
L6
feb 9 2016

shelat

4102
divide&conquer
closest points

matrixmult
median

7.5 7.8 9.5 3.7 26.1

closest pair
of points

1 2

49

5

3

7

6

8

10

11

12

13

14

simple brute force approach takes

solve the large problem by
solving smaller problems
and combining solutions

1 2

49

5

3

7

6

8

10

11

12

13

14

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�

1 2

49

5

3

7

6

8

10

11

12

13

14

Divide & Conquer

winner!

�
� �

�

� �

� �

� �
�/2

�/2

Imagine
there is
a grid of
cubbies
starting at
the lowest
Y point

�/2

�/2

p
2

2
�

� �
�/2

�/2

FACT: At
most 1 point
in each
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

FACT: <=1
point per
cubby

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

� �
�/2

�/2

Start

Check the
next 15
boxes

Visit its
by y-order

� �
�/2

�/2

Next

Check the
next <15
boxes

� �
�/2

�/2

Next

Check the
next <15
boxes

Closest(P)

)

Closest(P)

1. Let q be the “middle-element” of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) , Closest(Right)

4. Mohawk = { Scan P, add pts that are delta from q.x }

5. For each point x in Mohawk (in y-order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

)

6. Return (delta,r,j)

Base Case: If <8 points, brute force.

Closest(P)

1. Let q be the “middle-element” of points
2. Divide P into Left, Right according to q
3. delta,r,j = MIN(Closest(Left) , Closest(Right)

4. Mohawk = { Scan P, add pts that are delta from q.x }

5. For each point x in Mohawk (in y-order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

)

6. Return (delta,r,j)

Base Case: If <8 points, brute force.

Can be reduced to 7!

1 2

49

5

3

7

6

8

10

11

12

13

14

Details: How to do step 1?

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

ClosestPair(P)
Compute Sorted-in-X list SX
Compute Sorted-in-Y list SY
Closest(P,SX,SY)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

1 2

49

5

3

7

6

8

10

11

12

13

14

sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

)

Return (delta,r,j)

Closest(P,SX,SY)
Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

T (n) =
Running time for Closest pair algorithm

T (n) = 2T (n/2) + �(n) = �(n log n)

 // find closest pair of points in pointsByX[lo..hi]
 // precondition: pointsByX[lo..hi] and pointsByY[lo..hi] are the same sequence of points, sorted by x,y-coord
 private double closest(Point2D[] pointsByX, Point2D[] pointsByY, Point2D[] aux, int lo, int hi) {
 if (hi <= lo) return Double.POSITIVE_INFINITY;

 int mid = lo + (hi - lo) / 2;
 Point2D median = pointsByX[mid];

 // compute closest pair with both endpoints in left subarray or both in right subarray
 double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
 double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);
 double delta = Math.min(delta1, delta2);

 // merge back so that pointsByY[lo..hi] are sorted by y-coordinate
 merge(pointsByY, aux, lo, mid, hi);

 // aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate
 int M = 0;
 for (int i = lo; i <= hi; i++) {
 if (Math.abs(pointsByY[i].x() - median.x()) < delta)
 aux[M++] = pointsByY[i];
 }

 // compare each point to its neighbors with y-coordinate closer than delta
 for (int i = 0; i < M; i++) {
 // a geometric packing argument shows that this loop iterates at most 7 times
 for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {
 double distance = aux[i].distanceTo(aux[j]);
 if (distance < delta) {
 delta = distance;
 if (distance < bestDistance) {
 bestDistance = delta;
 best1 = aux[i];
 best2 = aux[j];
 // StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2);
 }
 }
 }
 }
 return delta;
 }

@author Robert Sedgewick
@author Kevin Wayne

public ClosestPair(Point2D[] points) {
 int N = points.length;
 if (N <= 1) return;

 // sort by x-coordinate (breaking ties by y-coordinate)
 Point2D[] pointsByX = new Point2D[N];
 for (int i = 0; i < N; i++)
 pointsByX[i] = points[i];
 Arrays.sort(pointsByX, Point2D.X_ORDER);

 // check for coincident points
 for (int i = 0; i < N-1; i++) {
 if (pointsByX[i].equals(pointsByX[i+1])) {
 bestDistance = 0.0;
 best1 = pointsByX[i];
 best2 = pointsByX[i+1];
 return;
 }
 }

 // sort by y-coordinate (but not yet sorted)
 Point2D[] pointsByY = new Point2D[N];
 for (int i = 0; i < N; i++)
 pointsByY[i] = pointsByX[i];

 // auxiliary array
 Point2D[] aux = new Point2D[N];

 closest(pointsByX, pointsByY, aux, 0, N-1);
 }

http://algs4.cs.princeton.edu/99hull/ClosestPair.java.html

arbitrage

9/6/09 7:28 PMApple Inc. | AAPL | Charts - Yahoo! Finance

Page 2 of 2http://finance.yahoo.com/charts?s=AAPL#chart7:symbol=aapl;range=1d;in…harttype=line;crosshair=on;ohlcvalues=0;logscale=off;source=undefined

Print Share Send Feedback

Disclaimer. Copyright © 2009 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright/IP Policy - Send Feedback - Quotes
delayed at least 15 minutes.

