
L28
4102 12.05.2013

abhi

review,
crypto

http://kitsunenoir.com/blogimages/bloc-matches.jpg

Disk Disk

fingerprinting

Alice Bob

string matching
pattern corpus

reliable communication

goal:
devise a reliable method for nodes to send message
to the server with as little coordination as possible.

1

n

simple algorithm

at time t, flip a coin that is heads with pr

if heads, then broadcast. if success, then stop.

else wait and try again.
repeat times cn log n

analyze the simple algorithm

Si,t =

Pr[Si,t = 1] =

Pr[Si,t = 1] =
1

n

�
1 �

1

n

⇥n�1

f(n) =

�
1 ⇤

1

n

⇥nfact: if THEN

f(n) =

�
1 ⇤

1

n

⇥n

80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

72
0

80
0

88
0

96
0

0.08

0.16

0.24

0.32

0.4

0.48

fact: if THEN

1

en
� Pr[Si,t = 1] � 1

2n

Si,t = node i succeeds in sending at time t

Fi,t =

failure

Fi,t =

Pr[Fi,t] =
t�

j=1

Pr[Si,j]

failure
node i fails to send at times 1,2,...,t

Fi,t =

Pr[Fi,t] =
t�

j=1

Pr[Si,j]

failure
node i fails to send at times 1,2,...,t

= �t
j=1 Pr[Si,j]

Pr[Fi,t] =
t�

j=1

Pr[Si,j] = �t
j=1 Pr[Si,j]

Fi,t =

Pr[Fi,t] =
t�

j=1

Pr[Si,j] = �t
j=1 Pr[Si,j]

Pr[Fi,t] = n�c

t = O(n lnn)

failure
node i fails to send at times 1,2,...,t

for

Ft =

Pr[Ft] =

all fail

Ft =

Pr[Ft] =
n�

i=1

Pr[Fi,t]

all fail
some node i fails to send at times 1,2,...,t

Ft =

Pr[Ft] =
n�

i=1

Pr[Fi,t]

all fail
some node i fails to send at times 1,2,...,t

�
n�

i=1

Pr[Fi,t] �
n�

i=1

n�c

O(n lnn)

summary
1

n
at time t, flip a coin that is heads with pr

if heads, then broadcast. if success, then stop.

else wait and try again.
repeat times

with probability

every node succeeds in sending message.

�
1 �

1

n

⇥n

tools we used

analysis of

probability that many independent events all occur:

probability that one out of n events occurs:

second example:

median

p

pick first element
partition list about this one
if pivot is position i, return pivot
else if pivot is in position > i
else

select (i, A[1, . . . , n])

select
select

(i, A[1, . . . , p� 1])
((i� p� 1), A[p + 1, . . . , n])

problem: what if we always pick bad partitions?

partition (A[1, . . . , n])

B[1, . . . , �n/5⇥]

select (�n/5⇥/2, B[1, . . . , �n/5⇥])

< < < <

<
<

<
<

<
<

<

this implies there are
at most 7n

10
+ 6

numbers

larger than
/smaller

a nice property of our partition

3
�⇤

1
2
⇥n/5⇤

⌅
� 2

⇥

⇥ 3n

10
� 6

p

pick first element
pivot = partition
if pivot is position i, return pivot
else if pivot is in position > i
else

select (i, A[1, . . . , n])

select
select

(i, A[1, . . . , p� 1])
((i� p� 1), A[p + 1, . . . , n])

(A[1, . . . , n])

S(n) = S(�n/5⇥) + O(n) + S(7n/10 + 6)

�(n)

p

pick random partition element
partition list about this one
if pivot is position i, return pivot
else if pivot is in position > i
else

RandomizedSelect (i, A[1, . . . , n])

select
select

(i, A[1, . . . , p� 1])
((i� p� 1), A[p + 1, . . . , n])

pick random partition element
partition list about this one
....

RandomizedSelect (i, A[1, . . . , n])

running time analysis
recursive calls

phases

�
3

4

⇥j

n

phases
algorithm is in phase j if

size of input list is <

pick random partition element
partition list about this one
....

