\}$

 $, w_{i_k})\}$

definition: preferences $M = \{m_1, \ldots, m_n\}$ each mi has a préférence list on the set W " W_1 M_2 ": Mi prefers W_2 to W_1

example: preferences $M = \{m_1, \dots, m_n\}$

 m_i has a preference relation \prec_{m_i} on the set W

 $w_1 \prec_{m_i} w_4 \prec_{m_i} w_2 \prec_{m_i} w_8 \cdots w_n$

Source and the second secon $S = \left\{ \left(\underbrace{\swarrow}_{\mathcal{W}} \underbrace{\swarrow}_{\mathcal{W}} \right) \left(\underbrace{\nleftrightarrow}_{\mathcal{W}} \underbrace{\frown}_{\mathcal{W}} \right) \right\}$ Sis unstable if $\exists (m^*, w^*) \notin S$, $(m^*, w'), (m', w^*) \notin S$ and () m* prefers w* to w' (2) wit prefers mit to m' S is a stable matching if there are NO such triples.

there exists a stable matching.

exhausted his preference list ist who he has not asked

m to m'

STABLEMATCH (M, W, \prec_m, \prec_w)	
1	Initialize all m, w to be FREE
2	while $\exists FREE(m)$ and hasn't proposed to all W
3	do Pick such an m
4	Let $w \in W$ be highest-ranked to whom m has
5	if $FREE(w)$
6	then Make a new pair (m, w)
$\overline{7}$	elseif (m', w) is paired and $m' \prec_w m$
8	do Break pair (m', w) and make m' free
9	Make pair (m, w)
10	roturn Set of pairs

10 **return** Set of pairs

not yet proposed

IVƏL IEDI IEXSI

.

.

Ť,

IVAL IEON IEAST

...

.....

T)

LUX CT VERUIAS

109 1991 1935

503 508 503 TEXAS

.....

T)

Rad monty asks each work. $|\mathcal{M}| = \mathcal{N}$.

=) (I (n2) iterations of the loop.

proposal algorithm ends $O(n^2)$ steps

each m proposes at most once to each w.

each m proposes at most n times.

size of M is n.

output is a matching (DEACH monly paired whome w. Duly is each w paired worky Im ?? every time w is pairel, she is single.

output is perfect

output is perfect

if $\exists m$ who is free, then $\exists w$ who has not been asked

Spec not. That means
$$\exists (m^*, u^*) \notin s$$
 and
such that m^* prefers u^* to
? Consider the moment when (m^*, u^*) are
 m^* was single. m^* most have already
 w^* must have rejected m^*
 $\Rightarrow m^* \leq_{u^*} \hat{m}$
 $\exists either $m^* = \hat{m}$ or \hat{m}^*
 $\equiv m^* \leq_{w^*} m^*$ which$

(GALE-SMAPLEY)

 $\int = 2$ $(m^*, w'), (m^*, w^*) \in S$ -o w' & w* prefers m* to m? paired in the execution.] asked W. in favor of M. < mcontradicts.

$\bigcup_{\exists (m^*, w), (m, w^*) \in S} \operatorname{stab}_{w \prec_{m^*} w^*} m_{\forall w^*} m^*$

spse not.

 $\begin{array}{c} \text{Output} & \text{Stable} \\ \text{spse not. } \exists (m^*, w), (m, w^*) \in S & w \prec_{m^*} w^* & m \prec_{w^*} m^* \end{array}$

m* last proposal was to w $w \prec_{m^*} w^*$ and so m^{*} must have already asked w^{*} but and must have been rejected by $m^* \prec_{w^*} m'$ then either $m' \prec_{w^*} m$ or m'=m which contradicts assumption $m \prec_{w^*} m^*$

Proposer wins

Remarkable theol
w is valid for m: I some stable matching S s
best(m): W st. (m,w) is value any ev
S*:
$$\frac{2}{m}$$
 (m, best(m)) $\frac{2}{m}$ m
Thm: GS returns S*. (every ex

very why we is not valid.

xecution of it).

GS is man-optimal. Proof: Consider some execution of GS that returns StSt. =) some mis not matched with their best valid match. =) Some w must have réjected a valid m. =) Consider the first time some w rejects a VALID M. Othis point, (m', w) have been matched But wis value for m_1 , so $f(m_1w) \in S'$, who does m' match with in S'7.7 $(m', w') \in S'$. -) Since this is the first rejection in w' could not have rejected m' in

Tobe fixed

GS matching vs Wopt MAN- optinal.

-The MAN-optimal matching is the worst-possible Stable matching for W.

