
L7
feb 11 2016

abhi shelat

Matrix, FFT

userid:

★ =

Using the standard method, how many
multiplications does it take to multiply
two NxN matrices?

cos(⇡/4) =

sin(⇡/4) = sin(⇡/2) =

cos(⇡/2) =

Median

arbitrage

Mergesort

Karatsuba

Closest pair

Matrix

FFT

Matrixmultiplication

=★

=★

ci,j =
nX

k=1

ai,k · bk,j

=
�

AE + BG AF + BH
CE + DG CF + DH

⇥

P7 = (A� C)(E + F)

P6 = (B �D)(G + H)

P5 = (A + D)(E + H)

P4 = D(G� E)

P3 = (C + D)E

P2 = (A + B)H

P1 = A(F �H)
[Strassen]

[strassen]

[strassen]

[strassen]

taking this idea further
3x3 matricies [Laderman’75]

1978 victor pan method
70x70 matrix using 143640

mults
what is the recurrence:

https://en.wikipedia.org/wiki/File:Bound_on_matrix_multiplication_omega_over_time.svg

Fast
Fourier
Transform

big ideas:

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10

25

50

75

f(x) = 5 + 2x+ x

2

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10

25

50

75

f(x) = 5 + 2x+ x

2

degree
polynomial

n points on a curve

a0, a1, a2, . . . , an�1

FFT
input:

output:

a0, a1, a2, . . . , an�1

output: evaluate polynomial A at (any) n different points.

n points on a curve

FFT
input:

Later, we shall see that the same
ideas for FFT can be used to
implement Inverse-FFT.

Inverse FFT: Given n-points,

yi = A(!i)

Later, we shall see that the same
ideas for FFT can be used to
implement Inverse-FFT.

Inverse FFT: Given n-points,

find a degree n polynomial A such that

y0, y1, . . . , yn�1

Brute force method to evaluate A at n points:

solve the large problem by
solving smaller problems
and combining solutions

T(n)=

A0(4)
A0(9)
A0(16)
A0(25)Ae(25)

Ae(16)
Ae(9)
Ae(4)

suppose we had already had eval of Ae,Ao on {4,9,16,25}

A(2) = A
e

(4) + 2A
o

(4)

A(�2) = A
e

(4) + (�2)A
o

(4)

A(�3) = A
e

(9) + (�3)A
o

(9)
A(3) = A

e

(9) + 3A
o

(9)

suppose we had already had eval of Ae,Ao on {4,9,16,25}
A0(4)
A0(9)
A0(16)
A0(25)Ae(25)

Ae(16)
Ae(9)
Ae(4)

Then we could compute 8 terms:

…A(4), A(-4), A(5), A(-5)

FFT(f=a[1,...,n])
Evaluates degree n poly on the nth roots of unity

Last remaining issue:

Roots of unity

should have n solutions

what are they?

e2⇡i = 1

Remember this?

consider

n

1, e2⇡i/n, e2⇡i2/n, e2⇡i3/n, . . . , e2⇡i(n�1)/n
o

the n solutions are:

consider

is an nth root of unity=

for j=0,1,2,3,...,n-1

the n solutions are:

What is this number?
is an nth root of unity=

f (y) = f (a) +
f 0(a)

1!
(y � a) +

f 00(a)
2!

(y � a)2 +
f 000(a)

3!
(y � a)2 + · · ·

Taylor series expansion
of a function f around point a

ex =
around 0

What is this number?
is an nth root of unity=

e2pij/n = cos(2p j/n) + i sin(2p j/n)

is an nth root of unity=

Lets compute !1,8

Compute all 8 roots of unity

Then graph them

should have n solutions

roots of unity

e2pij/n = cos(2p j/n) + i sin(2p j/n)

squaring the nth roots of unity

squaring the nth roots of unity

Thm: Squaring an nth root produces an n/2th root.