RandomizedSelect (i, A[1, . . . , n])

E[Xj] =

Xj = number of steps in phase j

Xj =

Pr[Xj = 1] =

Pr[Xj = 2] =

Pr[Xj = j] =

E[Xj] =
��

j=0

j · Pr[Xj = j]

number of steps in phase j

�X, Y, E[X + Y] = E[X] + E[Y]

linearity of expectation

E[X] =

expected running time

private communication

Alice Bob

Eve

mm

private communication

Alice Bob

Eve

mm

m

substitution cipher1.2. MODERN CRYPTOGRAPHY: PROVABLE SECURITY 5

Definition 4.2. The Subsitution Cipher denotes the tuple M,K,Gen,Enc,Dec
defined as follows.

M = {A,B, . . . , Z}⇥
K = the set of permutations over {A,B, . . . , Z}

Gen = k where k
r� K.

Enck(m1m2. . .mn) = c1c2. . .cn where ci = k(mi)
Deck(c1c2. . .cn) = m1m2. . .mn where mi = k�1(ci)

Proposition 5.1. The Subsitution Cipher is a private-key encryption scheme.

To attack the substitution cipher we can no longer perform the brute-force
attack because there are now 26! possible keys. However, by performing a
careful frequency analysis of the alphabet in the English language, the key
can still be easily recovered (if the encrypted messages is sufficiently long)!

So what do we do next? Try to patch the scheme again? Indeed, cryptog-
raphy historically progressed according to the following “crypto-cycle”:

1. A, the “artist”, invents an encryption scheme.

2. A claims (or even mathematically proves) that known attacks do not
work.

3. The encryption scheme gets employed widely (often in critical situa-
tions).

4. The scheme eventually gets broken by improved attacks.

5. Restart, usually with a patch to prevent the previous attack.

Thus, historically, the main job of a cryptographer was cryptoanalysis—
namely, trying to break encryption algorithms. Whereas cryptoanalysis i still
is an important field of research, the philosophy of modern cryptography
is instead “if we can do the cryptography part right, there is no need for
cryptanalysis!”.

1.2 Modern Cryptography: Provable Security

Modern Cryptography is the transition from cryptography as an art to cryp-
tography as a principle-driven science. Instead of inventing ingenious ad-hoc
schemes, modern cryptography relies on the following paradigms:

• Providing mathematical definitions of security.

size of keyspace is

=403291461126605635584000000

EOR TZSRWF XEASG ZV DWGYEZPWQYOG NFKRXENPQERX ERDOFNIARX VZW VQDNHNEQENFP NFERWQDENZFX
UREJRRF SNXEWAXEVAH RFENENRX NF ZAW DZFFRDERS XZDNREG XADO ERDOFNIARX OQKR URDZTR
NFSNXYRFXQUHR RFQUHNFP VZW NFXEQFDR QAEZTQERS ERHHRW TQDONFRX XRDAWR JNWRHRXX FREJZWLX
NFERWFRE UQFLNFP XQERHHNER WQSNZERHRKNXNZF QFS TZWR NF EONX DZAWXR JR NFEWZSADR XZTR ZV
EOR VAFSQTRFEQH DZFDRYEX ZV EONX XEASG RTYOQXNX JNHH UR YHQDRS ZF WNPZWZAX YWZZVX ZV
XRDAWNEG UQXRS ZF YWRDNXR SRVNFNENZFX QFS QXXATYENZFX

frequency analysis

EOR TZSRWF XEASG ZV DWGYEZPWQYOG NFKRXENPQERX ERDOFNIARX VZW VQDNHNEQENFP NFERWQDENZFX
UREJRRF SNXEWAXEVAH RFENENRX NF ZAW DZFFRDERS XZDNREG XADO ERDOFNIARX OQKR URDZTR
NFSNXYRFXQUHR RFQUHNFP VZW NFXEQFDR QAEZTQERS ERHHRW TQDONFRX XRDAWR JNWRHRXX FREJZWLX
NFERWFRE UQFLNFP XQERHHNER WQSNZERHRKNXNZF QFS TZWR NF EONX DZAWXR JR NFEWZSADR XZTR ZV
EOR VAFSQTRFEQH DZFDRYEX ZV EONX XEASG RTYOQXNX JNHH UR YHQDRS ZF WNPZWZAX YWZZVX ZV
XRDAWNEG UQXRS ZF YWRDNXR SRVNFNENZFX QFS QXXATYENZFX

