
randomization

What is you best strategy to

survive \&
become King??

CHECK PROCEDURE:

RANDOMLY PICK 5 O MATCHES AND LIGHT THEM
IF ONE FAILS, REJECT THE BOX.
IF ALL SUCCEED, ACCEPT IT.

PR THAT TEST FAILS

THREE CASES TO CONSIDER:
Spae the uncle tampers with
<50 matches \Rightarrow You camp of live. or you dost camp ty live.

750 mat hes \Rightarrow kill the unde!! b/e you catch him

58 matches \Rightarrow one case it failvere \Rightarrow
test the 50 soil matches \&
pick the camp w/50 bad ones.

What is the pr of failure???
100 matches, 50 good ones. You pick those 50 gold over!!

$$
\begin{array}{r}
\left(\begin{array}{c}
\frac{50}{100}
\end{array}\right)\left(\frac{49}{99}\right)\left(\frac{4 n}{98}\right) \cdots\left(\frac{1}{50}\right) \\
\left.\binom{100}{50} \longrightarrow \frac{2^{2 n-1}}{\sqrt{n}}\right) \text { Stirling ileatoty }
\end{array}
$$

PR OF DEATH:

9.91165302141833906737674969688360149

5412210270643283767892785256889073029
$997327393587632943101698342 \mathrm{E}-30$

PR OF DEATH:

9.91165302141833906737674969688360149 5412210270643283767892785256889073029 $997327393587632943101698342 \mathrm{E}-30$

PR OF ROYAL FLUSH:

$1.53908 \mathrm{E}-6$

PR THAT YOU...

Age in 1990	Total U.S.	White Male	White Female	Black Male	Black Female
20	O.IO2 $\%$	O. 128%	0.045%	0.307%	0.074%

10^{-3}

FINGERPRINTING

> Bob

FINGERPRINTING

FINGERPRINTING

Alice

If $A=B$, THEN this protocol certainly succeeds!!

FINGERPRINTING

$$
p=13 .
$$

Mice

If $A \neq B$ then there is some small chance that the protral makes an err and convieases Alice Bib then there disks are equal.

NUMBER OF PRIMES
00 EucliD.
how many primes are there that are $<2^{64}$

NUMBER OF PRIMES
$\pi(x): \#$ THERE ARE CERTAINLY INFINITELY MANY

$$
\pi\left(2^{128}\right)>\frac{2^{128}}{120} \sim 2^{121} \quad \pi\left(2^{64}\right)>\frac{2^{64}}{67}>2^{58}
$$

LEMMA:
\# OF PRIME DIVISORS OF $\mathrm{X}<\operatorname{LOG}(\mathrm{x})_{(\mathrm{X}}$
2 is the smallest prime.
if x has t prime divisors than

$$
x \geqslant 2^{t}
$$

PR OF FALSE MATCH:
Spae that $A \neq B$, bot the protocol concludes "match".

$$
\begin{aligned}
A \bmod p & =B \bmod p \\
\Rightarrow(A-B) & =0 \bmod p \Rightarrow p \text { divides }(A-B)
\end{aligned}
$$

\Rightarrow how many prime divisors can $(A-B)$ have.?
\Rightarrow how many 64 bit primes are there?? 2^{58}.

$$
\operatorname{Pr} \text { failure is }<\frac{2^{40}}{258} \sim 2^{-18}
$$

STRING MATCHING

PATTERN
vaiflix

CORPUS

A squabble between a group fighting spam and a Dutch
company that hosts Web sites said to be sending spam has escalated into one of the largest computer attacks on the Internet, causing widespread congestion and jamming crucial infrastructure around the world. Millions of ordinary Internet users have experienced delays in services like Netflix or could not reach a particular Web site for a short time.

However, for the Internet engineers who run the global network the problem is more worrisome. The attacks are
\qquad

STRING MATCHING

\square
\square

STRING MATCHING
$O(m)$
$O(n)$
BRUTE FORCE:

\qquad
\square

```
for (int i = 0, j=0; i < n-m; i++) {
    while (j<m && t[i+j] == p[j]) { j++; }
        if (j == m) return i;
    }
```

 return -1;

SIMPLE ALGORITHM

AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAB

BRUTE FORCE WORST CASE:

KMP algorithm

ABCDABCDABCDEFH ABCDABHI

KMP ALGORITHM

ABCDABCDABCDEFH ABCDABHI

SLIDING RULE

given that $\mathrm{P}[\mathrm{I} . . . \mathrm{Q}$] matches $\mathrm{T}[\mathrm{M}+\mathrm{I} \ldots \mathrm{M}+\mathrm{Q}]$, but a mismatch occurs at $\mathrm{Q}+\mathrm{I}$, then:

Text

SLIDING RULE

slide so that $\mathrm{P}[\mathrm{I} . . . \mathrm{P}]$ matches $\mathrm{T}[\mathrm{I}-\mathrm{P}+\mathrm{I}, . .$.