!1,8 =

✓
1p
2
+

ip
2

◆

!2
1,8 =

✓
1p
2
+

ip
2

◆2

=

✓
1p
2

◆2

+ 2

✓
1p
2

ip
2

◆
+

✓
ip
2

◆2

= 1/2 + i� 1/2

= i

example:

Thm: Squaring an nth root produces an n/2th root.

n

1, e2⇡i(1/n), e2⇡i(2/n), e2⇡i(3/n), . . . , e2⇡i(n/2)/n, e2⇡i(n/2+1)/n, . . . , e2⇡i(n�1)/n
o

evaluate at a root of unity

A(!
i,n

) = A
e

(!2
i,n

) + !
i,n

A
o

(!2
i,n

)

evaluate at a root of unity

nth root
of unity

n/2th root
of unity

n/2th root
of unity

FFT(f=a[1,...,n])
Evaluates degree n poly on the nth roots of unity

FFT(f=a[1,...,n])

E[...] <- FFT(Ae) // eval Ae on n/2 roots of unity

combine results using equation:

O[...] <- FFT(Ao) // eval Ao on n/2 roots of unity

Return n points.

Base case if n<=2

application to mult
7 8 9 4 3 21 1★

a b c dk
ar

at
su

b
a

application to mult
7 8 9 4 3 21 1★

a b c dk
ar

at
su

b
a

★a0a1a2a3 b3 b2 b1 b0

A(x) = a0 + a1x+ a2x2 + a3x
3 + 0x4 + · · ·+ 0x7

B(x) = b0 + b1x+ b2x2 + b3x
3 + 0x4 + · · ·+ 0x7

A(!0) A(!1) A(!2) A(!7)

B(!7)B(!0) B(!1) B(!2)

C(!2)C(!0) C(!1) C(!7)

C(x) = c0 + c1x+ c2x
2 + · · · c7x7

★a0a1a2a3 b3 b2 b1 b0

....

....

....

★a0a1a2a3 b3 b2 b1 b0

Multiplying n-bit numbers

A GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN’S
LARGE INTEGER MULTIPLICATION ALGORITHM

PIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract. Schönhage-Strassen’s algorithm is one of the best known algorithms for multi-
plying large integers. Implementing it efficiently is of utmost importance, since many other
algorithms rely on it as a subroutine. We present here an improved implementation, based
on the one distributed within the GMP library. The following ideas and techniques were
used or tried: faster arithmetic modulo 2n + 1, improved cache locality, Mersenne trans-
forms, Chinese Remainder Reconstruction, the

√
2 trick, Harley’s and Granlund’s tricks,

improved tuning. We also discuss some ideas we plan to try in the future.

Introduction

Since Schönhage and Strassen have shown in 1971 how to multiply two N -bit integers in
O(N log N log log N) time [21], several authors showed how to reduce other operations —
inverse, division, square root, gcd, base conversion, elementary functions — to multiplication,
possibly with log N multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common
practice to express complexities in terms of the cost M(N) to multiply two N -bit numbers,
and many researchers tried hard to get the best possible constants in front of M(N) for the
above-mentioned operations (see for example [6, 16]).

Strangely, much less effort was made for decreasing the implicit constant in M(N) itself,
although any gain on that constant will give a similar gain on all multiplication-based op-
erations. Some authors reported on implementations of large integer arithmetic for specific
hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on
the question of an optimized implementation of Schönhage-Strassen’s algorithm on a classical
workstation.

In the last years, the multiplication of large integers has found several new applications
in “real life”, and not only in computing billions of digits of π. One such application is the
segmentation method (called Kronecker substitution in [25]) to reduce the multiplication of
polynomials with integer coefficients to one huge integer multiplication; this is used for exam-
ple in the GMP-ECM software [27]. Another example is the multiplication or factorization
of multivariate polynomials [23, 24].

In this article we detail several ideas or techniques that may be used to implement
Schönhage-Strassen’s algorithm (SSA) efficiently. As a consequence, we obtain what we
believe is the best existing implementation of SSA on current processors; this implementa-
tion might be used as a reference to compare with other algorithms based on Fast Fourier
Transform, in particular those using complex floating-point numbers.

The paper is organized as follows: §1 revisits the original SSA and defines the notations
used in the rest of the paper; §2 describes the different ideas and techniques we tried, explains
which ones were useful, and which ones were not; finally §3 provides timing figures and graphs
obtained with our new GMP implementation, and compares it to other implementations.

1

Applications of FFT

Applications of FFT

String matching with *
ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC
CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC
CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG
AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC
CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG
TTTAATTACAGACCTGAA

Looking for all occurrences of

GGC*GAG*C*GC

where I don't care what the * symbol is.

