

4102
shelat

cookbook

$\mathrm{T}(\mathrm{n})=\mathrm{a}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})$.

$$
T(n)=a T(n / b)+f(n)
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \quad n_{\text {nco }} \\
& \text { case 1:० } \square \square \square \square \text { Then: } \\
& f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \epsilon>0 \\
& \begin{array}{l}
\text { case 2: } \square \square \square \\
f(n)=\Theta\left(n^{\log _{b} a}\right)
\end{array} \quad \square(n)=\theta\left(n^{\log _{b} a} \cdot \log (n)\right) \\
& \text { case 3: } \square \square \square \square \\
& f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \epsilon>0 \\
& \text { and } \mathrm{c}<1 \text { set } a f(n / b)<c f(n) \\
& T(n)=\theta\left(n^{\log _{b} a}\right) \\
& T(n)=\theta(f(n))
\end{aligned}
$$

$T(n)=a T(n / b)+f(n)$

case 2: $\square \square \square$
$f(n)=\Theta\left(n^{\log _{b} a}\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
case 3:

$f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \epsilon>0$

$$
T(n)=\Theta(f(n))
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$
We have:

$$
\left.\pi_{n}\right)<\left(n^{\log _{b} h-G}+a\left(\frac{n}{b}\right)^{\log _{b} a-t} \tau \ldots \quad e \ldots\right.
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$
We have:
$T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a} c$
$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$
We have:
$T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a} c$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a_{c}}
$$

(1) $\frac{a^{i}}{\left(b^{i}\right)^{\log _{b}(a)-\epsilon}}=\frac{a^{i}}{\left(b^{\log _{b}(a)-\epsilon}\right)^{i}}=\frac{a^{i}}{\frac{a^{i}}{b^{t i}}}=b^{t i}$
(2) $\underline{a}^{L}=\underline{a}^{\log _{b} n}=\frac{\left(b^{\log _{b} a}\right)^{\log _{b} n}}{a}=\left(b^{\log _{a} n}\right)^{\log _{a} a}=n^{\log _{b} a}$
(3) $b^{E L}=\left(b^{\log _{b} n}\right)^{t}=n^{G}$
$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$
We have:
$T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{\left.\underline{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a} c . ~}\right.$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\underline{b}^{\epsilon}+\underline{b}^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a_{c}}
$$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon L}-1}{b^{\epsilon}-1}\right]+n^{\log _{b} a_{c}}
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$
We have:
$T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a} c$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a_{c}}
$$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon L}-1}{b^{\epsilon}-1}\right]+n^{\log _{b} a_{c}}
$$

$$
\left.T(n) \leq c^{\prime} n^{\log _{b} a\left(\overline { - \epsilon } \left[n^{\epsilon}\right.\right.}-1\right]+n^{\log _{b} a_{c}} \Rightarrow \quad T(n)=O\left(n^{\log b a}\right)
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 1: Since $f(n)<c n^{\log _{b} a-\epsilon}$
We have:
$T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+\frac{a}{b^{\log _{b} a-\epsilon}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b} a-\epsilon}}+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b} a-\epsilon}}\right]+n^{\log _{b} a} c$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[1+b^{\epsilon}+b^{2 \epsilon}+\cdots+b^{\epsilon(L-1)}\right]+n^{\log _{b} a_{c}}
$$

$$
T(n) \leq c n^{\log _{b} a-\epsilon}\left[\frac{b^{\epsilon L}-1}{b^{\epsilon}-1}\right]+n^{\log _{b} a_{c}}
$$

$$
T(n) \leq c^{\prime} n^{\log _{b} a-\epsilon}\left[n^{\epsilon}-1\right]+n^{\log _{b} a_{c}}=O\left(n^{\log _{b} a}\right)
$$

$$
\begin{aligned}
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(n_{b^{3}}^{n}\right)+\cdots+a^{L}\left(f\left(\frac{n}{b^{L}}\right)>1\right) \\
& \text { case 1: Lower bound }
\end{aligned}
$$

