
L27
4102 12.02.2013

abhi

randomization

http://kitsunenoir.com/blogimages/bloc-matches.jpg

check procedure:
randomly pick 50 matches and light them

if one fails, reject the box.

if all succeed, accept it.

pr that test fails
three cases to consider:

pr of death:

9.91165302141833906737674969688360149
5412210270643283767892785256889073029

997327393587632943101698342E-30

pr of death:

9.91165302141833906737674969688360149
5412210270643283767892785256889073029

997327393587632943101698342E-30

pr of royal flush:
1.53908E-6

pr that you...

Age in 1990 Total U.S. White Male White Female Black Male Black Female

20 0.102% 0.128% 0.045% 0.307% 0.074%

Disk Disk

fingerprinting

Alice Bob

Disk Disk

fingerprinting

Alice Bob
pick prime p

A B

Disk Disk

A mod p

B mod p

fingerprinting

Alice Bob
pick prime p

A B

send p,

compare with

if A=B, then

Disk Disk

A mod p

B mod p

A �= B

fingerprinting

Alice Bob
pick prime p

A B

send p,

compare with

if then

number of primes

number of primes
there are certainly infinitely many

: # of primes < x

lemma: # of prime divisors of x < log(x)

pr of false match:

Disk Disk

A mod p

B mod p

example params
Alice Bob

randomly pick 64bit prime p

A
B

send p,

compare with

A squabble between a group fighting spam and a Dutch

company that hosts Web sites said to be sending spam has

escalated into one of the largest computer attacks on the

Internet, causing widespread congestion and jamming

crucial infrastructure around the world. Millions of

ordinary Internet users have experienced delays in

services like Netflix or could not reach a particular Web

site for a short time.

However, for the Internet engineers who run the global

network the problem is more worrisome. The attacks are

becoming increasingly powerful, and computer security

experts worry that if they continue to escalate people may

not be able to reach basic Internet services, like e-mail

and online banking.

string matching
pattern corpus

string matching
pattern corpus

string matching
brute force:

for (int i = 0, j=0; i < n-m; i++) {
while (j < m && t[i+j] == p[j]) { j++; }
if (j == m) return i;

}
return -1;

.......

simple algorithm

aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaab

brute force worst case:

KMP algorithm

abcdabcdabcdefh
abcdabhi

KMP algorithm

abcdabcdabcdefh
abcdabhi

sliding rule

Text

given that P[1....q] matches T[m+1...m+q], but a mismatch occurs at q+1, then:

sliding rule

find the longest prefix of P[1...q] that is also a suffix of P[1...q]

given that P[1....q] matches T[m+1...m+q], but a mismatch occurs at q+1, then:

slide so that P[1...p] matches T[i-p+1,...]

x y x y y x y x y x x

Text

1 2 3 4 5 6 7 8 9 10 11

x y x y y x y x y x x 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 0 1 2 3 4 3 1

new idea for string match

string matching

pick random t-bit prime

compute pattern mod prime

for i=1...n
compute next corpus mod prime
compare, output match if same

pick an 80-bit prime p
What is the probability of a mismatch at the first position?

pr of any mismatch:

string matching

pick random t-bit prime

compute pattern mod prime

for i=1...n
compute next corpus mod prime
compare, output match if same

string matching example
pattern Text

314159265358979312312739826535

string matching example
pattern Text

314159265358979312312739826535

Given that 31415 mod 13 = 7,
How can I compute 14159 mod 13?