RSA

MOD-EXP

MOD-EXP

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

MOD-EXP

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

MOD-EXP

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

2.5. BASIC COMPUTATIONAL NUMBER THEORY 31

Thus, we can write
bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx� b(⌅a/b⇧)y + (a mod b)y + b(⌅a/b⇧)y
= b(x� (⌅a/b⇧)y) + ay

which shows that the return value (y, x� (⌅a/b⇧)y) is correct.

The assumption that the inputs are such that a > b is without loss of gen-
erality since otherwise the first recursive call swaps the order of the inputs.

Exponentiation modulo n

Given a, x, n, we now demonstrate how to efficiently compute ax mod n. Re-
call that by efficient, we require the computation to take polynomial time in
the size of the representation of a, x, n. Since inputs are given in binary nota-
tion, this requires our procedure to run in time poly(log(a), log(x), log(n)).

The key idea is to rewrite x in binary as x = 2�x�+2��1x��1+· · ·+2x1+x0

where xi ⇤ {0, 1} so that

ax mod n = a2�x�+2��1x��1+···+21x1+x0 mod n

We show this can be further simplified as

ax mod n =
��

i=0

xia
2i

mod n

Algorithm 2: ModularExponentiation(a, x, n)
Input: a, x ⇤ [1, n]
r ⇥ 11

while x > 0 do2

if x is odd then3

r ⇥ r · a mod n4

x ⇥ ⌅x/2⇧5

a ⇥ a2 mod n6

Return r7

EUCLID

greatest common divisor of
35 and 14

EUCLID AND THE GCD

1237918278937
142104160622754

what is the GCD?

GIVEN (A,B):
FINDS (X,Y) S.T. AX + BY = GCD(A,B)

2.5. BASIC COMPUTATIONAL NUMBER THEORY 29

Modular Arithmetic

We state the following basic facts about modular arithmetic:

Claim 28.1. For n > 0 and a, b ⌅ Z,

1. (a mod n) + (b mod n) = (a + b) mod n

2. (a mod n)(b mod n) mod n = ab mod n

Euclid’s algorithm

Euclid’s algorithm appears in text around 300B.C.; it is therefore well-studied.
Given two numbers a and b such that a ⇥ b, Euclid’s algorithm computes the
greatest common divisor of a and b, denoted gcd(a, b). It is not at all obvious
how this value can be efficiently computed, without say, the factorization of
both numbers. Euclid’s insight was to notice that any divisor of a and b will
also be a divisor of b and a � b. The latter is both easy to compute and a
smaller problem than the original one. The algorithm has since been updated
to use a mod b in place of a � b to improve efficiency. An elegant version
of the algorithm which we present here also computes values x, y such that
ax + by = gcd(a, b).

Algorithm 1: ExtendedEuclid(a, b)
Input: (a, b) s.t a > b ⇥ 0
Output: (x, y) s.t. ax + by = gcd(a, b)
if a mod b = 0 then1

Return (0, 1)2

else3

(x, y) ⇤ ExtendedEuclid (b, a mod b)4

Return (y, x� y(⇧a/b⌃))5

Note: by polynomial time we always mean polynomial in the size of the
input, that is poly(log a + log b)

Proof. On input a > b ⇥ 0, we aim to prove that Algorithm 1 returns (x, y)
such that ax + by = gcd(a, b) = d via induction. First, let us argue that the
procedure terminates in polynomial time. The original analysis by Lamé is
slightly better; for us the following suffices since each recursive call involves
only a constant number of divisions and subtraction operations.