We have:

$$
\begin{aligned}
& T(n) \geqslant a^{c} \cdot c=n^{\log _{b}(a)} \cdot C \\
& \Rightarrow T(n)=\square\left(n^{\log b(a)}\right)
\end{aligned}
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 1: Lower bound
We have:

$$
\begin{aligned}
T(n) \geq a^{L} f\left(\frac{n}{b^{L}}\right) & \\
\geq a^{\log _{b}(n)} & =\left(b^{\log _{b} a}\right)^{\log _{b}(n)} \\
& =n^{\log _{b}(a)} \\
& =\Omega\left(n^{\log _{b}(a)}\right)
\end{aligned}
$$

$T(n)=a T(n / b)+f(n)$

$\begin{aligned} & \text { case 2: } \square \square \square \square \\ & f(n)=\Theta\left(n^{\log _{b} a}\right)\end{aligned} \quad T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
case 3:

$f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \epsilon>0$

$$
T(n)=\Theta(f(n))
$$

and $\mathrm{c}<1$ s.t $a f(n / b)<c f(n)$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 2 : When $\quad f(n)<c n^{\log _{b} a}$

$$
\begin{aligned}
T(n) & \leq c \cdot n^{\log _{b} a}+a \cdot c(\underline{n} \underline{b})^{\log _{b} a}+a^{2} \cdot c\left(\frac{n}{b^{2}}\right)^{\log b^{a}}+\ldots+a^{\operatorname{l-1}} \cdot c\left(\frac{n}{b^{c-1}}\right)^{\log }+a^{2}- \\
& =c n^{\log _{b} a}\left[\frac{a}{a}+\frac{a^{2}}{a^{2}}+\cdots+\frac{a^{c-1}}{a^{c-1}}\right]+a^{c} \cdot\left(\frac{n}{b^{c}}\right)^{\log b a} \\
& =c n^{\log _{b} a}[1+1+1] \\
& \sim \log _{b}(n) \\
& =n^{\log _{b} a} \cdot \log b(n)+\cdots\left(n^{\log b^{2}} \cdot \log n\right)
\end{aligned}
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 2 : When $\quad f(n)<c n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b}(a)}\left[1+\frac{a}{b^{\log _{b}(a)}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b}(a)}}+\cdots+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b}(a)}}\right]+c n^{\log _{b}(a)}
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$ case 2 : When $\quad f(n)<c n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b}(a)}\left[1+\frac{a}{b^{\log _{b}(a)}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b}(a)}}+\cdots+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b}(a)}}\right]+c n^{\log _{b}(a)}
$$

$$
T(n) \leq c n^{\log _{b}(a)}[1+1+\cdots+1]+c n^{\log _{b}(a)}
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$ case 2 : When $\quad f(n)<c n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b}(a)}\left[1+\frac{a}{b^{\log _{b}(a)}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b}(a)}}+\cdots+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b}(a)}}\right]+c n^{\log _{b}(a)}
$$

$$
T(n) \leq c n^{\log _{b}(a)}[1+1+\cdots+1]+c n^{\log _{b}(a)}
$$

$$
\leq c n^{\log _{b}(a)}\left[\log _{b}(n)\right]
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$ case 2 : When $\quad f(n)<c n^{\log _{b} a}$

$$
T(n) \leq c n^{\log _{b}(a)}\left[1+\frac{a}{b^{\log _{b}(a)}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b}(a)}}+\cdots+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b}(a)}}\right]+c n^{\log _{b}(a)}
$$

$$
T(n) \leq c n^{\log _{b}(a)}[1+1+\cdots+1]+c n^{\log _{b}(a)}
$$

$$
\leq c n^{\log _{b}(a)}\left[\log _{b}(n)\right]
$$

$$
=O\left(n^{\log _{b} a} \log n\right)
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 2 : When $\quad f(n)>c n^{\log _{b}(a) \quad f(n)=\theta\left(n^{\operatorname{loser} b} \boldsymbol{\operatorname { l o g }} a\right)}$

