

FEB 162016
abhi shelat

FFT,Median

```
merge-sort (A,p,r)
    if p<r
        q\leftarrow\lfloor(p+r)/2\rfloor
        merge-sort ( }A,p,q
        merge-sort (A,q+1,r)
        merge ( }A,p,q,r
```


Karatsuba(ab, cd)

Base case: return b*d if inputs are 1-digit

Closest(P,SX,SY)

Let q be the middle-element of SX
Divide P into Left, Right according to a
delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}$
For each point x in Mohawk (in order):
Compute distance to its next 15 neighbors Update delta,r,j if any pair (x, y) is $<$ delta

Return (delta,r,j)
$\operatorname{arbit+(A[1...n])}$
base case if |A|<=2, ...
(lg,minl,maxl) = arbit(left(A))
(rg, minr,maxr) = arbit(right(A))
return max\{maxr-minl,lg,rg\},
min\{minl, minr\},
max\{maxl, maxr\}

[strassen]
$P_{1}=A(F-H)$
$P_{2}=(A+B) H$
$P_{3}=(C+D) E$
$P_{4}=D(G-E)$
$P_{5}=(A+D)(E+H)$
$P_{6}=(B-D)(G+H)$
$P_{7}=(A-C)(E+F)$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$

Base case if $n<=2$
$\begin{array}{ll}\mathrm{E}[\ldots]<-\mathrm{FFT}\left(\mathrm{A}_{\mathrm{e}}\right) & \text { // eval Ae on } \mathrm{n} / 2 \text { roots of unity } \\ \mathrm{O}[\ldots]<-\mathrm{FFT}\left(\mathrm{A}_{0}\right) & \text { // eval } \mathrm{Ao} \text { on } \mathrm{n} / 2 \text { roots of unity }\end{array}$
combine results using equation:

$$
\begin{gathered}
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i, n}^{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i, n}^{2}\right) \\
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)
\end{gathered}
$$

Return n resulting values.

EFT

input: $a_{0}, a_{1}, a_{2}, \ldots, \underline{a}_{n-1}$

$$
A(x)=\underline{a}_{0}+\underline{a}_{1} x+\underline{a}_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

output: evaluate polynomial \underline{A} at (any) \underline{n} different points. \qquad
Aux)
roots of unity
$A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$
Brute force method to evaluate A at n points:

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
& =a_{0}+\underline{a}_{2} x^{2}+\underline{a}_{4} x^{4}+\cdots+\underline{a}_{n-2} x^{n-2} \\
& +a_{1} x+\underline{a}_{3} x^{3}+a_{5} x^{5}+\cdots+a_{n-1} x^{n-1} \\
& A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n} x^{(n-2) / 2} \quad \quad \sim \text { degree } \frac{n}{2} \\
& A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{(n-2) / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Divide + Conquered }
\end{aligned}
$$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$
Evaluates degree n poly on the $\mathrm{n}^{\text {th }}$ roots of unity

Last remaining issue: Which points to use?

$$
\begin{aligned}
& \text { Need points that have } \\
& \log (n) \text { square roots }
\end{aligned}
$$

Roots of unity (Com per)

$$
x^{n}=1
$$

should have n solutions what are they?

$$
\begin{gathered}
\mathfrak{X}^{\underline{n}}=\underset{=}{=} \\
\text { the n solutions are: } \\
\left\{\underline{1}, e^{2 \pi i / n}, e^{2 \pi i 2 / n}, e^{2 \pi i 3 / n}, \ldots, e^{2 \pi i(n-1) / n}\right\}
\end{gathered}
$$

because

$$
\begin{aligned}
& e^{2 \pi i}=1 \text { inter idetiry } \\
& {\left[e^{2 \pi i(i) d}\right]^{A}=\left(e^{2 \pi i}\right)^{j}=1^{j}=1}
\end{aligned}
$$

$$
x^{n}=1
$$

the n solutions are:
consider $\quad e^{2 \pi i j / n} \quad$ for $\mathrm{j}=\mathrm{O}, \mathrm{I}, 2,3, \ldots, \mathrm{n}-\mathrm{I}$

$$
\left[e^{(2 \pi i / n) j}\right]^{n}=\left[e^{(2 \pi i / n) n}\right]^{j}=\left[e^{2 \pi i}\right]^{j}=1^{j}
$$

$$
e^{2 \pi i j / n}=\omega_{j}, n \text { is an } n^{\text {th }} \text { root of unity }
$$

$$
\omega_{0, n}, \omega_{2, n}, \ldots, \omega_{n-1, n}
$$

What is this number?
$\underline{e^{2 \pi i j / n}}=\omega_{j, n}$ is an $n^{\text {th }}$ root of unity

Taylor series expansion

of a function f around point a

$$
f(y)=f(a)+\frac{f^{\prime}(a)}{1!}(y-a)+\frac{f^{\prime \prime}(a)}{2!}(y-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(y-a)^{2}+
$$

