
feb 112016
abhi shelat

Matrix, FFT

Graph for $\sin (x)$

userid:

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \star\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$

Using the standard method, how many multiplications does it take to multiply two NxN matrices?

$$
\begin{array}{ll}
\cos (\pi / 4)= & \cos (\pi / 2)= \\
\sin (\pi / 4)= & \sin (\pi / 2)=
\end{array}
$$

Mergesor
Karatsuba
Closest pair
arbitrage
Matrix
FFT
MEDINA \Rightarrow

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=[5+14=19
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \star\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] } & =\left[\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right] \\
& =\left[\begin{array}{cc}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\sim\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & & & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right] n\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
\mid b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=n\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right] \\
C_{\tilde{U}}=\sum_{k=1}^{n} a_{i k}-b_{k j}
\end{gathered}
$$

$$
\begin{aligned}
& c_{i, j}=\sum_{k=1}^{n} a_{i, k} \cdot b_{k, j} \quad \theta(n) \\
& \text { matrix-molt: } n^{2} \text { terns. } n \text { op } \\
& =\theta\left(n^{3}\right)
\end{aligned}
$$

$$
\left[\right]\left[\begin{array}{cc|cc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & & & \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & & & \\
c_{n, 1} & c_{n, 2} & \cdots & c_{n, n}
\end{array}\right]
$$

TDivile each matrix into 4
matrices that are $\frac{n}{2} \times \frac{n}{2}$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \times\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll}
\underline{A E}+B G & A F+B H \\
\underline{C E}+\underline{B G} & \underline{C F}+\bar{D} H
\end{array}\right]
\end{aligned}
$$

$$
T(n)=\underset{\approx}{8} T(n / 2)+\Theta\left(n^{2}\right)
$$

$$
\Theta\left(n^{3}\right)
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
A E+B G(A F+B H) \\
C E+D G=C F+D H
\end{array}\right] \begin{aligned}
P_{1}+P_{2} & =A F-A H+A H+B H \\
& =A F+B H
\end{aligned} \\
& \text { [Strassen] } \\
& f^{\prime} P_{1}=A(F-H) \quad \longrightarrow P_{3}+P_{4}=C E+\not E E-D E+D G=C E+D G \\
& \text {, } P_{2}=(A+B) H \\
& \left(P_{3}=(C+D) E\right. \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{T}{C} \underset{P_{3}+P_{4}}{D} G \\
& \underset{U}{C F} \underset{P_{5}}{F}+P_{1} H \\
& \text { [strassen] } \\
& P_{1}=A(F-H) \\
& P_{2}=(A+B) \cdot H \\
& P_{3}=(C+D) E \\
& P_{4}=D_{-}(G-E) \\
& \begin{aligned}
& A E+A H+D E+D A \\
&-D E+D G \\
&-A H A-B H H \\
&+B G-D G+B A-D H
\end{aligned} \\
& P_{5}=(A+D) \cdot(E+H) \\
& P_{6}=(B-D) \cdot(G+H) \\
& P_{7}=(A-C) \cdot(E+F)
\end{aligned}
$$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{2} R\left[{ }_{P} A_{5} E_{P_{4}}+B_{2} G_{P_{6}} A F+B H S\right]=P_{1}+P_{2} \\
& C E+D G \\
& C_{U}^{C F} \underset{P_{5}^{5}+P_{1}-P_{5}}{H_{-}}{ }_{P_{7}}
\end{aligned}
$$

[strassen]

$$
\begin{aligned}
& P_{1}=A(F-H) \\
& P_{2}=(A+B) H \quad M(n)=7 M(n / 2)+\underline{18 n^{2}} \\
& P_{3}=(C+D) E \\
& P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H) \\
& P_{6}=(B-D)(G+H) \\
& P_{7}=(A-C)(E+F)
\end{aligned}
$$

takina this idea further
3×3 matricies [Laderman'75]
to use 23 matrix multiplatim of size $\frac{n}{3} \times \frac{n}{3}+\square$ aduling

$$
\begin{aligned}
T(n) & =23 T\left(\frac{n}{3}\right)+\theta\left(n^{2}\right) \\
& =\theta\left(n^{\log 33}\right)=n^{2.854}
\end{aligned}
$$

If hehal 4

$$
n^{\log _{3} 21}=2.771
$$

1978 victor pan method
70x70 matrix using 143640
muts
what is the recurrence:

$$
\begin{aligned}
T(n) & =143640 T\left(\frac{0}{70}\right)+\theta\left(n^{2}\right) \\
& =\theta\left(n^{\log _{70} 143640}\right) \sim n^{2.795}
\end{aligned}
$$

https://en.wikipedia.orghwiki/File:Bound_on_matrix_multiplication_omega_over_time.svg

EFT

big ideas:
(1) change of representation of a polynomid

$$
\text { coefficient from } \rightarrow \text { print-wise form }
$$

(V) Divide 4 Conquer strategy

$$
\begin{aligned}
& f(x)=5+2 x+0 x^{2} \\
& f(x)=\Sigma \\
& f(1)=8 \\
& f(2)=13
\end{aligned}
$$

$A(x)=\underline{a}_{0}+a_{1} \underline{x}+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$ how efficieat I the trusforaction??