$$
T(n) \geq c n^{\log _{b}(a)}\left[1+\frac{a}{b^{\log _{b}(a)}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b}(a)}}+\cdots+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b}(a)}}\right]
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 2 : When

$$
f(n)>c n^{\log _{b}(a)}
$$

$$
T(n) \geq c n^{\log _{b}(a)}\left[1+\frac{a}{b^{\log _{b}(a)}}+\frac{a^{2}}{\left(b^{2}\right)^{\log _{b}(a)}}+\cdots+\frac{a^{L-1}}{\left(b^{L-1}\right)^{\log _{b}(a)}}\right]
$$

$$
T(n) \geq c n^{\log _{b}(a)}[1+1+\cdots+1]
$$

$$
\geq c n^{\log _{b}(a)} \log _{b}(a)
$$

$$
\Omega\left(n^{\log _{b}(a)} \log _{b}(\mathfrak{a})\right)
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 3: $\underline{f(n)>\left\langle n^{\log _{b} a+\epsilon} \quad \text { and } \mathrm{c}<1 \text { s.t } a f(n / b)<c f(n)\right.} \quad f(n)=\Omega\left(n^{\operatorname{los}+G}\right)$

$$
\begin{aligned}
& a f\left(\frac{n}{b}\right)<c \cdot f(n) \\
& \underline{a^{2} f\left(\frac{n}{b^{2}}\right)}=a \cdot(\underbrace{a \cdot f\left(\frac{n}{b}\right)}_{<c \cdot f\left(\frac{n}{b}\right)})<a\left(c \cdot f\left(\frac{n}{b}\right)\right)<c^{2} f(n)
\end{aligned}
$$

$$
a^{3} f\left(\frac{D}{b^{3}}\right) \leq c^{3} f(n) \quad \ldots
$$

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)
$$

case 3: $\quad f(n)>n^{\log _{b} a+\epsilon} \quad$ and $\mathrm{c}<1$ s.t $a f(n / b)<c f(n)$

$$
\begin{aligned}
& T(n) \leq f(n)+c f(n)+c^{2} f(n)+\cdots+c^{L} f(n) \\
& f(n)\left[1+c+c^{2}+\cdots c^{L}\right]=O(f(n))
\end{aligned}
$$

be cave C is a

$$
z^{L}=2^{\log n}=n
$$

$$
\text { constant } c<1
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 3: $\quad f(n)>n^{\log _{b} a+\epsilon} \quad$ and $\mathrm{c}<1$ s.t $a f(n / b)<c f(n)$

$$
T(n) \leq f(n)+c f(n)+c^{2} f(n)+\cdots+c^{L} f(n)
$$

$$
T(n) \leq f(n)\left[1+c+c^{2}+\cdots+c^{L}\right]
$$

$T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{L} f\left(\frac{n}{b^{L}}\right)$
case 3: $\quad f(n)>n^{\log _{b} a+\epsilon} \quad$ and $\mathrm{c}<1$ s.t $a f(n / b)<c f(n)$

$$
T(n) \leq f(n)+c f(n)+c^{2} f(n)+\cdots+c^{L} f(n)
$$

$$
T(n) \leq f(n)\left[1+c+c^{2}+\cdots+c^{L}\right]
$$

$$
=O(f(n))
$$

$T(n)=a T(n / b)+f(n)$

case 2: $\square \square \square$
$f(n)=\Theta\left(n^{\log _{b} a}\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
case 3:

$f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \epsilon>0$

$$
T(n)=\Theta(f(n))
$$

example 2
$T(n)=\underset{\sim}{8} T\left(n /{\underset{V}{b}}_{2}^{b}\right)+\underbrace{\Theta\left(n^{2}\right)}_{F_{F u}}$

$$
f(n)=\left(\theta_{n}{ }^{2}\right) \quad n^{\log _{2} 8}=n^{3}
$$

$\theta\left(n^{2}\right)=O\left(n^{3-6}\right)$ for $\epsilon=0.81$, by
Car 1, $\quad \pi(n)=\theta\left(n^{3}\right)$