9/6/09 7:27 PMAMER INTL GROUP NEW | AIG | Charts - Yahoo! Finance

Page 2 of 2http://finance.yahoo.com/charts?s=AIG#chart8:symbol=aig;range=1d;indic…harttype=line;crosshair=on;ohlcvalues=0;logscale=off;source=undefined

Print Share Send Feedback

Disclaimer. Copyright © 2009 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright/IP Policy - Send Feedback - Quotes
delayed at least 15 minutes.

....
1 n
input: array of n numbers

goal:

first attempt

arbit(A[1...n])

first attempt
arbit(A[1...n])

base case if |A|<=2
lg = arbit(left(A))
rg = arbit(right(A))
minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

T(n) =

first attempt: time

arbit(A[1...n])
base case if |A|<=2
lg = arbit(left(A))
rg = arbit(right(A))
minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

⇥(n log n)

better approach

better approach
Can we find a solution that has T(n) = 2T(n/2) + O(1) ?

better approach

minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

Can we find a solution that has T(n) = 2T(n/2) + O(1) ?

second attempt
arbit+(A[1...n])

base case if |A|<=2

second attempt
arbit+(A[1...n])
base case if |A|<=2, …
(lg,minl,maxl) = arbit(left(A))
(rg,minr,maxr) = arbit(right(A))

return max{maxr-minl,lg,rg},
 min{minl, minr},
 max{maxl, maxr}

Matrixmultiplication

=★

=★

ci,j =
nX

k=1

ai,k · bk,j

=
�

AE + BG AF + BH
CE + DG CF + DH

⇥

P7 = (A� C)(E + F)

P6 = (B �D)(G + H)

P5 = (A + D)(E + H)

P4 = D(G� E)

P3 = (C + D)E

P2 = (A + B)H

P1 = A(F �H)
[Strassen]

[strassen]

[strassen]

[strassen]

taking this idea further
3x3 matricies

1978 victor pan method
70x70 matrix using 143640

mults
what is the recurrence:

https://en.wikipedia.org/wiki/File:Bound_on_matrix_multiplication_omega_over_time.svg

Median

problem: given a list of n elements, find the element
of rank n/2. (half are larger, half are smaller)

problem: given a list of n elements, find the element
of rank n/2. (half are larger, half are smaller)

first solution: sort and pluck.

can generalize to i

problem: given a list of n elements, find the element
of rank i.

key insight:
we do not have to “fully” sort.
semi sort can suffice.

problem: given a list of n elements, find the element
of rank i.

pick first element
partition list about this one
see where we stand

review: how to partition a list

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

less than greater than

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

partitioning a list about an element takes linear time.

select

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

select

Assume our partition always
splits list into two eql parts

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

Assume our partition always
splits list into two eql parts

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

 problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

T (n) = T (n� 1) +O(n)

⇥(n2)

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

Needed:
a good partition element

partition

Needed:
a good partition element

partition produce an element where
30% smaller, 30% larger

solution:
bootstrap

image: gucci

image: d&g

image: mark nason

partition

partition

partition

partition

select

median of
each group

form a
smaller list

use the median of this
smaller list as the
partition element

partition

1.
2.
3.
4.
5.

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

a nice property of our partition

a nice property of our partition

a nice property of our partition

SWITCH TO A BIGGER EXAMPLE

 < < < <

<
<

<
<

<
<

<

a nice property of our partition

 < < < <

<
<

<
<

<
<

<

this implies there are
at most numbers

larger than
/smaller

a nice property of our partition

a nice property of our partition

select

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

FindPartition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

arbitrage

9/6/09 7:28 PMApple Inc. | AAPL | Charts - Yahoo! Finance

Page 2 of 2http://finance.yahoo.com/charts?s=AAPL#chart7:symbol=aapl;range=1d;in…harttype=line;crosshair=on;ohlcvalues=0;logscale=off;source=undefined

Print Share Send Feedback

Disclaimer. Copyright © 2009 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright/IP Policy - Send Feedback - Quotes
delayed at least 15 minutes.

9/6/09 7:27 PMAMER INTL GROUP NEW | AIG | Charts - Yahoo! Finance

Page 2 of 2http://finance.yahoo.com/charts?s=AIG#chart8:symbol=aig;range=1d;indic…harttype=line;crosshair=on;ohlcvalues=0;logscale=off;source=undefined

Print Share Send Feedback

Disclaimer. Copyright © 2009 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright/IP Policy - Send Feedback - Quotes
delayed at least 15 minutes.

....
1 n
input: array of n numbers

goal:

first attempt

first attempt

arbit(A[1...n])

first attempt

arbit(A[1...n])
base case if |A|=1
lg = arbit(left(A))
rg = arbit(right(A))
minl = min(left(A))
maxr = max(right(A))

return max{maxr-minl,lg,rg}

better approach

second attempt
arbit+(A[1...n])

base case if |A|=1

second attempt
arbit+(A[1...n])

base case if |A|=1
(lg,minl,max) = arbit(left(A))
(rg,mi,maxr) = arbit(right(A))

return max{maxr-minl,lg,rg}