Brite firce

$$
\begin{aligned}
& A(1)=\ldots \text { compule) } \\
& A(2)=\ldots \\
& \vdots \\
& A(n)=\ldots
\end{aligned}
$$

how mod time would simpe evaluation requiro??
$\theta\left(n^{2}\right)$

EFT
input: $a_{0}, a_{1}, a_{2}, \ldots, a_{\underline{n-1}}$

$$
A(x)=\underline{a_{0}}+\underline{a_{1}} x+\underline{a}_{2} x^{2}+\cdots+a_{\underline{n}-1} x^{n-1}
$$

output: $A\left(w_{0}\right), A\left(w_{1}\right), A\left(w_{2}\right) \ldots A\left(w_{n}\right) \quad n$ distinct points

FFT

input: $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

output: evaluate polynomial A at (any) n different points.

Later, we shall see that the same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points, \Rightarrow coofficiet form.
(Same tedhriqu)

Later, we shall see that the same ideas for FFT can be used to implement Inverse-FFT.

Inverse FFT: Given n-points,

$$
y_{0}, y_{1}, \ldots, y_{n-1}
$$

find a degree n polynomial A such that

$$
y_{i}=A\left(\omega_{i}\right)
$$

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

Brute force method to evaluate A at n points:
solve the large problem by
solving smaller problems and combining solutions

$$
T(n)=\underline{=\underline{2 T\left(\frac{1}{2}\right)+\cdots(n)}} \quad \begin{aligned}
& \text { look for a sol sin that } \\
& \text { follows this recurrence. }
\end{aligned}
$$

$$
\begin{align*}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
& \left.=a_{0}+\begin{array}{c}
a_{2} x^{2}+\cdots a_{4} x^{4}+\ldots+a_{n-2} x^{n-2} \\
a_{1} x+a_{3} x^{3}+\ldots+a_{n-1} x^{n-1} \\
A l
\end{array}\right)=a_{0}+a_{2} y+a_{4} y^{2}+a_{6} y^{3}+\cdots+a_{n-2} y^{n-2 / 2}+b_{0}+a_{n-1} y^{n-2 / 2} \tag{1}\\
& A_{0}(y)=a_{1}+a_{3 y}+a_{5} y^{2}+\ldots+\ldots \text { pee } \frac{n-2}{2}
\end{align*}
$$

(3) $\quad A(x)=A_{e}\left(x^{2}\right)+x \cdot A_{0}\left(x^{2}\right)$

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{n-2} x^{n-2} \\
& +a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n} x^{(n-2) / 2} \\
& A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{(n-2) / 2}
\end{aligned}
$$

$A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$

$$
A(x)=A_{e}\left(\underline{x}^{2}\right)+x A_{o}\left(x^{2}\right)
$$

suppose we had already had evil of Ae ,Bo on $\{4,9,16,25\}$

$$
\begin{array}{|ll}
A_{e}(4) & A_{0}(4) \\
A_{e}(\underline{9}) & A_{0}(9) \\
A_{e}(16) & A_{0}(16) \\
A_{e}(\underline{2} 5) & A_{0}(25)
\end{array} \quad \begin{gathered}
A(2)=A_{e}(4)+2 \cdot A_{0}(4) \\
\end{gathered} \quad A(-2)=A_{e}(4)-2 A_{0}(4)
$$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

suppose we had already had eval of Ae, Ao on $\{4,9,16,25\}$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$
Evaluates degree n poly on the $\mathrm{n}^{\text {th }}$ roots of unity

- $E \operatorname{FFT}(A e)$ EEl... $/ / 2$
$0 \in \operatorname{FFT}\left(A_{0}\right) \quad / / O\left[1 \cdots n_{2}\right]$
then compile
$\rightarrow \quad A(x)=A_{e}\left(x^{2}\right) \pm x A_{0}\left(x^{2}\right)$ for n pints

$$
T(n)=2 T\left(\frac{n}{2}\right)+\theta\left(n_{n}\right)
$$

Last remaining issue:
which points are we going to use??