$$
T(n)=4 T(n / 2)+3 O(n)
$$

$$
\begin{aligned}
& \text { example 2: } \\
& T(n)=T\left(\frac{14}{17} n\right)+24 \\
& f(n)=\theta(1) \quad a=1 \quad b=\frac{17}{14} \quad n^{\log \frac{11}{14} 1}=n^{0}=\theta(1) \\
& \text { case I (No) } \\
& \text { case 2 }\left(y_{e s}\right) \text { - so } T(n)=\theta\left(n^{0} \cdot \log n\right) \\
& =\theta(\log n)
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=\underset{2}{2} T(n / 2)+n^{3} \\
& f_{(n)=n^{3}} \quad n^{\log _{2}^{2}}=n=\theta\left(n^{1}\right) \\
& \frac{f(n)=\Omega\left(n^{1+c}\right)}{} \text { for eps } 20 . \\
& \text { is there ac s.t. } \quad 2 \cdot f\left(\frac{n}{2}\right)<c \cdot f(n) \\
& 2\left(\frac{n}{2}\right)^{3}=2 \frac{n^{3}}{8}=\frac{n^{3}}{4}<\frac{1}{3} \cdot(n)^{3}
\end{aligned}
$$

So if $c=\frac{1}{3}$, condition n s(d). $\Rightarrow T(n)=\theta\binom{3}{n^{3}}$

$$
\begin{aligned}
& T(n)=16 T(n / 4)+n_{\text {catz }}^{2} \\
& {f(n)=n^{2}}^{T(n)}=\theta\left(n^{2} \log n\right)
\end{aligned}
$$

$$
T(n)=7 T(n / 2)+O\left(n^{2}\right) \Rightarrow
$$

case 1

$$
\pi(n)=\theta\left(n^{\log _{2} 7}\right)
$$

U

$$
\begin{aligned}
& T(n)=2 T(\sqrt{n})+\lg n \quad(1) 2^{m}=n \\
& m=\log n \\
& T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+c m \\
& \begin{array}{l}
S(m)=2 S(m / 2)+c \cdot m \\
\text { axe } 2 \cdot \text { of Masters the. } \\
S(m)=\theta(m \cdot \log m) \\
\Rightarrow \\
T(n)=\theta(\log n \cdot \log \log n)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\log \left(\log _{10} n\right) & =\log \left(d \cdot \log _{2 n} n\right) \\
& =\log (d)+\log \log (n)
\end{aligned}
$$

divide

\& conquer

$$
2
$$

examples
mergesort
Karatsuba

- closet pair
- anbitrage
-GFT


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
    merge-sort ( \(A, p, q\) )
    merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

$\frac{\operatorname{Merge}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$\quad B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
    merge-sort \((A, p, q)\)
    merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

$\frac{\operatorname{MERGE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$\quad B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7


```
merge-sort \((A, p, r)\)
    if \(p<r\)
        \(q \leftarrow\lfloor(p+r) / 2\rfloor\)
        merge-sort \((A, p, q)\)
        merge-sort \((A, q+1, r)\)
    merge \((A, p, q, r)\)
```

$\frac{\operatorname{MERGE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$\quad B[k] \leftarrow A[j] ; j \leftarrow j+1$

$$
\text { else if } A[i]<A[j]
$$

$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

$5 \quad 2$
$4 \quad 7$

merge-sort (A, p, r)

$$
\begin{aligned}
& \text { if } p<r\lfloor\lfloor(p+r) / 2\rfloor \\
& q \leftarrow\lfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

$\frac{\operatorname{Merge}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$\quad B[k] \leftarrow A[j] ; j \leftarrow j+1$

$$
\text { else if } A[i]<A[j]
$$

$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

3
2

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& \quad q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r) \\
& \text { merge }(A, p, q, r)
\end{aligned}
$$

