

4102<br>shelat

## cookbook


$T(n)=a T(n / b)+f(n)$
$T(n)=a T(n / b)+f(n)$



$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+\underline{a}^{L} f\left(\frac{n}{b^{L}}\right)
$$

## case 1

$f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \underline{\underline{\epsilon}}$

## case 2 :

$$
f(n)=\Theta\left(n^{\log _{b} a}\right)
$$

case 3:

$$
f(n)=\Omega\left(n^{\log _{b} a \pm \epsilon}\right), \underline{\epsilon>0} \quad T(n)=\Theta(f(n))
$$

Then:

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

$$
T(n)=\Theta\left(n^{\log _{b} a} \log n\right)
$$

$$
\text { and } \mathrm{c}<1 \text { s.t } a f(n / b)<c f(n)
$$



$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+\left(a^{L} f\left(\frac{n}{b^{L}}\right)\right)
$$

case 1: Since $f(n) \nless \underline{c n^{\log _{b} a-\epsilon}}$
We have:

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$

$$
\begin{aligned}
& \text { We have: } \\
& \begin{array}{l}
\text { We have: } \\
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{\left.b^{\log _{b} a}\right)^{-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a}-\epsilon}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a}
\end{array} \\
& { }^{c} c n^{\log _{b} a-t}[\frac{1+b^{t}+b^{2 t}+b^{3 \epsilon}+\cdots+b^{(w 1)} \cdot t}{\underbrace{\left(b^{t}\right)^{t}-1}}]+n^{\log _{b} a}
\end{aligned}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

$$
\text { case 1: Since } f(n)<c n^{\log _{b} a-\epsilon}
$$

We have:
$T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

$$
\text { case 1: Since } f(n)<c n^{\log _{b} a-\epsilon}
$$

We have:

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a}
$$

$$
\begin{aligned}
& T(n) \leq c n^{\log _{b} a-\epsilon}[\frac{\left.1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a}}{T(n) \leq n^{c n^{\log _{b} a-\epsilon}} \underbrace{b^{\epsilon}-1}_{b^{\epsilon L} \sim\left(b^{\epsilon L}-1\right.}]}]+n^{\log _{b} a}] \\
& \left.\log _{b} n\right)^{\epsilon}=n^{t}
\end{aligned}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$
We have:

$$
\begin{aligned}
& T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a} \\
& T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a} \\
& T(n) \leq c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon L}-1}{b^{\epsilon}-1}\right]+n^{\log _{b} a} \\
& T(n) \leq c^{\prime} n^{\log _{b} b-q\left[n^{Q}-1\right]}+\underline{n^{\log _{b} a}}=\left(n^{\log _{b} a}\right)
\end{aligned}
$$

C ra similar argumed can be used to show a lower bound

$$
\begin{aligned}
& \text { over bound } \\
& \left.\Omega\left(n^{\log _{b} a}\right)=\right) \theta^{\text {bound }}
\end{aligned}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$ case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$

We have:
$T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right] \stackrel{c}{\mp} n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a}
$$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon L}-1}{b^{\epsilon}-1}\right]+n^{\operatorname{cog}_{b} a}
$$

$$
T(n) \leq c^{\prime} n^{\log _{b} a-\epsilon}\left[n^{\epsilon}-1\right]+{ }^{c} n^{\log _{b} a}=O\left(n^{\log _{b} a}\right)
$$

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \quad f(n)= \\
& \text { case } 2 \text { : When } \underbrace{f(n) \leqslant c n^{\log _{b} a}} \\
& T(n) \leq c n^{\log _{b} a}+\underbrace{a \cdot c\left(\frac{n}{b}\right)^{\log _{b} a}+a^{2} c\left(\frac{n}{b^{2}}\right)^{\log b a}+\ldots+a^{L}\left(\frac{n}{b^{2}}\right)^{\log _{b} a}}
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right) \\
& \text { case } 2 \text { : When } \quad f(n)<c n^{\log _{b} a}
\end{aligned}
$$

$$
T(n) \leq c n^{\log _{b} a}\left[1+\frac{a}{b^{\log _{b} a}}+\frac{a^{2}}{\left.b^{2}\right)^{\log _{b} a}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a}}\right]+c \cdot n^{\log _{b} a}
$$