35 and 14

13 and 73

cryptography
32964031794323944819653393490459747322286350
31500646399521148595996590847768392238771217
69252874938669758963521262177684757622917354
10764395167469005450386721087598087995167019
51260209070780169584330401159403323161691626
51931932385937935848982371478700671595968131
07098610562722922433990122345442992245859824
74364293651925019779584845838833700838150940
56504167483874319231730153624474523841938831
33113697736378643670286581890300666191500953

329742364829

large prime number

import java.io.*;
import java.math.*;
import java.util.*;

public class pr {
 public static void main(String args[]) {

 BigInteger prime = new BigInteger(1500,80,new Random());
 System.out.println("prime is " +prime);

 }
}

rabin-miller

2.5. BASIC COMPUTATIONAL NUMBER THEORY 37

then ap�1 is usually not equal to 1. The first fact and second phenomena form
the basic idea behind the Miller-Rabin primality test: to test p, pick a random
a ⇥ Zp, and check whether ap�1 = 1 mod p. (Notice that efficient modular ex-
ponentiation is critical for this test.) Unfortunately, the second phenomena is
on rare occasion false. Despite there rarity (starting with 561, 1105, 1729, . . . ,,
there are only 255 such cases less than 108!), there are infact an infinite num-
ber of counter examples collectively known as the Carmichael numbers. Thus,
for correctness, we must test for these rare cases. This second check amounts
to verifying that none of the intermediate powers of a encountered during the
modular exponentiation computation of an�1 are non-trivial square-roots of
1. This suggest the following approach.
For positive n, write n = u2j where u is odd. Define the set

LN = {� ⇥ ZN | �N�1 = 1 and if �u2j+1
= 1 then �u2j

= 1}

The first condition is based on Fermat’s Little theorem, and the second one
eliminates errors due to Carmichael numbers.

Theorem 37.1. If N is an odd prime, then |LN | = N � 1. If N > 2 is composite,
then |LN | < (N � 1)/2.

We will not prove this theorem here. See [?] for a formal proof. The proof
idea is as follows. If n is prime, then by Fermat’s Little Theorem, the first
condition will always hold, and since 1 only has two square roots modulo p
(namely, 1,�1), the second condition holds as well. If N is composite, then
either there will be some � for which �N�1 is not equal to 1 or the process of
computing �N�1 reveals a square root of 1 which is different from 1 or �1—
recall that when N is composite, there are at least 4 square roots of 1. More
formally, the proof works by first arguing that all of the � ⇤⇥ LN form a proper
subgroup of Z⇥N . Since the order of a subgroup must divide the order of the
group, the size of a proper subgroup must therefore be less than (N � 1)/2.

This suggests the following algorithm for testing primality:

Algorithm 3: Miller-Rabin Primality Test
Handle base case N = 21

for t times do2

Pick a random � ⇥ ZN3

if � ⇤⇥ LN then Output “composite”4

Output “prime”5

rabin-miller

2.5. BASIC COMPUTATIONAL NUMBER THEORY 37

then ap�1 is usually not equal to 1. The first fact and second phenomena form
the basic idea behind the Miller-Rabin primality test: to test p, pick a random
a ⇥ Zp, and check whether ap�1 = 1 mod p. (Notice that efficient modular ex-
ponentiation is critical for this test.) Unfortunately, the second phenomena is
on rare occasion false. Despite there rarity (starting with 561, 1105, 1729, . . . ,,
there are only 255 such cases less than 108!), there are infact an infinite num-
ber of counter examples collectively known as the Carmichael numbers. Thus,
for correctness, we must test for these rare cases. This second check amounts
to verifying that none of the intermediate powers of a encountered during the
modular exponentiation computation of an�1 are non-trivial square-roots of
1. This suggest the following approach.
For positive n, write n = u2j where u is odd. Define the set

LN = {� ⇥ ZN | �N�1 = 1 and if �u2j+1
= 1 then �u2j

= 1}

The first condition is based on Fermat’s Little theorem, and the second one
eliminates errors due to Carmichael numbers.