Roots of unity

should have n solutions
what are they?

Remember this?

$$
\underset{\text { the solutions are: }}{x^{n}}=1 \quad \underline{e^{2 n_{i}}=1}
$$

consider $\left\{\underline{1}, \underline{e^{2 \pi i / n}}, \underline{e^{2 \pi i 2 / n}}, e^{2 \pi i 3 / n}, \ldots, e^{2 \pi i(n-1) / n}\right\} \quad n$ of them

$$
\begin{gathered}
\left\{e^{2 \pi i(j) h)}\right\}_{j=0 \ldots n-1} \\
{\left[e^{2 \pi i(i) h}\right]^{n}=\left(e^{2 \pi i}\right)^{j}=1^{j}=I}
\end{gathered}
$$

$$
x^{n}=1
$$

the n solutions are:
consider $\quad e^{2 \pi i j / n} \quad$ for $\mathrm{j}=\mathrm{o}, \mathrm{I}, 2,3, \ldots, \mathrm{n}-\mathrm{I}$

$$
\left[e^{(2 \pi i / n) j}\right]^{n}=\left[e^{(2 \pi i / n) n}\right]^{j}=\left[e^{2 \pi i}\right]^{j}=1^{j}
$$

$e^{2 \pi i(j / n)}=\omega_{j}, n$ is an $n^{\text {th }}$ root of unity

$$
\omega_{0, n}, \omega_{2, n}, \ldots, \omega_{n-1, n}
$$

What is this number?

$$
\begin{aligned}
& e^{2 \pi i j / n}=\omega_{j, n \text { is an nt root of unity }} \\
& e^{i x}=\cos (x)+i \cdot \sin (x) \quad(\text { Taylor expansion) })
\end{aligned}
$$

Taylor series expansion
of a function faround point a

$$
f(y)=f(a)+\frac{f^{\prime}(a)}{1!}(y-a)+\frac{f^{\prime \prime}(a)}{2!}(y-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(y-a)^{2}+
$$

$$
e^{x}=
$$

around 0

What is this number?

$e^{2 \pi i j / n}=\omega_{j, n}$ is an $n^{\text {th }}$ root of unity
$\underline{e}^{i x}=\underline{\cos (x)}+\underline{i \sin (x)}$
${\underline{e^{2 \pi i j / n}}}^{\underline{\cos (2 \pi j / n})}+i \sin (2 \pi j / n)$

$$
\begin{aligned}
& e^{2 \pi i j / n}=\omega_{j, n} \text { is an nth root of unity } \\
& \omega_{0, n}, \omega_{2, n}, \ldots, \omega_{n-1, n}
\end{aligned}
$$

Lets compute $\omega_{1,8}$

$$
\begin{aligned}
\omega_{1,8} & =\cos (2 \pi(1 / 8))+i \sin (2 \pi(1 / z)) \\
& =\cos \left(\frac{\pi}{4}\right)+i \sin (\pi / 4)=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}
\end{aligned}
$$

$$
\omega_{0,8}=1
$$

Compute all 8 roots of unity

Then graph them

roots of unity

$x^{n}=1$

should have n solutions

squaring the $\underline{n}^{\text {th }}$ roots of unity

$$
x^{n}=1
$$

$n_{12}+m$ pouts of minty

squaring the $\mathrm{n}^{\text {th }}$ roots of unity
$x^{n}=1$
$x^{n / 2}=1$

Thm: Squaring an $n^{\text {th }}$ root produces an $n / 2^{\text {th }}$ root.
example: $\quad \omega_{1,8}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)$

$$
\begin{aligned}
\omega_{1,8}^{2}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2} & =\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right)+\left(\frac{i}{\sqrt{2}}\right)^{2} \\
& =1 / 2+i-1 / 2 \\
& =i
\end{aligned}
$$

Thm: Squaring an $n^{\text {th }}$ root produces an $n / 2^{\text {th }}$ root.

$$
\left\{1, e^{2 \pi i(1 / n)}, e^{2 \pi i(2 / n)}, e^{2 \pi i(3 / n)}, \ldots, e^{2 \pi i(n / 2) / n}, e^{2 \pi i(n / 2+1) / n}, \ldots, e^{2 \pi i(n-1) / n}\right\}
$$