Merge $(A[1 . . n], m)$:
$i \leftarrow 1 ; j \leftarrow m+1$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
else if $A[i]<A[j]$
else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

merge-sort (A, p, r)
if $p<r$
$q \leftarrow\lfloor(p+r) / 2\rfloor$
merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)
$\frac{\operatorname{MergE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \longleftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$
$\quad B[k] \leftarrow A[j] ; j \leftarrow j+1$

$$
\text { else if } A[i]<A[j]
$$

$B[k] \leftarrow A[i] ; i \leftarrow i+1$ else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

5	2	4	7	1	3	2	6

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& \quad q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \quad \text { merge-sort }(A, q+1, r) \\
& \rightarrow \text { merge }(A, p, q, r)
\end{aligned}
$$

$\frac{\operatorname{MergE}(A[1 . . n], m):}{i \leftarrow 1 ; j \leftarrow m+1}$
for $k \leftarrow 1$ to n
if $j>n$
$B[k] \leftarrow A[i] ; i \leftarrow i+1$
else if $i>m$

$$
\text { else if } A[i]<A[j]
$$

else
$B[k] \leftarrow A[j] ; j \leftarrow j+1$
for $k \leftarrow 1$ to n $A[k] \leftarrow B[k]$

$$
\begin{aligned}
& \text { merge-sort }(A, p, r) \\
& \text { if } p<r \\
& q \leftarrow\lfloor(p+r) / 2\rfloor \\
& \text { merge-sort }(A, p, q) \\
& \text { merge-sort }(A, q+1, r)-T(112) \\
& \text { merge }(A, p, q, r) \longrightarrow \Theta(n) \\
& T(n)=2 T(n / 2)+O(n) \\
& =\Theta(n \log n) \text { by Mastes }
\end{aligned}
$$

merge-sort (A, p, r)
if $p<r$
$q \leftarrow\lfloor(p+r) / 2\rfloor$
merge-sort (A, p, q)
merge-sort $(A, q+1, r)$
merge (A, p, q, r)

closest pair

simple brute force approach takes n pts

$$
\begin{gathered}
T(n)=T(n-1)+n \\
T(n)=O\left(n^{2}\right)
\end{gathered}
$$

solve the large problem by
solving smaller problems
and combining solutions
⒁
(1)
(2) (8)
(9)
(13)
(10)
(3)
(11)
(5)
(12)
(6)

Divide \& Conquer

Divide \& Conquer

Divide \& Conquer
winner!

(9)
(13)

at mat lat per cubby.

$$
\delta / 2 \quad \underline{\underline{\sqrt{2}}} 2 \cdot \delta<\delta
$$

this cant happen
lonely cubby property

(1)

Visit its

by y-order
Check the next 15 boxes

Closest(P)

Base Case: If <8 points, brute force.
Let q be the "middle-element" of points
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left) , Closest(Right))
Mohawk $=\{$ Scan P, add pts that are delta from q.x $\}$

For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors
Update delta,r,j if any pair (x, y) is < delta
Return (delta,r,j)
$T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)$

Details: How to Divide into left/right half?

(14)
(1)
(9)
(7) (8)
(2)
(4)
(13)
(10)
(11)
(3)
(12)
(6)
sorted in X: 1315149107981123412 sorted in Y: 6512111031349872114
(9)
(7) (8)
(4)
(11)
sorted in X:1315149107981123412 sorted in Y: 6512111031349872114
(9)
(13)
(2)
(3)

ClosestPair(P)

Compute Sorted-in-X list SX Compute Sorted-in-Y list SY Closest(P,SX,SY)

Closest(P,SX,SY)

sorted in X:1315149107981123412 sorted in Y: 6512111031349872114
(9)

sorted in X:1315149107981123412
sorted in $Y: 6512111031349872114$
(9)
(13)

(2)
(4)
(3)

Closest(P,SX,SY)

Base Case: If <8 points, brute force.
Let q be the middle-element of SX
Divide P into Left, Right according to a
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors
Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Base Case: If <8 points, brute force.
Let q be the middle-element of SX
Divide P into Left, Right according to a
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors
Update delta,r,j if any pair (x, y) is ¿ delta

Return (delta,r,j)

Running time for Closest pair algorithm
$T(n)=$
$T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)$

