
feb 92016 shelat
divide\&conquer closest points matrixmult
median

$$
\begin{array}{lllll}
7.5 & 7.8 & 9.5 & 3.7 & 26.1
\end{array}
$$

closest pair

simple brute force approach takes
1 points in 20.
(1)
(14)
(1)
(9)
(2)

(4)
(13)
solve the large problem by
solving smaller problems and combining solutions

(4)
(3)

Divide \& Conquer

Divide \& Conquer

Divide \& Conquer

Divide \& Conquer

Divide \& Conquer

Mohawk can contain all of the input points.

(2) insight.
cubbies have <1 point.

$\operatorname{Closest}(P)$ print in $2 p$.
Bax case: if $|\rho| \leq 2$, brute farce.
Let q be the mid-pont along x coordinates.
$L_{1} R=$ split points into left $*$ right halves according to ε
$\delta_{C}=\operatorname{closect}(L)$
$\delta_{R}=\operatorname{closert}(R)$$\Rightarrow$ let $\delta=\min \left(\delta_{L}, \delta_{R}\right)$
$\mu=\operatorname{Mohawk}(q, \delta)$ // set of points that are w/in δ of ε_{x} for all points r in M (sorted according to y-coordinate) check next 15 points (iny-orlen) for a juliA.

$$
\delta=\min (\delta, d(r, j))
$$

Return δ.

Closest (P)
Base Case: If <8 points, brute force.

1. Let q be the "middle-element" of points $\rightarrow \theta(n)$
2. Divide P into Left, Right according to $q \rightarrow \theta(n)$
3. delta ,rr $=\operatorname{MIN}\left(\underline{\text { Closest(Left) }} \frac{\frac{n}{2}}{\operatorname{Con}}, \frac{\operatorname{Closest}(\text { Right })}{\frac{n}{2}}\right) \longrightarrow$ IT($\left.\frac{n}{2}\right)$
4. $\underline{M o h a w k}=\{$ Scan P, add pts that are delta from q.x \} $\quad \underline{\theta(r)}$
5. For each point x in Mohawk (in y-order):

Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta
6. Return (delta,r,j)

$$
\begin{aligned}
\Rightarrow T(n) & =2 T\left(\frac{n}{2}\right)+\theta \underline{(n)} \quad \text { by Mast's } \\
& \Rightarrow T(n)=\theta(n \log n)
\end{aligned}
$$

Closest(P)

Base Case: If <8 points, brute force.

1. Let q be the "middle-element" of points
2. Divide P into Left, Right according to q
3. delta,r,j $=$ MIN(Closest(Left) , Closest(Right))
4. Mohawk $=\{$ Scan P, add pts that are delta from q.x $\}$
5. For each point x in Mohawk (in y-order):

Compute distance to its next 15 neighbors Update delta, r,j if any pair (x, y) is \Varangle delta
6. Return (delta, r,j)

Details: How to do step 1?
(B)

> (2) (3)
sorted in X: 1315149107981123412 sorted in Y: 6512111031349872114

(9)
(13)
(4)
(3)
(11)
(12)
(6)
sorted in x 131544910 981123412

ClosestPair(P)
Compute Sorted-in-X list $\underline{S X} \rightarrow$ vergesort $\theta(n \log L)$
Compute Sorted-in-Y list SY \qquad $\theta(r \log n)$
Closest(P,SX,SY) \qquad $\theta(n \log n)$

Overall solvtion is still

$$
\theta(n \log n)
$$

Closest (P,SX,SY)
Let q be the middle-element of $\underline{S X}$
$\theta(1)$
Divide P into Left, Right according to $q \rightarrow \theta(n)$
delta ,r,j $=\operatorname{MIN}($ Closest(Left, LX, LY) $\quad \operatorname{Closest(Right,~RX,~RY)~})$
Chow to wimple
Mohawk $=\{$ Scan SY, add pts that are delta from q. $\cdot x\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors
Update delta, r,j if any pair (x, y) is < delta
Return (delta, ri)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q. \times \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is \langle delta

Return (delta, r,j) sorted inSY:: 6512111031349872114

(2)
(3)

$\frac{L y}{5}$		$\frac{R y}{6}$
10		12
13		11
9		3
7		4
1	8	
17	2	

(11)
(B)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{\underline{\text { Scan SY }}$, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q. X \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is \langle delta