$A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$

evaluate at a root of unity

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

evaluate at a root of unity

$$
\begin{aligned}
& A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i, n}^{2}\right)+\omega_{i, n} A_{O}\left(\omega_{i, n}^{2}\right) \\
& n^{\text {nth root }} \begin{array}{l}
\text { of unity }
\end{array} \\
& \begin{array}{c}
\mathrm{n} / 2^{\text {th }} \text { root } \\
\text { of unity }
\end{array} \\
& \begin{array}{c}
\mathrm{n} / 2^{\text {th }} \text { root } \\
\text { of unity }
\end{array}
\end{aligned}
$$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$

Evaluates degree n poly on the $\mathrm{n}^{\text {th }}$ roots of unity

$\mathrm{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$

Base case if $\mathrm{n}<=2$
$\mathrm{E}[. .]<.-\mathrm{FFT}\left(\mathrm{A}_{e}\right) \quad / /$ eval Ae on $\mathrm{n} / 2$ roots of unity
$\mathrm{O}[. .]<.-\operatorname{FFT}\left(\mathrm{A}_{0}\right) \quad / /$ eval Ao on $\mathrm{n} / 2$ roots of unity
combine results using equation:

$$
\begin{gathered}
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i, n}^{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i, n}^{2}\right) \\
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)
\end{gathered}
$$

Return n points.

application to mult

$$
\Theta\left(n^{\log _{2} 3}\right)
$$

application to mult

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline \frac{3}{z} & 1 & 7 & 8 & 9 & 1 & 4 & 3 & 2 \\
\hline
\end{array} \\
& \text { a } \\
& T(n)=3 T(n / 2)+6 O(n) \\
& \Theta\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a 2 x^{2}+a_{3} x^{3}+0 x^{4}+\cdots+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b 2 x^{2}+b_{3} x^{3}+0 x^{4}+\cdots+0 x^{7}
\end{aligned}
$$

$A\left(\omega_{0}\right)$	$A\left(\omega_{1}\right)$	$A\left(\omega_{2}\right)$	\ldots	$A\left(\omega_{7}\right)$
$B\left(\omega_{0}\right)$	$B\left(\omega_{1}\right)$	$B\left(\omega_{2}\right)$	\ldots	$B\left(\omega_{7}\right)$
$C\left(\omega_{0}\right)$	$C\left(\omega_{1}\right)$	$C\left(\omega_{2}\right)$	\ldots	$C\left(\omega_{7}\right)$

$C(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots c_{7} x^{7}$

$$
\begin{gathered}
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+0 x^{7} \\
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots+0 x^{7}
\end{gathered}
$$

$$
\begin{array}{lll}
A\left(\omega_{1}\right) & B\left(\omega_{1}\right) & C\left(\omega_{1}\right) \\
A\left(\omega_{8}\right) & B\left(\omega_{8}\right) & C\left(\omega_{8}\right) \\
& & C(x)=A(x) B(x)
\end{array}
$$

Multiplying n-bit numbers

A GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN'S

 LARGE INTEGER MULTIPLICATION ALGORITHMPIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

AbSTRACT. Schönhage-Strassen's algorithm is one of the best known algorithms for multiplying large integers. Implementing it efficiently is of utmost importance, since many other algorithms rely on it as a subroutine. We present here an improved implementation, based on the one distributed within the GMP library. The following ideas and techniques were used or tried: faster arithmetic modulo $2^{n}+1$, improved cache locality, Mersenne transforms, Chinese Remainder Reconstruction, the $\sqrt{2}$ trick, Harley's and Granlund's tricks, improved tuning. We also discuss some ideas we plan to try in the future.

Introduction

Since Schönhage and Strassen have shown in 1971 how to multiply two N-bit integers in $O(N \log N \log \log N)$ time [21], several authors showed how to reduce other operations inverse, division, square root, gcd, base conversion, elementary functions - to multiplication, possibly with $\log N$ multiplicative factors [$5,8,17,18,20,23]$. It has now become common practice to express complexities in terms of the cost $M(N)$ to multiply two N-bit numbers, and many researchers tried hard to get the best possible constants in front of $M(N)$ for the above-mentioned operations (see for example $[6,16]$).
Strangely, much less effort was made for decreasing the implicit constant in $M(N)$ itself, although any gain on that constant will give a similar gain on all multiplication-based operations. Some authors reported on implementations of large integer arithmetic for specific hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on the question of an optimized implementation of Schönhage-Strassen's algorithm on a classical workstation.

Applications of FFT

Applications of FFT

String matching with

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC CTCCTGACTTTCTTCGCTGGTGGITTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC СTGCAGGAACTTCTCTGGAAGACCTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG ITIAATTACAGACCTGAA

Looking for all occurrences of
GGC*GAG*C*GC
where I don't care what the * symbol is.

