
L26
4102 11.26.2013

abhi

stable matching

Stable Matching

 Image credits: Julia Nikolaeva

 Image credits: Julia Nikolaeva

definition: matchings
M=

W=

S=

definition: matchings

Each mi appears only one in a pairing.
A matching is perfect if every mi appears.

definition: preferences

example: preferences
has a preference relation
on the set W

def: instability

def: instability

example 2

prove: for every input

there exists a stable matching.

proposal algorithm

m w

m w

m w

m w

m w

m w

m w

m w

proposal algorithm ends

proposal algorithm ends
steps

each m proposes at most once to each w.

each m proposes at most n times.

size of M is n.

output is a matching

output is perfect

output is perfect
if who is free, then who has not been asked

output is stable

9(m⇤, w), (m, w⇤) 2 S w �m⇤ w⇤ m �w⇤ m⇤
output is stable

spse not.

9(m⇤, w), (m, w⇤) 2 S w �m⇤ w⇤ m �w⇤ m⇤

m⇤ �w⇤ m0

m0 �w⇤ m

output is stable
spse not.

m* last proposal was to w
but and so m* must have already asked w*

and must have been rejected by
then either or m’=m
which contradicts assumption

w �m⇤ w⇤

m �w⇤ m⇤

Proposer wins

Proposer wins

Remarkable theorem
w is valid for m:

best(m):

GS is man-optimal.

GS matching vs Wopt

a new technique
for algorithm

design

MergeSort(n)
<base case>

MergeSort(n/2) <left half>

MergeSort(n/2) <right half>

Merge(left,right) <combine>

MergeSort(n)
<base case>

MergeSort(n/2) <left half>

MergeSort(n/2) <right half>

Merge(left,right) <combine>

T (n) = 2T (n/2) +O(n)

MergeSort(n) <f(n) 2MergeSort(n/2)

Typesetting
best0 + S2

1,n

best1 + S2
2,n

best2 + S2
3,n

bestn�1 + S2
n,n

best⇥�1 + S2
⇥,n

...

...

Typesetting
best0 + S2

1,n

best1 + S2
2,n

best2 + S2
3,n

bestn�1 + S2
n,n

best⇥�1 + S2
⇥,n

...

...

solving BESTn can be reduced to solving n-1 BESTi problems and
combining the answer in linear time.

HUFFMAN
Finding an optimal code for an X character alphabet

can be reduced to

Finding an optimal code for an X-1 character alphabet

solved by

WE HAVE BEEN SOLVING PROBLEM A
BY SOLVING SMALLER VERSIONS OF

PROBLEM A

GENERAL IDEA:
SOLVE PROBLEM A BY SOLVING

PROBLEM B

problema �f(n) problemb

REDUCTION

problema �f(n) problemb

T(problema(n)) � f(n) + cT(problemb(dn))
�c, d

REDUCTION

MAXIMUM BIPARTITE MATCHING

f

c

d

h

b

a

e
i

g

z

EDGE-DISJOINT PATHS

MAXBIPARTITE maxflow<e+v

maxedgedisj maxflow<e+v

(xi, xj, xk)

xi + xj + xk = 0

TRIPLET PROBLEM
given numbers

determine whether there is a triplet

such that

(x1, . . . , xn)

3,-6, 5 ,2,6,8,-1,12,7,-10,-3,14

O(n3)

EASY TO SOLVE IN

O(n2)EASY TO SOLVE IN

3,-6, 5 ,2,6,8,-1,12,7,-10,-3,14

...-1-3-6-10 2 3 5 6 7 8

COLINEARITY
given points in the plane

determine whether any 3 are co-linear but not horizontal.

((x1, y1), . . . , (xn, yn))

HOW CAN WE COMPARE
2 PROBLEMS?

problema �f(n) problemb

T(problema(n)) � f(n) + cT(problemb(dn))

3,-6,5,2,6,8,-1,12,7,-10,-3,14

3,-6,5,2,6,8,-1,12,7,-10,-3,14T= { }

3,-6,5,2,6,8,-1,12,7,-10,-3,14T= { }

P=

3,-6,5,2,6,8,-1,12,7,-10,-3,14T= { }

P=

T is a TRIPLET-set if and only if P is a COLINEAR set.

SEGMENT PARTITION

SEGMENT PARTITION

SEGMENT PARTITION
Problem: Given a set of line segments in the plane, determine
if there exists a line that partitions the segments into two sets.