 \rightarrow

a new technique for algorithm design

MergeSort(n) <base case>

MergeSort(n/2) <left half>

MergeSort(n/2) <right half>

Merge(left,right) <combine>

MergeSort(n) <base case>

MergeSort(n/2) <left half>

MergeSort(n/2) <right half>

Merge(left,right) <combine>

T(n) = 2T(n/2) + O(n)

MergeSort(n) 2MergeSort(n/2) $\leq f(n)$

solving BESTn can be reduced to solving n-1 BESTi problems and combining the answer in linear time.

HUFFMAN

Finding an optimal code for an X character alphabet

solved by can be reduced to

Finding an optimal code for an X-1 character alphabet

WE HAVE BEEN SOLVING PROBLEM A BY SOLVING SMALLER VERSIONS OF PROBLEM A

GENERAL IDEA: SOLVE PROBLEM A BY SOLVING PROBLEM B

REDUCTION

$\operatorname{PROBLEM}_{\mathfrak{a}} \leq_{f(\mathfrak{n})} \operatorname{PROBLEM}_{\mathfrak{b}}$

REDUCTION

$\operatorname{PROBLEM}_{\mathfrak{a}} \leq_{f(\mathfrak{n})} \operatorname{PROBLEM}_{\mathfrak{b}}$

 $\exists \texttt{c.d} \\ T(\texttt{PROBLEM}_a(n)) \leq f(n) + cT(\texttt{PROBLEM}_b(dn))$

MAXIMUM BIPARTITE MATCHING

EDGE-DISJOINT PATHS

MAXBIPARTITE

maxedgedisj $<_{e+v}$ maxflow

e+vmaxflow

TRIPLET PROBLEM

given numbers (x_1,\ldots,x_n)

 $(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k})$ determine whether there is a triplet $x_i + x_j + x_k = 0$ such that

3,-6, 5,2,6,8,-1,12,7,-10,-3,14

EASYTO SOLVE IN $O(n^3)$

EASYTO SOLVE IN $O(n^2)$

COLINEARITY

given points in the plane

 $((x_1, y_1), \ldots, (x_n, y_n))$

determine whether any 3 are co-linear but not horizontal.

HOW CAN WE COMPARE 2 PROBLEMS?

$PROBLEM_a \leq_{f(n)} PROBLEM_b$

 $T(PROBLEM_{a}(n)) \leq f(n) + cT(PROBLEM_{b}(dn))$

3,-6,5,2,6,8,-1,12,7,-10,-3,14

$T = \{3, -6, 5, 2, 6, 8, -1, 12, 7, -10, -3, 14\}$

.....

T is a TRIPLET-set if and only if P is a COLINEAR set.

SEGMENT PARTITION

SEGMENT PARTITION

Problem: Given a set of line segments in the plane, determine if there exists a line that partitions the segments into two sets.

image: erickson

WHY DO WE CARE?

ANOTHER EXAMPLE

3SAT PROBLEM

input:

output: "

3SAT EXAMPLE

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

PARTY PROBLEM

INDEPENDENT SET

INDEPENDENT SET

 $S \subseteq V$ is an independent set if a set no two nodes if δ are joined by an edge.

EXAMPLE

GOAL: given a graph G,

 $3 \text{sat} \leq_p \text{indet}$

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

what must we do to?

 $3 \text{SAT} \leq_p \text{INDSET}$

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

 $3 \text{SAT} \leq_p \text{INDSET}$

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

 $(\mathbf{x} \lor \mathbf{y} \lor \mathbf{z}) \land (\mathbf{x} \lor \overline{\mathbf{y}} \lor \mathbf{y}) \land (\mathbf{u} \lor \mathbf{y} \lor \overline{\mathbf{z}}) \land (\mathbf{z} \lor \overline{\mathbf{x}} \lor \mathbf{u}) \land (\overline{\mathbf{x}} \lor \overline{\mathbf{y}} \lor \overline{\mathbf{z}})$

$\varphi\in\text{Sat}\implies$

 $(G,k) \in \text{INDSET} \implies$

COMPLEXITY THEORY

Theory of NP

DEFINITION OF NP

A language

DEFINITION OF NP

a language L belongs to the class NP iff $\exists A, c$ such that

 $L = \{x \in \{0, 1\}^* \mid \exists y \in \{0, 1\}^{|x|^c} \text{ s.t.} A(x, y) = 1\}$

WHY IS TRIPLETS IN NP?

 (x_1, x_2, \ldots, x_n)

WHY IS INDSET IN NP?

COMPLEXITY CLASSES

NP

P

COOK-LEVIN THEOREM

THE IMPLICATION OF THIS

a vertex cover of a graph is a

a vertex cover of a graph is a set $\subseteq V$ such that $\forall (x, y) \in E$ either $x \in C$ or $y \in C$

GOAL: given a graph G,

MAXINDSET $\leq_{O(V)}$ MINVERTEXCOVER