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Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
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m � ⇥n/2⇤
MERGESORT(A[1 ..m])
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for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
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step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
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out the merge step as a subroutine.
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for k � 1 to n
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else if i > m
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else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
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for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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Closest(P)

Let q be the “middle-element” of points
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left) , Closest(Right)

Mohawk = { Scan P, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors 
Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Base Case: If <8 points, brute force.
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ClosestPair(P)
Compute Sorted-in-X list SX
Compute Sorted-in-Y list SY
Closest(P,SX,SY)



Closest(P,SX,SY)

)
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Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors 
Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Base Case: If <8 points, brute force.



Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors 
Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

Base Case: If <8 points, brute force.



T (n) =
Running time for Closest pair algorithm



T (n) = 2T (n/2) + �(n) = �(n log n)


