

shelat
4102
sep 52013

$$
\begin{gathered}
T(n)=3 T(n / 2)+8 O(n) \\
O\left(n^{\log _{2}(3)}\right) \quad O\left(n^{1.589}\right)
\end{gathered}
$$

Digits
2
4
8
16
32
64
128
2
4
8
16
32
64
128
\# operations
$14 n^{\log _{2} 3}-16 n$

10
62
250
878
2890
9182
28570

10
62
250
878
2890
9182
28570
$T(n)=3 T(n / 2)+8 O(n)$ (guess +ck)
goal: Prove $T(n)=O\left(n^{\log _{2} 3}\right)$. More specifically,
Prove $T(n)=n^{\log _{2} 3}-16 n$
Base case: $T(n)<n^{\log _{2} 3}-1 b_{n}$ for small valves of n Spse $T(n)<n^{\log _{2} 3}-16 n$, holds for $n<n_{0}$.

Consider:

$$
\begin{aligned}
\left(\frac{T\left(n_{0}+1\right)}{}\right) & =3 T\left(\frac{\left(\frac{n_{0}+1}{2}\right)+8\left(n_{0}+1\right)}{\tau_{\text {this argument }}} \text { is }<n_{0},\right. \text { so } \\
& <3\left[\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+\right. \\
& <\left(n_{0}+1\right)^{\log _{2} 3}-16\left(n_{0+1}\right)
\end{aligned}
$$

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}-16 n$

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}-16 n$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $\mathrm{n}<1024$.

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}-16 n$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $\mathrm{n}<1024$.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}-16 n$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $\mathrm{n}<1024$.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$
Consider the case of $T\left(n_{0}+1\right)$

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}-16 n$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $\mathrm{n}<1024$.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$
Consider the case of $T\left(n_{0}+1\right)$

$$
T\left(n_{0}+1\right)=3 T\left(\left(n_{0}+1\right) / 2\right)+8\left(n_{0}+1\right)
$$

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}-16 n$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $\mathrm{n}<1024$.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$ Consider the case of $T\left(n_{0}+1\right)$

$$
T\left(n_{0}+1\right)=3 T\left(\left(n_{0}+1\right) / 2\right)+8\left(n_{0}+1\right)
$$

But since $\left(n_{0}+1\right) / 2<n_{0}$ and A1, it follows that

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}-16 n$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<1024$.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$
Consider the case of $T\left(n_{0}+1\right)$

$$
T\left(n_{0}+1\right)=3 T\left(\left(n_{0}+1\right) / 2\right)+8\left(n_{0}+1\right)
$$

But since $\left(n_{0}+1\right) / 2<n_{0}$ and A1, it follows that

$$
T\left(n_{0}+1\right)<3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+1\right)
$$

$$
T\left(n_{0}+1\right)<3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+1\right)
$$

$$
\begin{aligned}
T\left(n_{0}+1\right) & <3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-24\left(n_{0}+1\right)+8\left(n_{0}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(n_{0}+1\right) & <3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-24\left(n_{0}+1\right)+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-16\left(n_{0}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(n_{0}+1\right) & <3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-24\left(n_{0}+1\right)+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-16\left(n_{0}+1\right)
\end{aligned}
$$

This expression matches our Assumption A1.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$

$$
\begin{aligned}
T\left(n_{0}+1\right) & <3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-24\left(n_{0}+1\right)+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-16\left(n_{0}+1\right)
\end{aligned}
$$

This expression matches our Assumption A1.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$

This establishes that $T(n)=O\left(n^{\log _{2} 3}\right)$

$$
\begin{aligned}
T\left(n_{0}+1\right) & <3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}-16\left(\frac{n_{0}+1}{2}\right)\right]+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-24\left(n_{0}+1\right)+8\left(n_{0}+1\right) \\
& <14\left(n_{0}+1\right)^{\log _{2} 3}-16\left(n_{0}+1\right)
\end{aligned}
$$

This expression matches our Assumption A1.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$

Thus, we can conclude the proof via induction.
This establishes that $T(n)=O\left(n^{\log _{2} 3}\right)$

Induction summary

$1 \quad T(n) \leq 14 n^{\log _{2} 3}-16 n \quad$ IS TRUE for one case.
$2 T(n) \leq 14 n^{\log _{2} 3}-16 n \quad$ Suppose TRUE for $n<n_{0}$
3 Showed that 1,2 imply that

$$
T\left(n_{0}+1\right) \leq 14\left(n_{0}+1\right)^{\log _{2} 3}-16\left(n_{0}+1\right)
$$

4 Lather, Rinse, Repeat! (Induction)

What happens if we skip the -16n?