Text

00120123431

NEW IDEA FOR STRING MATCH
Alice
corpus

STRING MATCHING

PICK RANDOM T-BIT PRIME

COMPUTE PATTERN MOD PRIME

$$
(\text { Alice } \quad \text { operation })
$$

FOR I=I...N COMPUTE NEXT CORPUS MOD PRIME COMPARE, OUTPUT MATCH IF SAME

Soho
operatisry

PICK AN 8O-BIT PRIME P
What is the probability of a mismatch at the first position?
12 bit primes.
if the pattern is of size m bits pattern has Lm prime divisors.

$$
\begin{aligned}
& \text { Pr [mismatch © position } 0] \leq \frac{m}{2121} \text { \# of } 128 \text {-bit }
\end{aligned}
$$

There are n positions to match, so Pr $A l y$ fails $=\frac{\text { him }}{2^{121}}$

PR OF ANY MISMATCH:

STRING MATCHING

PICK RANDOM T-BIT PRIME

COMPUTE PATTERN MOD PRIME

FOR $I=I . . . N$
COMPUTE NEXT CORPUS MOD PRIME
COMPARE, OUTPUT MATCH IF SAME

STRING MATCHING EXAMPLE

$$
\begin{aligned}
& \underbrace{\substack{\text { Pattern } \\
26535}} \quad \frac{\text { Text }}{31415} 92653589793123127398 \\
& p=13 \\
& =7
\end{aligned}
$$

$26535 \bmod 13=$

STRING MATCHING EXAMPLE

$$
\frac{3141592653589793123127398}{T E x}
$$

26535

Given that $31415 \bmod 13=7$,
How can I compute $14159 \bmod 13$? 2

$$
\begin{aligned}
& \text { 10. }[\underbrace{31415}_{\substack{\text { mop } \\
\text { Hint: } 10000 \bmod 13=3}}-\underbrace{3 \cdot 10.000}_{\bmod }]_{+\operatorname{modp}}^{\omega}+q=\frac{14159 \bmod p}{[7-3.3]+10+9} \\
& 6+9=15=2 \bmod 13
\end{aligned}
$$

$\theta(1)$ single mod ρ operations.

STRING MATCHING EXAMPLE

```
PATTERN
26535
3141592653589793123127398
\(14159=\)
```

STRING MATCHING

PICK RANDOM T-BIT PRIME

COMPUTE PATTERN MOD PRIME

FOR I=I...N
COMPUTE NEXT CORPUS MOD PRIME
compare, output match if same
$\theta(1)$ mol ρ operations

$$
\theta(n+m) \bmod \quad \rho \quad \text { operations. }
$$

FIRST EXAMPLE

GOAL:

DEVISE A RELIABLE METHOD FOR NODES TO SEND MESSAGE
TO THE SERVER WITH AS LITTLE COORDINATION AS POSSIBLE.

FIRST EXAMPLE

SIMPLE ALGORITHM

```
AT TIME T, FLIP A COIN THAT IS HEADS WITH PR 
IF HEADS, THEN BROADCAST. IF SUCCESS, THEN STOP.
ELSE WAIT AND TRY AGAIN.
REPEAT \(\mathrm{c} n\) log \(n\) TIMES
```


ANALYZE THE SIMPLE ALGORITHM

$$
\begin{gathered}
S_{i, t}= \\
\operatorname{Pr}\left[S_{i, t}=1\right]=
\end{gathered}
$$

$$
\operatorname{Pr}\left[S_{i, t}=1\right]=\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}
$$

FACT: IF
 $f(n)=\left(1-\frac{1}{n}\right)^{n} \quad$ THEN

FACT: IF

$$
\mathrm{f}(\mathrm{n})=\left(1-\frac{1}{\mathrm{n}}\right)^{n} \quad \text { THEN }
$$

$S_{i, t}=\operatorname{Node} i$ succerds in sending at time t

$$
\frac{1}{\mathrm{en}} \leq \operatorname{Pr}\left[S_{i, t}=1\right] \leq \frac{1}{2 n}
$$

FAILURE

$F_{i, t}=$

FAILURE

$F_{i, t}=\quad$ node i fails to send at times $1,2, \ldots, t$

$$
\operatorname{Pr}\left[F_{i, t}\right]=\bigwedge_{j=1}^{t} \operatorname{Pr}\left[\overline{S_{i, j}}\right]
$$

FAILURE

$F_{i, t}=\quad$ node i fails to send at times $1,2, \ldots, t$

$$
\operatorname{Pr}\left[F_{i, t}\right]=\bigwedge_{j=1}^{t} \operatorname{Pr}\left[\overline{S_{i, j}}\right]=\prod_{j=1}^{t} \operatorname{Pr}\left[\overline{S_{i, j}}\right]
$$

$$
\operatorname{Pr}\left[F_{i, t}\right]=\bigwedge_{j=1}^{t} \operatorname{Pr}\left[\overline{S_{i, j}}\right]=\prod_{j=1}^{t} \operatorname{Pr}\left[\overline{S_{i, j}}\right]
$$