What is this number?
$e^{2 \pi i j / n}=\omega_{j, n}$ is an $n^{\text {th }}$ root of unity

$$
e^{i x}=\cos (x)+i \sin (x)
$$

$\underline{\underline{e^{2 \pi i j / n}}}=\underline{\cos }(\underline{2 \pi j / n})+i \underline{\sin }(2 \underline{j \pi / n})$

$$
\begin{aligned}
& e^{2 \pi i j / n}=\omega_{j, n} \text { is an nt root of unity } \\
& \omega_{0, n}, \omega_{2, n}, \ldots, \omega_{n-1, n}
\end{aligned}
$$

Lets compute $\omega_{1,8}$

$$
\begin{aligned}
\omega_{1, B} & =\cos \left(2 \pi^{\prime} / 8\right)+i \sin \left(2 \pi^{\prime} / 8\right) \\
& =\cos (\pi / 4)+i \sin (\pi / 4) \\
& =\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}
\end{aligned}
$$

Compute all 8 roots of unity $n=B$

$-\frac{1}{\sqrt{2}}+\frac{\sqrt[1]{\sqrt{2}}}{2}$

Then graph them

roots of unity
 $$
x^{n}=1
$$

should have n solutions

squaring the $\mathrm{n}^{\text {th }}$ roots of unity

$x^{n}=1 \quad(n / 2)^{\text {th }}$ conts a windy

Thm: Squaring an $\mathrm{n}^{\text {th }}$ root produces an $\mathrm{n} / 2^{\text {th }}$ root.
example: $\quad \omega_{1,8}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)$

$$
\begin{aligned}
\omega_{1,8}^{2}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2} & =\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right)+\left(\frac{i}{\sqrt{2}}\right)^{2} \\
& =1 / 2+i-1 / 2 \\
& =i
\end{aligned}
$$

squaring the $\mathrm{n}^{\text {th }}$ roots of unity
$x^{n}=1$
$x^{n / 2}=1$

The: Squaring an $n^{\text {th }}$ root produces an $n / 2^{\text {th }}$ root.

Thm: Squaring an $n^{\text {th }}$ root produces an $\mathrm{n} / 2^{\text {th }}$ root.
$\left\{1, e^{2 \pi i(1 / n)}, e^{2 \pi i(2 / n)}, e^{2 \pi i(3 / n)}, \ldots, e^{2 \pi i(n / 2) / n}, e^{2 \pi i(n / 2+1) / n}, \ldots, e^{2 \pi i(n-1) / n}\right\}$
$1 \begin{array}{lll}e^{2 \pi i(1 /(n / 2))} & e^{2 \pi i(2 /(n / 2))} & e^{2 \pi i(3 /(n / 2))} \\ 1\end{array}$

$$
\begin{aligned}
& e^{2 \pi i((n / 2)+1 /(n / 2))} \\
& =e^{2 \pi i(1+1 /(n / 2))} \\
& =1 \cdot e^{2 \pi i(1 /(n / 2))}
\end{aligned}
$$

$$
A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
$$

evaluate at a root of unity

$$
\begin{aligned}
& \text { recursive }
\end{aligned}
$$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$
Evaluates degree n poly on the $\mathrm{n}^{\text {th }}$ roots of unity
EKFFT(Ae) /leal Ae of degree \sum_{2}^{2} on the "int roo-unity
$\underline{0} \leqslant \operatorname{OFT}\left(A_{0}\right) \quad / 1 "$
Combine these points to produce A eual @ $n^{\text {th }}$ routs $A\left(w_{0, n}\right) \ldots A\left(w_{n-1, n}\right)$ using the equation

$$
A\left(w_{i, n}\right)=\underline{\underline{A_{e}\left(w_{i, n}^{2}\right.}{ }^{2}+w_{i, n} \cdot A_{0}\left(w_{i, n}^{2}\right)}
$$

$\operatorname{FFT}(\mathrm{f}=\mathrm{a}[\mathrm{I}, \ldots, \mathrm{n}])$

Base case if $n<=2$
$\begin{array}{ll}\mathrm{E}[\ldots]<-\mathrm{FFT}\left(\mathrm{A}_{\mathrm{e}}\right) & \text { // eval Ae on } \mathrm{n} / 2 \text { roots of unity } \\ \mathrm{O}[\ldots]<-\mathrm{FFT}\left(\mathrm{A}_{0}\right) & \text { // eval } \mathrm{Ao} \text { on } \mathrm{n} / 2 \text { roots of unity }\end{array}$
combine results using equation:

$$
\begin{gathered}
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i, n}^{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i, n}^{2}\right) \\
A\left(\omega_{i, n}\right)=A_{e}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)+\omega_{i, n} A_{o}\left(\omega_{i} \bmod n / 2, \frac{n}{2}\right)
\end{gathered}
$$

Return n resulting values.