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n \quad$ when $\mathrm{n}<1024$.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}$
when $n<n_{0}$

$T(n)=3 T(n / 2)+8 O(n)$ (guess +chk)

Lets prove that $T(n) \leq 14 n^{\log _{2} 3}$
By inspection, indeed, $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $\mathrm{n}<1024$.
A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$
Consider the case of $T\left(n_{0}+1\right)$

$$
T\left(n_{0}+1\right)=3 T\left(\left(n_{0}+1\right) / 2\right)+8\left(n_{0}+1\right)
$$

But since $\left(n_{0}+1\right) / 2<n_{0}$ and A1, it follows that

$$
T\left(n_{0}+1\right)<3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}\right]+8\left(n_{0}+1\right)
$$

$$
\begin{gathered}
T\left(n_{0}+1\right)<3\left[14\left(\frac{n_{0}+1}{2}\right)^{\log _{2} 3}\right]+8\left(n_{0}+1\right) \\
\quad<14\left(n_{0}+1\right)^{\log _{2} 3}+8\left(n_{0}+1\right)
\end{gathered}
$$

This expression DOES NOT matches our Assumption A1. So the induction STOPS!

A1: Lets assume that $T(n) \leq 14 n^{\log _{2} 3}-16 n$ when $n<n_{0}$

$T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)($ guess +chk)

cookbook

Featuring more than 175 recipes from Spice Market, Vong, and 66

ASIAN FLAVORS OF
JEAN-GEORGES

JEAN-GEORGES
VONGERICHTEN

$T(n)=a T(n / b)+f(n)$

$T(n)=a T(n / b)+f(n)$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$

...
$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
${ }^{\text {cas }} f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
${ }^{-m} f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$

$f(n)=0\left(n \wedge\left\{\log _{2} 2(4)\right\}\right)$, so case 1 applies here.
GOAL:
Thus, $T(n)=T h e t a\left(n \wedge\left\{\log _{2} 2(4)\right\}\right)=\operatorname{Theta}(n \wedge 2)$

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case 1: } f(n)=O\left(n^{\log _{b} a-\epsilon}\right) \quad \begin{array}{l}
\text { Lis the \# of recursive levels, } \\
\text { and L=log_b(n) }
\end{array}
\end{aligned}
$$

Aim is to show that $T(n)=T h e t a\left(n \wedge\left\{\log _{_} b a\right\}\right)$. Towards this goal, we expand the eqtn above: $f(n)$ < $c n \wedge\left\{l_{0} g_{-}(a)\right.$ - eps\} by the definition of big-Oh

```
T(n) = cn^{log_b(a)-eps} + a*c(n/b)^{log_b(a)-eps} + a^2*c(n/b^2)^{log_b(a)-eps} + ... +
    a^(L-1)*c(n/b^(L-1))^{log_b(a)-eps} + a^L*c(n/b^L)^{log_b(a)-eps}
                                    this last term^^^ simplifies to c*a^L
```

```
obs I: a^L = a^{log_b(n)} = b^({log_b(a)}*{log_b(n)}) = (b^{log_b(n)})^{log_b(a)}
    = n^{log_b(a)}
obs II: a^i*c(n/b^i)^{log_b(a)-eps} = c*n^{log_b(a)-eps} (a^i / (b^i)^{log_b(a)-eps} )
    = c*n^{log_b(a)-eps} (a^i / (a^i b^{-eps*i})
    = c*n^{log_b(a)-eps} b^{eps*i} )
```

$1+b+b^{2}+\cdots+b^{L-1}=$
$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$ case 1 (cont):

$$
T(n) \leq c n^{\log _{b} a-\epsilon\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a}} \begin{gathered}
\frac{b^{\wedge} \wedge\left\{L^{* e p s}-1\right.}{b^{\wedge} \mathrm{eps}-1} \\
\frac{n^{\wedge} \text { epsilon }-1}{b^{\wedge} \mathrm{eps}-1}
\end{gathered}
$$