FAILURE

$F_{i, t}=\operatorname{node} i_{\text {falls to send at times }}^{1,2, \ldots, t}$

$$
\operatorname{Pr}\left[F_{i, t}\right]=\bigwedge_{j=1}^{t} \operatorname{Pr}\left[\overline{S_{i, j}}\right]=\prod_{j=1}^{t} \operatorname{Pr}\left[\overline{S_{i, j}}\right]
$$

FOR

$$
\mathrm{t}=\mathrm{O}(\mathrm{n} \ln \mathfrak{n})
$$

$$
\operatorname{Pr}\left[\mathrm{F}_{\mathrm{i}, \mathrm{t}}\right]=\mathrm{n}^{-\mathrm{c}}
$$

ALL FAIL

$F_{t}=$
$\operatorname{Pr}\left[\mathrm{F}_{\mathrm{t}}\right]=$

ALL FAIL

$F_{t}=\operatorname{some} \operatorname{node} i$ falls to send at times $1,2, \ldots, t$

$$
\operatorname{Pr}\left[F_{t}\right]=\bigvee_{i=1}^{n} \operatorname{Pr}\left[F_{i, t}\right]
$$

ALL FAIL

$\mathrm{F}_{\mathrm{t}}=\operatorname{somenode} i$ falis to send at times $1,2, \ldots, t$
$\operatorname{Pr}\left[F_{t}\right]=\bigvee_{i=1}^{n} \operatorname{Pr}\left[F_{i, t}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[F_{i, t}\right] \leq \sum_{i=1}^{n} n^{-c}$

SUMMARY

at time t, flip a Coin that is heads with pr $\frac{1}{n}$
IF HEADS, THEN BROADCAST. IF SUCCESS, THEN STOP.

ELSE WAIT AND TRY AGAIN.
repeat $O(n \ln n)$ times

WITH PROBABILITY

EVERY NODE SUCCEEDS IN SENDING MESSAGE.

TOOLS WE USED

ANALYSIS OF $\quad\left(1-\frac{1}{n}\right)^{n}$

PROBABILITY THAT MANY INDEPENDENT EVENTS ALL OCCUR:

PROBABILITY THAT ONE OUT OF N EVENTS OCCURS:

SECOND EXAMPLE:

$\operatorname{select}(i, A[1, \ldots, n])$
PICK FIRST ELEMENT
PARTITION LIST ABOUT THIS ONE
IF PIVOT IS POSITION i, RETURN PIVOT
ELSE IF PIVOT IS IN POSITION $>i \quad \operatorname{SELECT}(i, A[1, \ldots, p-1])$
else $\operatorname{select}((i-p-1), A[p+1, \ldots, n])$

PROBLEM: WHAT IF WE ALWAYS PICK BAD PARTITIONS?

partition $(A[1, \ldots, n])$

SELECT

A NICE PROPERTY OF OUR PARTITION

THIS IMPLIES THERE ARE
AT MOST $\frac{7 n}{10}+6^{\text {NUMBERS }}$
LARGER THAN
/SMALLER

```
Select (i, A[1,\ldots,n])
```

PIGK FIRST ELEMENT
PIVOT $=$ PARTITION $(A[1, \ldots, n])$
IF PIVOT IS POSITION i, RETURN PIVOT
else if pivot is in position $>i \quad$ Select $(i, A[1, \ldots, p-1])$
else $\operatorname{select}((i-p-1), A[p+1, \ldots, n])$
$S(n)=S(\lceil n / 5\rceil)+O(n)+S(7 n / 10+6)$
$\Theta(n)$

RandomizedSelect

$$
(i, A[1, \ldots, n])
$$

PICK RANDOM PARTITION ELEMENT
PARTITION LIST ABOUT THIS ONE
IF PIVOT IS POSITION i, RETURN PIVOT
else if pivot is in position $>i \operatorname{select}(i, A[1, \ldots, p-1])$
else $\operatorname{select}((i-p-1), A[p+1, \ldots, n])$

RUNNING TIME ANALYSIS

RECURSIVE CALLS

PHASES

PHASES

ALGORITHM IS IN PHASE J IF

SIZE OF INPUT LIST IS $<\quad\left(\frac{3}{4}\right)^{j} n$

PICK RANDOM PARTITION ELEMENT
PARTITION LIST ABOUT THIS ONE
....

$X_{j}=$ NUMBER OF
 STEPS IN PHASE J

$E\left[X_{j}\right]=$

X_{j} NUMBER OF
 STEPS IN PHASE J

$$
\begin{gathered}
E\left[X_{j}\right]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}\left[X_{j}=j\right] \\
\operatorname{Pr}\left[X_{j}=1\right]= \\
\operatorname{Pr}\left[X_{j}=2\right]= \\
\operatorname{Pr}\left[X_{j}=j\right]=
\end{gathered}
$$

LINEARITY OF EXPECTATION

$$
\forall X, Y, \quad E[X+Y]=E[X]+E[Y]
$$

EXPECTED RUNNING TIME

$E[X]=$