$$
\leq c \cdot n^{\log _{b} a} \cdot \log _{b} n+c \cdot n^{\log _{b} a}
$$

Lines

$$
L=\log _{b} n
$$

$$
=\left(n^{\log _{b} a} \log _{\uparrow} n\right)
$$

difference in bases for logarithms $\sim$ constants
$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 2 : When $\quad f(n)<c n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b} a}\left[1+\frac{a}{b^{\log _{b} a}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a}}\right]+n^{\log _{b} a}
$$

$$
T(n) \leq c n^{\log _{b} a}[1+1+\cdots+1]+n^{\log _{b} a}
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

$$
\text { case } 2 \text { : When } \quad f(n)<c n^{\log _{b} a}
$$

$$
T(n) \leq c n^{\log _{b} a}\left[1+\frac{a}{b^{\log _{b} a}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a}}\right]+n^{\log _{b} a}
$$

$$
T(n) \leq c n^{\log _{b} a}[1+1+\cdots+1]+n^{\log _{b} a}
$$

$$
T(n) \leq c n^{\log _{b} a} \log _{b}(a)
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 2 : When $\quad f(n)<c n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b} a}\left[1+\frac{a}{b^{\log _{b} a}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a}}\right]+n^{\log _{b} a}
$$

$$
T(n) \leq c n^{\log _{b} a}[1+1+\cdots+1]+n^{\log _{b} a}
$$

$$
T(n) \leq c n^{\log _{b} a} \log _{b}(a)=O\left(n^{\log _{b} a} \log n\right)
$$

$$
\left.T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)\right\}+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 3: $\underbrace{f(n)>n^{\log _{b} a+\epsilon}}_{v} \underbrace{\text { and } c<1 \text { s.t. } \underbrace{a f(n / b)<c f(n)}_{\Delta}}_{\frac{s}{b}} \rightarrow \underbrace{a \cdot c \cdot f\left(\frac{n}{b^{2}}\right)<c \cdot f\left(\frac{n}{b}\right)}$

$$
T(n) \leq f(n)+c \cdot f(n)+c^{2} \cdot f(n)
$$



$$
T(n) \leq f(n)+c \cdot f(n)+c^{2} f(n)+c^{3} f(n)+\cdots+c^{L} f(n)
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 3: $\quad f(n)>n^{\log _{b} a+\epsilon} \quad$ and $c<1$ s.t $a f(n / b)<c f(n)$

$$
\begin{aligned}
T(n) & \leq f(n)+c f(n)+c^{2} f(n)+\cdots+c^{L} f(n) \\
& \leq f(n)\left[1+c+c^{2}+\cdots+c^{2}\right]
\end{aligned}
$$

$\frac{C^{L+1}-1}{C-1} \underbrace{C+1)}_{\text {will be }}$

$$
\therefore f(n)=O(f(n))
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$ case 3: $\quad f(n)>n^{\log _{b} a+\epsilon} \quad$ and $c<1$ s.t $a f(n / b)<c f(n)$

$$
T(n) \leq f(n)+c f(n)+c^{2} f(n)+\cdots+c^{L} f(n)
$$

$$
T(n) \leq f(n)\left[1+c+c^{2}+\cdots+c^{L}\right]
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$ case 3: $\quad f(n)>n^{\log _{b} a+\epsilon} \quad$ and $c<1$ s.t $a f(n / b)<c f(n)$

$$
T(n) \leq f(n)+c f(n)+c^{2} f(n)+\cdots+c^{L} f(n)
$$

$$
T(n) \leq f(n)\left[1+c+c^{2}+\cdots+c^{L}\right]
$$

$$
=O(f(n))
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

## case 1

$f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \epsilon>0$
case 2 :
$f(n)=\Theta\left(n^{\log _{b} a}\right)$

## case 3:

$f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \epsilon>0$ and $\mathrm{c}<1$ s.t $a f(n / b)<c f(n)$

$$
T(n)=\Theta\left(n^{\log _{b} a} \log n\right)
$$

Then:

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

$$
T(n)=\Theta(f(n))
$$

example 2

$$
\begin{aligned}
& T(n)=\underset{a}{8} T(n / 2)+\underbrace{\Theta\left(n^{2}\right)}_{\substack{b \\
f(n)}} \\
& f(n)=\underline{\theta\left(n^{2}\right)} \quad n^{\log _{2} b}=n^{3} \\
& \text { since } \underbrace{f(n)}=\underset{O\left(n^{2 . n}\right)}{O\left(n^{\log a-\theta}\right)} \text { for } \epsilon=0.1 \text {, case } 1 \text { splits } \\
& T(n)=\theta\left(n^{\log _{2} b}\right)=\theta\left(n^{3}\right)
\end{aligned}
$$



$$
T(n)=\underset{\substack{b}}{4 T}\left(n /{\underset{\zeta}{b}}_{2}^{b}+\frac{3 O(n)}{\underline{f(n)}}\right.
$$ case 1 applies, and

$$
T(n)=\theta\left(n^{\log _{b} a}\right)=\theta\left(n^{2}\right)
$$

example 2:

$$
T(n)=\underset{\substack{a T}}{a=\frac{17}{14}}\left(\frac{14}{17} n\right)+\underset{f(n)}{24}=24
$$

case 1: is $f(n)=24$ in $O\left(\underline{n}^{\log 19 / 4} 1-\epsilon\right)^{? ?}=O\left(\underline{n}^{0-\epsilon}\right)(N$ because $O\left(n^{-6}\right)$ grows
case 2: is $f(n)=24 \frac{i n \theta\left(n^{\log _{6} a}\right)}{Y_{\text {es }}}=\theta\left(n^{0}\right)=\theta(1) \quad$ spathe os $n \uparrow$ case 2 applies \& $T(n)=\theta\left(n^{\left(\log _{b} a\right.} \cdot \log n\right)=\theta(\log n)$

$$
T(n)=\underset{a}{2} 2 T(n / 2)+\frac{n^{3}}{\frac{1}{b}(n)}
$$

are 3: $f(n)=n^{3}=\Omega\left(n^{\log _{2} 2}+0.01\right)=\Omega\left(n^{1.01}\right)$
additionally if we set $\quad c=0.1$, then

$$
\begin{aligned}
& \underbrace{2 \cdot f\left(\frac{n}{2}\right)}_{\underbrace{1}}=2 \cdot\left(\frac{1}{8}\right) \cdot n^{3} \leq \frac{c}{0.9 \cdot n^{3}} \\
& 2 \cdot\left(\frac{n}{2}\right)^{3} \\
& ={ }_{2}^{2\left(\left(\frac{1}{2}\right)^{3}\right) n^{3}} \quad 0.25 n^{3}<0.9 \cdot n^{3}
\end{aligned}
$$

$T(n)=16 T(n / 4)+n^{2}$
(tolo e home

$$
T(n)=7 T(n / 2)+O\left(n^{2}\right)
$$

Self check yourself

substitution

$$
\begin{aligned}
& T(n)=2 T(\sqrt{n})+\lg n \\
& \text { Let } 2^{m}=n \\
& T\left(2^{m}\right)=2 T\left(\sqrt{2^{m}}\right)+\lg \left(2^{m}\right) \\
& m=\log n \\
& =2 T\left(2^{m / 2}\right)+m \\
& S(m)=T\left(2^{m}\right) \\
& \begin{array}{r}
S(m)=2 S(m / 2)+m \\
S(m)=\theta(m \cdot \log m)
\end{array} \\
& T(n)=\theta(\log n \cdot \log \log n)
\end{aligned}
$$