$$
\text { ALso need to show that } T(n)=0 m e g a\left(n \wedge\left\{\backslash \log _{2} b(a)\right\}\right)
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 2: $f \in \Theta\left(n^{\lg _{b} a}\right)$
then $T(n)=$ Theta $\left(n \wedge\left\{\log _{-} b a\right\} \log (n)\right)$
case $\mathbf{3}: f \in \Omega\left(n^{\lg _{b} a+\epsilon}\right)$ and...
then $T(n)=\operatorname{Theta}(f(n))$

example 2: $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$

$$
T(n)=2 T(n / 2)+n^{3}
$$

$T(n)=7 T(n / 2)+O\left(n^{2}\right)$

example:

$$
T(n)=T\left(\frac{14}{17} n\right)+24
$$


```
        T(n)=2T(\sqrt{}{n})+\operatorname{lg}n
T(2^m) = 2T( sqrt(2^m) ) + lg(2^m)
    = 2T( 2^{m/2} ) + c*m --- c is some constant to hangle the "natural" lg
So in other words, 2^m = n
S(m) = T(2^m)
S(m/2) = T(2^{m/2})
S(m) = 2S(m/2) + c*m
S(m) = Theta(m * log m)
If 2^m = n, then m = log(n).
```


divide

conquer

examples

merge-sort (A, p, r)
if $p<r$

$$
q \leftarrow\lfloor(p+r) / 2\rfloor
$$

merge-sort (A, p, q) merge-sort $(A, q+1, r)$ merge (A, p, q, r)

$$
i \leftarrow 1 ; j \leftarrow m+1
$$

$$
\text { for } k \leftarrow 1 \text { to } n
$$

$$
\text { if } j>n
$$

$$
B[k] \leftarrow A[i] ; i \leftarrow i+1
$$

$$
\text { else if } i>m
$$

$$
B[k] \leftarrow A[j] ; j \leftarrow j+1
$$

else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

merge-sort (A, p, r)
if $p<r$

$$
q \leftarrow\lfloor(p+r) / 2\rfloor
$$

merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)

merge-sort (A, p, r)
if $p<r$

$$
q \leftarrow\lfloor(p+r) / 2\rfloor
$$

merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)

merge-sort (A, p, r)
if $p<r$

$$
q \leftarrow\lfloor(p+r) / 2\rfloor
$$

merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)

1	2	2	3	4	5	6	7

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort (} A, p, q \text {) } \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r) \\
& \begin{aligned}
T(n) & =2 T(n / 2)+O(n) \\
& =\Theta(n \log n)
\end{aligned}
\end{aligned}
$$

n points in D dimensions

simple solution: brute force:

solve the large problem by

solving smaller problems
and combining solutions

$\delta \quad \delta$

(make data structures, only once) closest pair:
base case of <5 points
solve left half, right half
let δ be min from left/right
add points δ from middle to set S
assign points to boxes of side $\delta / 2$
for each point in S, compare w/10 neighbor boxes find minimum in this list
return closest pair
$T(n)=$
$T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)$

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \star\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] } & =\left[\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right] \\
& =\left[\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]} \\
& n \\
& c_{i, j}= \\
& \sum_{k=0} \\
& a_{i, k} \cdot b_{k, j}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$\left.\begin{array}{l}F \\ H\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \times\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right] \\
& T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \quad \Theta\left(n^{3}\right.
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

[strassen]
$P_{1}=A(F-H)$
$P_{2}=(A+B) H$
$P_{3}=(C+D) E$
$P_{4}=D(G-E)$
$P_{5}=(A+D)(E+H)$
$P_{6}=(B-D)(G+H)$
$P_{7}=(A-C)(E+F)$

$$
=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

[strassen]
$P_{1}=A(F-H)$
$P_{2}=(A+B) H$
$P_{3}=(C+D) E$
$P_{4}=D(G-E)$
$P_{5}=(A+D)(E+H)$
$P_{6}=(B-D)(G+H)$
$P_{7}=(A-C)(E+F)$

$$
=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

[strassen]
$P_{1}=A(F-H)$
$P_{2}=(A+B) H$
$P_{3}=(C+D) E$
$P_{4}=D(G-E)$
$P_{5}=(A+D)(E+H)$
$P_{6}=(B-D)(G+H)$
$P_{7}=(A-C)(E+F)$
[strassen]

