
L5feb 4 2016

4102
shelat

cookbook

T(n) = aT(n/b) + f(n)

T(n) = aT(n/b) + f(n)
T(n) = aT(n/b) + f(n)

 ...

case 1:

 ...

 ...

case 1:

case 2:

 ...
 ...

 ...

case 1:

case 2:

case 3:

f(n) = O(nlogb a�✏), ✏ > 0

f(n) = ⇥(nlogb a)

f(n) = ⌦(nlogb a+✏), ✏ > 0

Then:

and c<1 s.t af(n/b) < cf(n)

case 1:

case 2:

case 3:

 .

 .

 .

T(n) = aT(n/b) + f(n)

f(n) = O(nlogb a�✏), ✏ > 0

f(n) = ⇥(nlogb a)

f(n) = ⌦(nlogb a+✏), ✏ > 0

T (n) = ⇥(nlogb a)

T (n) = ⇥(nlogb a
log n)

T (n) = ⇥(f(n))

Then:

and c<1 s.t af(n/b) < cf(n)

case 1:

case 2:

case 3:

 .

 .

 .

T(n) = aT(n/b) + f(n)

case 1: Since

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

f(n) < cnlogb a�✏

We have:

case 1: Since

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  cnlogb a�✏


1 +

a

blogb a�✏
+

a2

(b2)logb a�✏
+

aL�1

(bL�1)logb a�✏

�
+ nlogb a

f(n) < cnlogb a�✏

We have:
c

case 1: Since

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  cnlogb a�✏


1 +

a

blogb a�✏
+

a2

(b2)logb a�✏
+

aL�1

(bL�1)logb a�✏

�
+ nlogb a

f(n) < cnlogb a�✏

We have:

T (n)  cnlogb a�✏
h
1 + b✏ + b2✏ + · · ·+ b✏(L�1)

i
+ nlogb a

c

c

1 + b+ b2 + · · ·+ bL�1 =

case 1: Since

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  cnlogb a�✏


1 +

a

blogb a�✏
+

a2

(b2)logb a�✏
+

aL�1

(bL�1)logb a�✏

�
+ nlogb a

f(n) < cnlogb a�✏

We have:

T (n)  cnlogb a�✏
h
1 + b✏ + b2✏ + · · ·+ b✏(L�1)

i
+ nlogb a

T (n)  cnlogb a�✏


b✏L � 1

b✏ � 1

�
+ nlogb a

c

c

c

case 1: Since

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  cnlogb a�✏


1 +

a

blogb a�✏
+

a2

(b2)logb a�✏
+

aL�1

(bL�1)logb a�✏

�
+ nlogb a

f(n) < cnlogb a�✏

We have:

T (n)  cnlogb a�✏
h
1 + b✏ + b2✏ + · · ·+ b✏(L�1)

i
+ nlogb a

T (n)  cnlogb a�✏


b✏L � 1

b✏ � 1

�
+ nlogb a

T (n)  c0nlogb a�✏ [n✏ � 1] + nlogb a

c

c

c

c

case 1: Since

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  cnlogb a�✏


1 +

a

blogb a�✏
+

a2

(b2)logb a�✏
+

aL�1

(bL�1)logb a�✏

�
+ nlogb a

f(n) < cnlogb a�✏

We have:

T (n)  cnlogb a�✏
h
1 + b✏ + b2✏ + · · ·+ b✏(L�1)

i
+ nlogb a

T (n)  cnlogb a�✏


b✏L � 1

b✏ � 1

�
+ nlogb a

T (n)  c0nlogb a�✏ [n✏ � 1] + nlogb a = O(nlogb a)

c

c

c

c

case 1: Lower bound

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

We have:

case 1: Lower bound

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

We have:

T (n) � aLf(
n

bL
)

� alogb(n) = (blogb a)logb(n)

= nlogb(a)

= ⌦(nlogb(a))

f(n) = ⇥(nlogb a) T (n) = ⇥(nlogb a
log n)

case 2:

f(n) = O(nlogb a�✏), ✏ > 0 T (n) = ⇥(nlogb a)

Then:case 1:

 .

 .
f(n) = ⌦(nlogb a+✏), ✏ > 0

T (n) = ⇥(f(n))

and c<1 s.t af(n/b) < cf(n)

case 3: .