Theorem 37.1. If N is an odd prime, then |LN | = N � 1. If N > 2 is composite,
then |LN | < (N � 1)/2.

We will not prove this theorem here. See [?] for a formal proof. The proof
idea is as follows. If n is prime, then by Fermat’s Little Theorem, the first
condition will always hold, and since 1 only has two square roots modulo p
(namely, 1,�1), the second condition holds as well. If N is composite, then
either there will be some � for which �N�1 is not equal to 1 or the process of
computing �N�1 reveals a square root of 1 which is different from 1 or �1—
recall that when N is composite, there are at least 4 square roots of 1. More
formally, the proof works by first arguing that all of the � ⇤⇥ LN form a proper
subgroup of Z⇥N . Since the order of a subgroup must divide the order of the
group, the size of a proper subgroup must therefore be less than (N � 1)/2.

This suggests the following algorithm for testing primality:

Algorithm 3: Miller-Rabin Primality Test
Handle base case N = 21

for t times do2

Pick a random � ⇥ ZN3

if � ⇤⇥ LN then Output “composite”4

Output “prime”5

2.5. BASIC COMPUTATIONAL NUMBER THEORY 37

then ap�1 is usually not equal to 1. The first fact and second phenomena form
the basic idea behind the Miller-Rabin primality test: to test p, pick a random
a ⇥ Zp, and check whether ap�1 = 1 mod p. (Notice that efficient modular ex-
ponentiation is critical for this test.) Unfortunately, the second phenomena is
on rare occasion false. Despite there rarity (starting with 561, 1105, 1729, . . . ,,
there are only 255 such cases less than 108!), there are infact an infinite num-
ber of counter examples collectively known as the Carmichael numbers. Thus,
for correctness, we must test for these rare cases. This second check amounts
to verifying that none of the intermediate powers of a encountered during the
modular exponentiation computation of an�1 are non-trivial square-roots of
1. This suggest the following approach.
For positive n, write n = u2j where u is odd. Define the set

LN = {� ⇥ ZN | �N�1 = 1 and if �u2j+1
= 1 then �u2j

= 1}

The first condition is based on Fermat’s Little theorem, and the second one
eliminates errors due to Carmichael numbers.

Theorem 37.1. If N is an odd prime, then |LN | = N � 1. If N > 2 is composite,
then |LN | < (N � 1)/2.

We will not prove this theorem here. See [?] for a formal proof. The proof
idea is as follows. If n is prime, then by Fermat’s Little Theorem, the first
condition will always hold, and since 1 only has two square roots modulo p
(namely, 1,�1), the second condition holds as well. If N is composite, then
either there will be some � for which �N�1 is not equal to 1 or the process of
computing �N�1 reveals a square root of 1 which is different from 1 or �1—
recall that when N is composite, there are at least 4 square roots of 1. More
formally, the proof works by first arguing that all of the � ⇤⇥ LN form a proper
subgroup of Z⇥N . Since the order of a subgroup must divide the order of the
group, the size of a proper subgroup must therefore be less than (N � 1)/2.

This suggests the following algorithm for testing primality:

Algorithm 3: Miller-Rabin Primality Test
Handle base case N = 21

for t times do2

Pick a random � ⇥ ZN3

if � ⇤⇥ LN then Output “composite”4

Output “prime”5

rabin-miller

2.5. BASIC COMPUTATIONAL NUMBER THEORY 37

then ap�1 is usually not equal to 1. The first fact and second phenomena form
the basic idea behind the Miller-Rabin primality test: to test p, pick a random
a ⇥ Zp, and check whether ap�1 = 1 mod p. (Notice that efficient modular ex-
ponentiation is critical for this test.) Unfortunately, the second phenomena is
on rare occasion false. Despite there rarity (starting with 561, 1105, 1729, . . . ,,
there are only 255 such cases less than 108!), there are infact an infinite num-
ber of counter examples collectively known as the Carmichael numbers. Thus,
for correctness, we must test for these rare cases. This second check amounts
to verifying that none of the intermediate powers of a encountered during the
modular exponentiation computation of an�1 are non-trivial square-roots of
1. This suggest the following approach.
For positive n, write n = u2j where u is odd. Define the set

LN = {� ⇥ ZN | �N�1 = 1 and if �u2j+1
= 1 then �u2j

= 1}

The first condition is based on Fermat’s Little theorem, and the second one
eliminates errors due to Carmichael numbers.