SEGMENT PARTITION

Algorithms Non-Lecture H: Reductions

H.7 . . . to Segment Splitting . . .

Consider the following segment splitting problem: Given a collection of line segments in the plane,
is there a line that does not hit any segment and splits the segments into two non-empty subsets?

To show that this problem is 3SUM-hard, we start with the collection of points produced by our
last reduction. Replace each point by a ‘hole’ between two horizontal line segments. To make sure
that the only way to split the segments is by passing through three colinear holes, we build two
‘gadgets’, each consisting of five segments, to cap off the left and right ends as shown in the figure
below.

Top: 3n points, three on a non-horizontal line.
Bottom: 3n + 13 segments separated by a line through three colinear holes.

This reduction could be performed in linear time if we could make the holes infinitely small, but
computers can’t really deal with infinitesimal numbers. On the other hand, if we make the holes
too big, we might be able to thread a line through three holes that don’t quite line up. I won’t go
into details, but it is possible to compute a working hole size in O(n log n) time by first computing
the distance between the closest pair of points.

Thus, we have a valid reduction from 3SUM to segment splitting (by way of colinearity):

set of n numbers
O(n)
���⇧ set of 3n points

O(n log n)
�����⇧ set of 3n + 13 segments⇤⇤⌅ SPLITTABLE?

TRUE or FALSE
trivial
⌅��� TRUE or FALSE

trivial
⌅����� TRUE or FALSE

T3SUM(n) ⇥ Tsplit(3n + 13) + O(n log n) =⌃ Tsplit(n) ⇤ T3SUM

�n� 13
3

⇥
�O(n log n).

H.8 . . . to Motion Planning

Finally, suppose we want to know whether a robot can move from one position and location to
another. To make things simple, we’ll assume that the robot is just a line segment, and the environ-
ment in which the robot moves is also made up of non-intersecting line segments. Given an initial
position and orientation and a final position and orientation, is there a sequence of translations
and rotations that moves the robot from start to finish?

To show that this motion planning problem is 3SUM-hard, we do one more reduction, starting
from the set of segments output by the previous reduction algorithm. Specifically, we use our earlier
set of line segments as a ‘screen’ between two large rooms. The rooms are constructed so that the
robot can enter or leave each room only by passing through the screen. We make the robot long
enough that the robot can pass from one room to the other if and only if it can pass through three
colinear holes in the screen. (If the robot isn’t long enough, it could get between the ‘layers’ of the
screen.) See the figure below:

5

image: erickson

WHY DO WE CARE?

ANOTHER EXAMPLE

3SAT PROBLEM
input:

output: “

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

3SAT EXAMPLE

PARTY PROBLEM

INDEPENDENT SET

S � V

S

INDEPENDENT SET

a set is an independent set if
no two nodes in are joined by an edge.

example

goal: given a graph G,

3sat �p indset

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

what must we do to?

3sat �p indset

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

3sat �p indset

x

y z

x

y y

u

y z

x

y z

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

x

z u

x

y z zu

xx

y y

u

y z

x

yz

(x ⇥ y ⇥ z) � (x ⇥ y ⇥ y) � (u ⇥ y ⇥ z) � (z ⇥ x ⇥ u) � (x ⇥ y ⇥ z)

x

y z zu

xx

y y

u

y z

x

yz

� � sat =�

x

y z zu

xx

y y

u

y z

x

yz

(G, k) � indset =�

COMPLEXITY THEORY

Theory of NP

DEFINITION OF NP
A language L

�A, c

DEFINITION OF NP

a language L belongs to the class NP iff
such that

L = {x 2 {0, 1}⇤ | 9y 2 {0, 1}|x|
c

s.t.A(x, y) = 1}

(x1, x2, . . . , xn)

WHY IS TRIPLETS IN NP?

WHY IS INDSET IN NP?
1

2
6

3

5

4

7

8

9

P

NP

COMPLEXITY CLASSES

COOK-LEVIN THEOREM

THE IMPLICATION OF THIS

baseball

baseball

a vertex cover of a graph is a

such that
C � V

⇥ (x, y) � E

x � C y � C

a vertex cover of a graph is a set

either or

example

goal: given a graph G,

1

2
6

3

5

4

7

8

9

maxindset �O(V) minvertexcover