$$
P_{1}=A(F-H)
$$

$$
P_{2}=(A+B) H
$$

$$
P_{3}=(C+D) E
$$

$$
P_{4}=D(G-E)
$$

$$
P_{5}=(A+D)(E+H)
$$

$$
P_{6}=(B-D)(G+H)
$$

$$
P_{7}=(A-C)(E+F)
$$

$$
\begin{aligned}
& \begin{array}{l}
A F+B H S=P_{1}+P_{2} \\
C V=P_{5}+P_{1} P_{1} P_{5} P_{-P_{7}}
\end{array}
\end{aligned}
$$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \quad M(n)=7 M(n / 2)+18 n^{2} \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E)=\Theta\left(n^{\log _{2} 7}\right) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

taking this idea further

3×3 matricies

1978 victor pan method 70x70 matrix using 143640
 mults

what is the recurrence:
WIFIN|N
problem: given a list of n elements, find the element of rank $n / 2$. (half are larger, half are smaller)
problem: given a list of n elements, find the element of rank $n / 2$. (half are larger, half are smaller)
problem: given a list of n elements, find the element of rank $n 2$. (half are larger, half are smaller)
can generalize to i
first solution: sort and pluck.
$O(n \log n)$
problem: given a list of n elements, find the element of rank i.
problem: given a list of n elements, find the element of rank i.
key insight:
we do not have to "fully" sort. semi sort can suffice.
pick first element
partition list about this one see where we stand
review: how to partition a list
\uparrow
small e
then bye
lager than blue pint element

p

pick first element
partition list about this one see where we stand

$a x \times x \times 1 \times x_{0}$

select $(i, A[1, \ldots, n])$
pick first element
partition list about this one
if pivot is position i, return pivot else if pivot is in position > i else

$$
\text { select }((i-p-1), A[p+1, \ldots, n])
$$

select $(i, A[1, \ldots, n])$
pick first element partition list about this one if pivot is position i, return pivot else if pivot is in position > $i \quad \operatorname{select}(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
select $(i, A[1, \ldots, n])$
pick first element
partition list about this one
if pivot is position i, return pivot else
else if pivot is in position > i
select $(i, A[1, \ldots, p-1])$
select $((i-p-1), A[p+1, \ldots, n])$

$$
T(n)=T(n / 2)+O(n)
$$

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?
select $(i, A[1, \ldots, n])$
pick first element
partition list about this one
if pivot is position i, return pivot else if pivot is in position > i else

$$
\text { select }((i-p-1), A[p+1, \ldots, n])
$$

a good partition element

partition $(A[1, \ldots, n])$

a good partition element
partition $(A[1, \ldots, n])$
produce an element where 30\% smaller, 30\% larger

DDDDD

solution:
 bootstrap

partition $(A[1, \ldots, n])$

partition $(A[1, \ldots, n])$

partition $(A[1, \ldots, n])$

partition $(A[1, \ldots, n])$
divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result
divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S([n / 5\rceil)+O(n)
$$

a nice property of our partition

a nice property of our partition

a nice property of our partition

SWITCH TO A BIGGER EXAMPLE

1 $\square:+i$

a nice property of our partition

a nice property of our partition

$$
\begin{gathered}
3\left(\left\lceil\frac{1}{2}\lceil n / 5\rceil\right\rceil-2\right) \\
\geq \frac{3 n}{10}-6
\end{gathered}
$$

a nice property of our partition

$$
3\left(\left\lceil\frac{\mathbf{1}}{\mathbf{2}}\lceil\boldsymbol{n} / 5\rceil\right\rceil-2\right)
$$

$$
\geq \frac{3 n}{10}-6
$$

this implies there are
numbers

$$
\frac{7 n}{10}+6
$$

larger than
/smaller

a nice property of our partition

$$
\leq \frac{7 n}{10}+6
$$

$$
\leq \frac{7 n}{10}+6
$$

a $1 \times 1 \times 1 \times x_{p}$

select $(i, A[1, \ldots, n])$
pick first element
partition list about this one
if pivot is position i, return pivot else if pivot is in position $>i \quad$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
select $(i, A[1, \ldots, n])$
pick first element
partition list about this one
if pivot is position i, return pivot else if pivot is in position $>i \quad$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
$S(n)=S(\lceil n / 5\rceil)+O(n)+S(7 n / 10+6)$
select $(i, A[1, \ldots, n])$
pick first element
partition list about this one
if pivot is position i, return pivot else if pivot is in position > $i \quad$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
$S(n)=S(\lceil n / 5\rceil)+O(n)+S(7 n / 10+6)$
$\Theta(n)$