Theorem 37.1. If N is an odd prime, then |LN | = N � 1. If N > 2 is composite,
then |LN | < (N � 1)/2.

We will not prove this theorem here. See [?] for a formal proof. The proof
idea is as follows. If n is prime, then by Fermat’s Little Theorem, the first
condition will always hold, and since 1 only has two square roots modulo p
(namely, 1,�1), the second condition holds as well. If N is composite, then
either there will be some � for which �N�1 is not equal to 1 or the process of
computing �N�1 reveals a square root of 1 which is different from 1 or �1—
recall that when N is composite, there are at least 4 square roots of 1. More
formally, the proof works by first arguing that all of the � ⇤⇥ LN form a proper
subgroup of Z⇥N . Since the order of a subgroup must divide the order of the
group, the size of a proper subgroup must therefore be less than (N � 1)/2.

This suggests the following algorithm for testing primality:

Algorithm 3: Miller-Rabin Primality Test
Handle base case N = 21

for t times do2

Pick a random � ⇥ ZN3

if � ⇤⇥ LN then Output “composite”4

Output “prime”5

2.5. BASIC COMPUTATIONAL NUMBER THEORY 37

then ap�1 is usually not equal to 1. The first fact and second phenomena form
the basic idea behind the Miller-Rabin primality test: to test p, pick a random
a ⇥ Zp, and check whether ap�1 = 1 mod p. (Notice that efficient modular ex-
ponentiation is critical for this test.) Unfortunately, the second phenomena is
on rare occasion false. Despite there rarity (starting with 561, 1105, 1729, . . . ,,
there are only 255 such cases less than 108!), there are infact an infinite num-
ber of counter examples collectively known as the Carmichael numbers. Thus,
for correctness, we must test for these rare cases. This second check amounts
to verifying that none of the intermediate powers of a encountered during the
modular exponentiation computation of an�1 are non-trivial square-roots of
1. This suggest the following approach.
For positive n, write n = u2j where u is odd. Define the set

LN = {� ⇥ ZN | �N�1 = 1 and if �u2j+1
= 1 then �u2j

= 1}

The first condition is based on Fermat’s Little theorem, and the second one
eliminates errors due to Carmichael numbers.

Theorem 37.1. If N is an odd prime, then |LN | = N � 1. If N > 2 is composite,
then |LN | < (N � 1)/2.

We will not prove this theorem here. See [?] for a formal proof. The proof
idea is as follows. If n is prime, then by Fermat’s Little Theorem, the first
condition will always hold, and since 1 only has two square roots modulo p
(namely, 1,�1), the second condition holds as well. If N is composite, then
either there will be some � for which �N�1 is not equal to 1 or the process of
computing �N�1 reveals a square root of 1 which is different from 1 or �1—
recall that when N is composite, there are at least 4 square roots of 1. More
formally, the proof works by first arguing that all of the � ⇤⇥ LN form a proper
subgroup of Z⇥N . Since the order of a subgroup must divide the order of the
group, the size of a proper subgroup must therefore be less than (N � 1)/2.

This suggests the following algorithm for testing primality:

Algorithm 3: Miller-Rabin Primality Test
Handle base case N = 21

for t times do2

Pick a random � ⇥ ZN3

if � ⇤⇥ LN then Output “composite”4

Output “prime”5

38 CHAPTER 2. COMPUTATIONAL HARDNESS

Observe that testing whether � ⇤ LN can be done by using a repeated-
squaring algorithm to compute modular exponentiation, and adding internal
checks to make sure that no non-trivial roots of unity are discovered.