Hint: 10000 mod 13 = 3

string matching example
pattern Text

314159265358979312312739826535

14159 =

string matching
pick random t-bit prime

compute pattern mod prime

for i=1...n
compute next corpus mod prime
compare, output match if same

first example

goal:
devise a reliable method for nodes to send message
to the server with as little coordination as possible.

first example

1

n

simple algorithm

at time t, flip a coin that is heads with pr

if heads, then broadcast. if success, then stop.

else wait and try again.
repeat times cn log n

analyze the simple algorithm

Si,t =

Pr[Si,t = 1] =

Pr[Si,t = 1] =
1

n

�
1 �

1

n

⇥n�1

f(n) =

�
1 ⇤

1

n

⇥nfact: if THEN

f(n) =

�
1 ⇤

1

n

⇥n

80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

72
0

80
0

88
0

96
0

0.08

0.16

0.24

0.32

0.4

0.48

fact: if THEN

1

en
� Pr[Si,t = 1] � 1

2n

Si,t = node i succeeds in sending at time t

Fi,t =

failure

Fi,t =

Pr[Fi,t] =
t�

j=1

Pr[Si,j]

failure
node i fails to send at times 1,2,...,t

Fi,t =

Pr[Fi,t] =
t�

j=1

Pr[Si,j]

failure
node i fails to send at times 1,2,...,t

= �t
j=1 Pr[Si,j]

Pr[Fi,t] =
t�

j=1

Pr[Si,j] = �t
j=1 Pr[Si,j]

Fi,t =

Pr[Fi,t] =
t�

j=1

Pr[Si,j] = �t
j=1 Pr[Si,j]

Pr[Fi,t] = n�c

t = O(n lnn)

failure
node i fails to send at times 1,2,...,t

for

Ft =

Pr[Ft] =

all fail

Ft =

Pr[Ft] =
n�

i=1

Pr[Fi,t]

all fail
some node i fails to send at times 1,2,...,t

Ft =

Pr[Ft] =
n�

i=1

Pr[Fi,t]

all fail
some node i fails to send at times 1,2,...,t

�
n�

i=1

Pr[Fi,t] �
n�

i=1

n�c

O(n lnn)

summary
1

n
at time t, flip a coin that is heads with pr

if heads, then broadcast. if success, then stop.

else wait and try again.
repeat times

with probability

every node succeeds in sending message.

�
1 �

1

n

⇥n

tools we used

analysis of

probability that many independent events all occur:

probability that one out of n events occurs:

second example:

median

p

pick first element
partition list about this one
if pivot is position i, return pivot
else if pivot is in position > i
else

select (i, A[1, . . . , n])

select
select

(i, A[1, . . . , p� 1])
((i� p� 1), A[p + 1, . . . , n])

problem: what if we always pick bad partitions?

partition (A[1, . . . , n])

B[1, . . . , �n/5⇥]

select (�n/5⇥/2, B[1, . . . , �n/5⇥])

< < < <

<
<

<
<

<
<

<

this implies there are
at most 7n

10
+ 6

numbers

larger than
/smaller

a nice property of our partition

3
�⇤

1
2
⇥n/5⇤

⌅
� 2

⇥

⇥ 3n

10
� 6

p

pick first element
pivot = partition
if pivot is position i, return pivot
else if pivot is in position > i
else

select (i, A[1, . . . , n])

select
select

(i, A[1, . . . , p� 1])
((i� p� 1), A[p + 1, . . . , n])

(A[1, . . . , n])

S(n) = S(�n/5⇥) + O(n) + S(7n/10 + 6)

�(n)

p

pick random partition element
partition list about this one
if pivot is position i, return pivot
else if pivot is in position > i
else

RandomizedSelect (i, A[1, . . . , n])

select
select

(i, A[1, . . . , p� 1])
((i� p� 1), A[p + 1, . . . , n])

running time analysis
recursive calls

phases

�
3

4

⇥j

n

phases
algorithm is in phase j if

size of input list is <

pick random partition element
partition list about this one
....

RandomizedSelect (i, A[1, . . . , n])

Xj =

E[Xj] =

number of
steps in phase j

Xj =

Pr[Xj = 1] =

Pr[Xj = 2] =

Pr[Xj = j] =

E[Xj] =
��

j=0

j · Pr[Xj = j]

number of
steps in phase j

�X, Y, E[X + Y] = E[X] + E[Y]

linearity of expectation

E[X] =

expected running time