Return (delta, r,j)

(1)
(13)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q. \times \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is < delta

Return (delta,r,j)

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY. delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q. \times \}
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is \langle delta

Return (delta, r,j)

Running time for Closest pair algorithm
$T(n)=$

$T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \log n)$

@author Robert Sedgewick

 @author Kevin Wayne```
public ClosestPair(Point2D[] points) {
```

    int \(N=\) points.length;
    if \((\mathrm{N}<=1)\) return;
    $\int \begin{aligned} & \text { I/ sort by } x \text {-coordinate (breaking ties by y-coordinate) } \\ & \text { Point2D[] pointsByX }=\text { new Point2D[N]; }\end{aligned}$
Point2D[] pointsByX = new Point2D[N];
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$ )
pointsByX[i] = points[i];
Arrays.sort(pointsByX, Point2D.X_ORDER);
/l/ check for coincident points
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N}-1$; $\mathrm{i}++$ ) \{
if (pointsByX[i].equals(pointsByX[i+1]))
bestDistance $=0.0$;
best1 = pointsByX[i];
best2 $=$ pointsByX[i+1];
return;
\}
4
I/ sort by y-coordinate (but not yet sorted)
Point2DC pointsByY = new Point2D[N];
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$ )
pointsByY[i] $=$ pointsBy $[[]$;
// auxiliary array
Point2D[] aux = new Point2D[N];
closest(pointsByX, pointsByY, aux, 0, N-1);
\}
// find closest pair of points in pointsByX[lo.. hi]
I/ precondition: pointsByX[lo..hi] and pointsByY[lo...hi] are the same sequence of points, sorted by x,y-coord private double closest(Point2D] pointsByX, Point2D[] pointsByY, Point2D[] aux, int lo, int hi) \{
if (hi <= lo) return Double.POSITIVE_INFINITY;

## int mid $=10+(\mathrm{hi}-\mathrm{l} 0) / 2$; <br> Point2D median = pointsByX[mid];

// compute closest pair with both endpoints in left subarray or both in right subarray
double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);
double delta $=\widehat{\text { Math.min(delta1, delta2); }}$
// merge back so that pointsByY[lo..hi] are sorted by y-coordinate
merge(pointsByY, aux, (lo, mid, hi);

## II aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate

$$
\text { int } M=0 \text {; }
$$

for (int $i=l o ; i<=h i ; i++)\{$
if (Math.abs(pointsByY[i].x() - median.x()) < delta)
aux[M++] = pointsByY[i];
, \}
I/ compare each point to its neighbors with y-coordinate closer than delta for (int $i=0 ; i<M ; i++)\{$

II a geometric packing argument shows that this loop iterates at most 7 times
for (int $j=i+1 ;(j<M) \& \&(\operatorname{aux}[j] . y()-\operatorname{aux}[i] . y()<d e l t a) ; j++)\{$
double distance $=\operatorname{aux}[i]$.distanceTo(aux[j]);
if (distance < delta) \{
delta = distance;
if (distance < bestDistance) \{
bestDistance = delta;
best1 $=$ aux[i];
best2 = aux[j];
// StdOut.println("better distance $=$ " + delta + " from " + best + " to " + best2);
\}
$\xrightarrow{4}$
\}
return delta;
\}
arbitrage

9:30 AM EDTA APLAPL 167.10



12:38 PM EDT: ©AIG 40.58

input: array of n numbers

goal: to find index $i, j$ sit $i<j$ which

$$
\operatorname{MAX}(M, E G \quad A[j]-A[i]
$$

we wart an $\theta\left(n l_{\text {Ign }}\right)$ algorithm!!
first attempt

-handle bose case if $|A| \leq 2$.

$$
\begin{aligned}
\rightarrow(i, j) & \leftarrow \operatorname{Arbit}\left(A\left[1, \ldots \frac{n}{2}\right]\right) \\
\rightarrow(i, j) & \leftarrow \operatorname{Arbit}\left(A\left[\frac{n}{2} n 1, \ldots n\right]\right) \\
r^{*} & \leftarrow \min \left[A\left[1 \ldots \frac{n}{2}\right]\right) \\
j^{*} & \leftarrow \max \left(A\left[\frac{n}{2}+1, n\right]\right)
\end{aligned}
$$

$l$ mean
Return $\max \left\{(i, j)\left(i^{\prime}, j^{\prime}\right)\left({ }^{*}, j^{\prime}\right)\right\}$
3

$$
\begin{aligned}
& A[j]-A[i] \\
& A\left[j^{\prime}\right]-A\left[i^{\prime}\right] \\
& A[j]-A[r]
\end{aligned}
$$

first attempt

$$
\begin{aligned}
& \text { arbit(A[1...n]) } \\
& \text { base case if }|A|<=2 \\
& \lg =\operatorname{arbit}(\operatorname{left}(\mathrm{A})) \rightarrow \tau\left(\sum\right) \\
& r g=\operatorname{arbit}(\operatorname{right}(A)) \rightarrow T\left(\frac{\wedge}{2}\right) \\
& \left.\begin{array}{l}
\operatorname{minl}=\min (\operatorname{left}(A)) \rightarrow \theta(n) \\
\operatorname{maxr}=\max (\operatorname{right}(A)) \rightarrow \theta(r)
\end{array}\right] \rightarrow \text { too notch } \\
& \text { return } \max \{\operatorname{maxr-minl}, l g, r g\} \\
& T(n)=2 T\left(\frac{1}{2}\right)+\theta(n) \Rightarrow \theta(n \log n) \text { solution. }
\end{aligned}
$$

first attempt: time $\Theta(n \log n)$

arbit(A[1...n])
base case if $|A|<=2$
lg = arbit(left(A))
rg = arbit(right(A))
minl $=\min (l e f t(A))$
$\operatorname{maxr}=\max (r i g h t(A))$
return $\max \{\operatorname{maxr}-m i n l, l g, r g\}$

## better approach

## better approach

Can we find a solution that has $T(n)=2 T(n / 2)+O(1)$ ?

## better approach

Can we find a solution that has $T(n)=2 T(n / 2)+O(1)$ ?