## divide

## \& conquer

$$
5
$$

$$
2
$$


http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

examples
Merge sor $\forall$
Karat suba
closest-point
Matrix mult
FFT
*
Me dien

merge-sort
if $p<r$$(A, p, r)$ $q \leftarrow\lfloor(p+r) / 2\rfloor$
merge-sort $(A, p, q)$
merge-sort $(A, q+1, r)$
merge $(A, p, q, r)$
$\frac{\operatorname{MERGE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to $n$
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$ else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else

$$
B[k] \leftarrow A[j] ; j \leftarrow j+
$$

for $k \leftarrow 1$ to $n$
$A[k] \leftarrow B[k]$

| 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

merge-sort
if $p<r$$(A, p, r)$ $q \leftarrow\lfloor(p+r) / 2\rfloor$
merge-sort $(A, p, q)$
merge-sort $(A, q+1, r)$
merge $(A, p, q, r)$
$\frac{\operatorname{Merge}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to $n$
if $j>n$

$$
B[k] \leftarrow A[i] ; i \leftarrow i+1
$$

else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else $\quad B[k] \leftarrow A[j] ; j \leftarrow j+$
for $k \leftarrow 1$ to $n$
$A[k] \leftarrow B[k]$

| 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 5 | 2 | 4 | 7 |
| :--- | :--- | :--- | :--- |


merge-sort
if $p<r$$(A, p, r)$
$q \leftarrow\lfloor(p+r) / 2\rfloor$
merge-sort $(A, p, q)$
merge-sort $(A, q+1, r)$
merge $(A, p, q, r)$
$\frac{\operatorname{MergE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to $n$
if $j>n$
$B[k] \leftarrow A[i] ; \quad i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else $\quad B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to $n$
$A[k] \leftarrow B[k]$

| 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| 5 | 2 | 4 | 7 |
| :--- | :--- | :--- | :--- |

merge-sort $(A, p, r)$
if $p<r$

$$
\begin{aligned}
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

$\frac{\operatorname{Merge}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to $n$
if $j>n$
$B[k] \leftarrow A[i] ; \quad i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else $\quad B[k] \leftarrow A[j] ; j \leftarrow j+$
for $k \leftarrow 1$ to $n$
$A[k] \leftarrow B[k]$

merge-sort
if $p<r$$(A, p, r)$
$q \leftarrow\lfloor(p+r) / 2\rfloor$
merge-sort $(A, p, q)$
merge-sort $(A, q+1, r)$
merge $(A, p, q, r)$
$\frac{\operatorname{Merge}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to $n$
if $j>n$
$B[k] \leftarrow A[i] ; \quad i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to $n$
$A[k] \leftarrow B[k]$

| 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


merge-sort $(A, p, r)$
if $p<r$ $q \leftarrow\lfloor(p+r) / 2\rfloor$ merge-sort $(A, p, q)$ merge-sort $(A, q+1, r)$ merge $(A, p, q, r)$
$\frac{\operatorname{MERGE}(A[1 . . n], m)}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to $n$
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else $\quad B[k] \leftarrow A[j] ; j \leftarrow j+$
for $k \leftarrow 1$ to $n$
$A[k] \leftarrow B[k]$

| 5 | 2 | 4 | 7 | 1 | 3 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


merge-sort $(A, p, r)$
if $p<r$

$$
\begin{aligned}
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

$\frac{\operatorname{MERGE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to $n$
if $j>n$
$B[k] \leftarrow A[i] ; \quad i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else $\quad B[k] \leftarrow A[j] ; j \leftarrow j+$
for $k \leftarrow 1$ to $n$
$A[k] \leftarrow B[k]$

| 1 | 2 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |



$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) J \\
& \text { merge }(A, p, q, r) \longrightarrow \theta(n) \\
& T(n)=2 T(n / 2)+O(n) \\
& =\Theta(n \log n)
\end{aligned}
$$

## closest pair



Input: $n$ points in the plane (2-d) Oust pair of points


Bretefore: try all pairs, pick the smallest
$\theta\left(n^{2}\right)$
simple solution: brute force: $\theta\left(n^{2}\right)$
-
-

$$
\bigcirc
$$

- 
- 

solve the large problem by
solving smaller problems and combining solutions













$\delta \quad \delta$


(make data structures, only once) closest pair:
base case of $<5$ points
solve left half, right half
let $\delta$ be min from left/right
add points $\delta$ from middle to set $S$
assign points to boxes of side $\delta / 2$
for each point in $S$, compare w/10 neighbor boxes find minimum in this list
return closest pair

## $T(n)=$

$T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)$


$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=
$$