T(n) = aT(n/b) + f(n)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2 : When f(n) < cnlogb a

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2 : When f(n) < cnlogb a

T (n)  cnlogb(a)


1 +

a

blogb(a)
+

a2

(b2)logb(a)
+ · · ·+ aL�1

(bL�1)logb(a)

�
+ cnlogb(a)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2 : When f(n) < cnlogb a

T (n)  cnlogb(a)


1 +

a

blogb(a)
+

a2

(b2)logb(a)
+ · · ·+ aL�1

(bL�1)logb(a)

�
+ cnlogb(a)

T (n)  cnlogb(a) [1 + 1 + · · ·+ 1] + cnlogb(a)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2 : When f(n) < cnlogb a

T (n)  cnlogb(a)


1 +

a

blogb(a)
+

a2

(b2)logb(a)
+ · · ·+ aL�1

(bL�1)logb(a)

�
+ cnlogb(a)

T (n)  cnlogb(a) [1 + 1 + · · ·+ 1] + cnlogb(a)

 cnlogb(a)
[logb(n)]

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2 : When f(n) < cnlogb a

= O(nlogb a
log n)

T (n)  cnlogb(a)


1 +

a

blogb(a)
+

a2

(b2)logb(a)
+ · · ·+ aL�1

(bL�1)logb(a)

�
+ cnlogb(a)

T (n)  cnlogb(a) [1 + 1 + · · ·+ 1] + cnlogb(a)

 cnlogb(a)
[logb(n)]

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2 : When
lower-bound f(n) > cnlogb(a)

T (n) � cnlogb(a)


1 +

a

blogb(a)
+

a2

(b2)logb(a)
+ · · ·+ aL�1

(bL�1)logb(a)

�

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 2 : When
lower-bound f(n) > cnlogb(a)

T (n) � cnlogb(a)


1 +

a

blogb(a)
+

a2

(b2)logb(a)
+ · · ·+ aL�1

(bL�1)logb(a)

�

T (n) � cnlogb(a) [1 + 1 + · · ·+ 1]

� cnlogb(a)
logb(a)

⌦(nlogb(a)
logb(a))

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

case 3: f(n) > nlogb a+✏ and c<1 s.t af(n/b) < cf(n)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  f(n) + cf(n) + c2f(n) + · · ·+ cLf(n)

case 3: f(n) > nlogb a+✏ and c<1 s.t af(n/b) < cf(n)

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  f(n) + cf(n) + c2f(n) + · · ·+ cLf(n)

case 3: f(n) > nlogb a+✏ and c<1 s.t af(n/b) < cf(n)

T (n)  f(n)[1 + c+ c2 + · · ·+ cL]

T (n) = f(n) + af
�n

b

⇥
+ a2f

� n

b2

⇥
+ a3f

� n

b3

⇥
+ · · · + aLf

� n

bL

⇥

T (n)  f(n) + cf(n) + c2f(n) + · · ·+ cLf(n)

case 3: f(n) > nlogb a+✏ and c<1 s.t af(n/b) < cf(n)

T (n)  f(n)[1 + c+ c2 + · · ·+ cL]

= O(f(n))

f(n) = O(nlogb a�✏), ✏ > 0

f(n) = ⇥(nlogb a)

f(n) = ⌦(nlogb a+✏), ✏ > 0

T (n) = ⇥(nlogb a)

T (n) = ⇥(nlogb a
log n)

T (n) = ⇥(f(n))

Then:

and c<1 s.t af(n/b) < cf(n)

case 1:

case 2:

case 3:

 .

 .

 .

T(n) = aT(n/b) + f(n)

example 2:

7 8 9 4 3 21 1★
a b c d

example 2:

T(n) = T

�
14

17
n

⇥
+ 24

T (n) = 7T (n/2) +O(n2)

T(n) = 2T
��

n
⇥

+ lg n

T(n) = 2T
��

n
⇥

+ lg n

divide
& conquer

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

http://www.kitchenknifedrawer.com/files/1696205/uploaded/K6615D.jpg

examples

Merge

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

jef
f e

ric
ks

on

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

T (n) = 2T (n/2) + O(n)
= �(n log n)

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

closest pair
of points

1 2

49

5

3

7

6

8

10

11

12

13

14

simple brute force approach takes

solve the large problem by
solving smaller problems
and combining solutions

1 2

49

5

3

7

6

8

10

11

12

13

14

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�
� �

� �

�

� �

� �

� �
�/2

�/2

Imagine
there is
a grid of
cubbies
starting at
the lowest
Y point

�/2

�/2

� �
�/2

�/2

FACT: At
most 1 point
in each
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

Start

Check the
next 15
boxes

Visit its
by y-order

� �
�/2

�/2

Next

Check the
next <15
boxes

� �
�/2

�/2

Next

Check the
next <15
boxes

Closest(P)

Let q be the “middle-element” of points
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left) , Closest(Right)

Mohawk = { Scan P, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors
Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Base Case: If <8 points, brute force.

T (n) = 2T (n/2) + �(n) = �(n log n)

1 2

49

5

3

7

6

8

10

11

12

13

14

Details: How to Divide into left/right half ?

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

ClosestPair(P)
Compute Sorted-in-X list SX
Compute Sorted-in-Y list SY
Closest(P,SX,SY)

Closest(P,SX,SY)

)

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors
Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Base Case: If <8 points, brute force.

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 12 neighbors
Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

Base Case: If <8 points, brute force.

T (n) =
Running time for Closest pair algorithm

T (n) = 2T (n/2) + �(n) = �(n log n)