```
minl = min(left(A)) 0(n)
maxr = max(right(A))
return max{maxr-minl,lg,rg}
```

$$
\begin{aligned}
& \text { second attempt } \\
& \text { arbit+(A[1...n]) } \\
& \text { returns (sect trade, min, max) }{ }^{\text {max of } A} \\
& \text { min of the array } A \\
& \text { base case if }|A|<=2(-,-,) \\
& (\underline{l}, \underline{\min l}, \max l) K \operatorname{Arbit}(A[1, \ldots / 2]) \\
& (r g, \text { mir, } \max r) \leftarrow \operatorname{Arbat}\left(A\left[n_{n}, \|, n\right]\right) \\
& \text { Return ( } \quad \text { max }\left\{l_{g}, r g\right. \text {, maxr-minl \}, (1) } \\
& \min \left\{\min l_{1} \operatorname{minr}\right\} \\
& \max \{\operatorname{maxl}, \max r\})
\end{aligned}
$$

$5$

## second attempt

arbit+(A[1...n])
base case if $|A|<=2$, ...
$(l g, \operatorname{minl}, \operatorname{maxl})=\operatorname{arbit}(\operatorname{left}(\mathrm{A}))$
$(r g, \operatorname{minr}, \operatorname{maxr})=\operatorname{arbit}(r i g h t(A))$
return $\max \{m a x r-m i n l, l g, r g\}$, min\{minl, minr\}, $\max \{\operatorname{maxl}, \operatorname{maxr}\}$


$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] } & =\left[\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right] \\
& =\left[\begin{array}{cc}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]} \\
& n \\
& c_{i, j}= \\
& \sum a_{i, k} \cdot b_{k, j} \\
& k=1
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \times\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
\end{aligned}
$$

$$
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)
$$

$$
\Theta\left(n^{3}\right)
$$

## $=\left[\begin{array}{cc}A E+B G & A F+B H \\ C E+D G & C F+D H\end{array}\right]$

[Strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$


[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$


[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$


[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \quad M(n)=7 M(n / 2)+18 n^{2} \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

## takina this idea further

$3 \times 3$ matricies

## 1978 victor pan method

$70 \times 70$ matrix using 143640
mults
what is the recurrence:



## NIEMAN

problem: given a list of n elements, find the element of rank $\mathrm{n} / 2$. (half are larger, half are smaller)
problem: given a list of $n$ elements, find the element of rank 612. (half are larger, half are smaller) can generalize to i
first solution: sort and pluck.

problem: given a list of n elements, find the element of rank i.
problem: given a list of n elements, find the element of rank i.

## key insight:

we do not have to "fully" sort. semi sort can suffice.
pick first element
partition list about this one see where we stand

## review: how to partition a list

## review: how to partition a list



## GOAL: start with THIS LIST and END with THAT LIST


less than $\qquad$ greater than

## review: how to partition a list

review: how to partition a list
review: how to partition a list



partitioning a list about an element takes linear time.

select $(i, A[1, \ldots, n])$

select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
else select ( $(i-p-1), A[p+1, \ldots, n])$ splits list into two eql parts
handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position $>\boldsymbol{i}$ select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$ splits list into two eql parts
handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position $>\boldsymbol{i}$ select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$
$T(n)=T(n / 2)+O(n)$
$\Theta(n)$
problem: what if we always pick bad partitions?
problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?


problem: what if we always pick bad partitions?
select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$

## select $(i, A[1, \ldots, n])$

handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$

$$
\begin{aligned}
& T(n)=T(n-1)+O(n) \\
& \Theta\left(n^{2}\right)
\end{aligned}
$$


a good partition element
partition $(A[1, \ldots, n])$

a good partition element
partition $(A[1, \ldots, n]) \quad$ produce an element where $30 \%$ smaller, 30\% larger

## solution: bootstrap



partition $(A[1, \ldots, n])$



1.
2.
3.
4.
5.

divide list into groups of 5 elements find median of each small list gather all medians
call select(...) on this sublist to find median
return the result
divide list into groups of 5 elements find median of each small list gather all medians
call select(...) on this sublist to find median
return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$


a nice property of our partition



SWTCH TO A BIGGER EXAMPLE

$$
\begin{gathered}
000060 \\
006006 \\
000006 \\
060060 \\
060060
\end{gathered}
$$

a nice property of our partition

a nice property of our partition

$$
\begin{gathered}
3\left(\left\lceil\frac{1}{2}\lceil n / 5\rceil\right\rceil-2\right) \\
\quad \geq \frac{3 n}{10}-6
\end{gathered}
$$

this implies there are


$$
\text { at most } \frac{7 n}{10}+6 \text { numbers }
$$

larger than /smaller
a nice property of our partition



$$
\leq \frac{7 n}{10}+6
$$

$$
\leq \frac{7 n}{10}+6
$$


select $(i, A[1, \ldots, n])$

select $(i, A[1, \ldots, n])$
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i , return pivot
else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$

## FindPartition $(A[1, \ldots, n])$

divide list into groups of 5 elements find median of each small list gather all medians
call select(...) on this sublist to find median
return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$


select $(i, A[1, \ldots, n])$
handle base case for small list
else pivot = FindPartitionValue(A,n) partition list about pivot
if pivot is position i , return pivot
else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$

$$
S(n)=S(\lceil n / 5\rceil)+O(n)+S(7 n / 10+6)
$$


select $(i, A[1, \ldots, n])$
handle base case for small list
else pivot = FindPartitionValue(A,n) partition list about pivot
if pivot is position i , return pivot
else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$

$$
\begin{gathered}
S(n)=S([n / 5])+O(n)+S(7 n / 10+6) \\
\Theta(n)
\end{gathered}
$$

arbitrage



12:38 PM EDT: ■AIG 40.58

input: array of n numbers

goal:
first attempt

first attempt

arbit(A[1...n])

## first attempt


arbit(A[1...n])
base case if $|A|=1$
lg = arbit(left(A))
rg = arbit(right(A))
minl $=\min (\operatorname{left}(A))$
$\operatorname{maxr}=\max (r i g h t(A))$
return max\{maxr-minl,lg,rg\}

## better approach

## second attempt

arbit+(A[1...n])
base case if $|A|=1$

## second attempt

arbit+(A[1...n])
base case if $|A|=1$
(lg,minl,max) = arbit(left(A)) (rg,mi,maxr) = arbit(right(A))
return max\{maxr-minl,lg,rg\}