Theorem 38.1. If N is composite, then the Miller-Rabin test outputs “composite”
with probability 1� 2�t. If N is prime, then the test outputs “prime.”

Selecting a Random Prime

Our algorithm for finding a random n-bit prime will be simple: we will re-
peatedly sample a n-bit number and then check whether it is prime.

Algorithm 4: SamplePrime(n)
repeat1

x
r⇥ {0, 1}n2

if Miller-Rabin(x) = “prime” then Return x3

until done4

There are two mathematical facts which make this simple scheme work:

1. There are many primes

2. It is easy to determine whether a number is prime

By Theorem 35.1, the probability that a uniformly-sampled n-bit integer
is prime is greater than (N/ log N)/N = c

n . Thus, the expected number of
guesses in the guess-and-check method is polynomial in n. Since the run-
ning time of the Miller-Rabin algorithm is also polynomial in n, the expected
running time to sample a random prime using the guess-and-check approach
is polynomial in n.

2.6 Factoring-based Collection

The Factoring Assumption

Let us denote the (finite) set of primes that are smaller than 2n as

�n = {q | q < 2n and q is prime}

Consider the following assumption, which we shall assume for the remain-
der of this book:

EULER TOTIENT

�(n)
1 2 3 4 5 6 77

EULER TOTIENT

�(n)

1 2 3 4 5 6 7 8 9 10 11 12 13 1415

EULER TOTIENT

prime

product
of 2 primes

EULER THEOREM

a�(n)
= 1 mod ngcd(a, n) = 1if

EULER THEOREM

1
2

3

4
5

6

..

x
1
2

3

4
5

6

..

x

EULER THEOREM

1
2

3

4
5

6

..

x
1
2

3

4
5

6

..

x

argue: all are distinct
spse two are equal.
multiply by

this implies 2=6!

EULER THEOREM

1
2

3

4
5

6

..

x
1
2

3

4
5

6

..

x

EULER THEOREM

1
2

3

4
5

6

..

x
1
2

3

4
5

6

..

x

EULER THEOREM

1
2

3

4
5

6

..

x
1
2

3

4
5

6

..

x

=

EULER THEOREM

1
2

3

4
5

6

..

x
1
2

3

4
5

6

..

x

=

EULER THEOREM

1
2

3

4
5

6

..

x
1
2

3

4
5

6

..

x

=

textbook rsa
gen(1n)

textbook rsa
gen(1n)

N = pq �(N) = (p� 1)(q � 1)

e is a number such that
d is such that

gcd(e,�(N)) = 1

e · d = 1 mod �(N)

encpk(m)

N = 949 e=11 d=707

textbook rsa
gen(1n)

encpk(m)

decsk(c)

june 1942

jn-25b

cmdr edward t layton
(fleet intelligence officer)

lt cmdr joseph rochefort
(combat intelligence unit)

secure encryption
schemes need to use
randomness!

pkcs1.5

pick r as a random string with no 0s
encpk(m)

(typically 8 bytes)

cca2 attack against this scheme

random oracle model

algorithm

public function. not keyed.
anyone can evaluate, output is unpredictable.

random oracle model

algorithm

HEURISTIC SECURITY only
cannot be always be securely instantiated

sha256

oaep+
gen(1n)

encpk(m)

decsk(c)

trapdoor owp()

output m else fail

Theme

“solve big problems by making them
into smaller ones.”

“small problems are easy to solve.”

intro midterm
l15 oct 17

final
dec 5-7

div & conq

dynamic

greedy np

graph rand

topics
NPC

red

ind

vc

3col

subset

set

Rand

match

finger

string

enc

D&C

mult

quick

close

median

fft

matmul

masters

bus

nifty

Greedy

sched

huff

espresso

caching

other

gpu

dissent

pq

DP

log

chain

gerry

typeset

zap

poster

tug

Graph

mst

dijkstra

bell-ford

allshort

maxflow

bfs

bipartite
edge-disj
baseball

assignment
stable

first goal: create an
amazing learning
experience

second goal:instill
my enthusiasm for this
area

third goal: enjoy every
second of this semester