$$
\begin{aligned}
& A(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
& B(x)=b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}
\end{aligned}
$$

$$
C(x)=\left\{\begin{array}{l}
a_{3} b_{3} x^{6}+ \\
\left(a_{3} b_{2}+a_{2} b_{3}\right) x^{5}+ \\
\left(a_{3} b_{1}+a_{2} b_{2}+a_{1} b_{3}\right) x^{4}+ \\
\left(a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}\right) x^{3}+ \\
\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) x^{2}+ \\
\left(a_{1} b_{0}+a_{0} b_{1}\right) x+ \\
a_{0} b_{0}
\end{array}\right.
$$

$a_{3} \quad a_{2} \quad a_{1} \quad a_{0} \quad \rightarrow \quad b_{3} \quad b_{2} \quad b_{1} \quad b_{0}$

$$
\begin{aligned}
& \underline{A(x)}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\underbrace{0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}} \quad \text { write inpt cs an } n-d p d_{y} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\underline{0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}}
\end{aligned}
$$

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
$$

$$
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
$$

n po
$A\left(\omega_{0}\right) \quad A\left(\omega_{1}\right) \quad A\left(\omega_{2}\right) \quad \ldots . \quad A\left(\omega_{7}\right)$

$\cdots b_{3} b_{2} b_{1} \quad b_{0}$

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$A\left(\omega_{0}\right)$	$A\left(\omega_{1}\right)$	$A\left(\omega_{2}\right)$	\ldots	$A\left(\omega_{7}\right)$	EET
\circ	\vdots	\ldots	\vdots		
$B\left(\omega_{0}\right)$	$B\left(\omega_{1}\right)$	$B\left(\omega_{2}\right)$	\ldots	$B\left(\omega_{7}\right)$	EET
-	-	-		$\underline{0}$	

$C\left(\omega_{0}\right) \quad C\left(\omega_{1}\right) \ldots$
$C\left(\omega_{q}\right)$ multiply
$A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}$
$B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}$

$A\left(\omega_{0}\right)$	$A\left(\omega_{1}\right)$	$A\left(\omega_{2}\right)$	\ldots.	$A\left(\omega_{7}\right)$	EET
$B\left(\omega_{0}\right)$	$B\left(\omega_{1}\right)$	$B\left(\omega_{2}\right)$	\ldots.	$B\left(\omega_{7}\right)$	EET

$$
C\left(\omega_{0}\right) \quad C\left(\omega_{1}\right) \quad C\left(\omega_{2}\right) \quad \ldots . \quad C\left(\omega_{7}\right)
$$

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}
\end{aligned}
$$

$C\left(\omega_{0}\right) \quad C\left(\omega_{1}\right) \quad C\left(\omega_{2}\right)$

$n \log n$
$n \log n$

$$
{ }^{\zeta} C(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots c_{7} x^{7}
$$

IEET

$$
n \log n
$$

application to mult

$$
\Theta\left(n^{\log _{2} 3}\right)
$$

application to mult

$$
\begin{gathered}
\left.\begin{array}{c}
0 \\
1
\end{array}\right) \\
T(n)=3 T(n / 2)+6 O(n) \\
\Theta\left(n^{\log _{2} 3}\right)
\end{gathered}
$$

Multiplying n-bit numbers

Schönhage-Strassen '71
Fürer '07

A GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN'S

 LARGE INTEGER MULTIPLICATION ALGORITHMPIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract. Schönhage-Strassen's algorithm is one of the best known algorithms for multiplying large integers. Implementing it efficiently is of utmost importance, since many other algorithms rely on it as a subroutine. We present here an improved implementation, based on the one distributed within the GMP library. The following ideas and techniques were used or tried: faster arithmetic modulo $2^{n}+1$, improved cache locality, Mersenne trans forms, Chinese Remainder Reconstruction, the $\sqrt{2}$ trick, Harley's and Granlund's tricks, improved tuning. We also discuss some ideas we plan to try in the future.

Introduction

Since Schönhage and Strassen have shown in 1971 how to multiply two N-bit integers in $O(N \log N \log \log N)$ time [21], several authors showed how to reduce other operations inverse, division, square root, gcd, base conversion, elementary functions - to multiplication, possibly with $\log N$ multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common practice to express complexities in terms of the cost $M(N)$ to multiply two N-bit numbers, and many researchers tried hard to get the best possible constants in front of $M(N)$ for the above-mentioned operations (see for example $[6,16]$).
Strangely, much less effort was made for decreasing the implicit constant in $M(N)$ itself, although any gain on that constant will give a similar gain on all multiplication-based operations. Some authors reported on implementations of large integer arithmetic for specific hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on the question of an optimized implementation of Schönhage-Strassen's algorithm on a classical workstation.

Applications of FFT

Applications of FFT

String matching with *

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC СTCCTGACTITCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG

DNA sequence
YB AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC СTGCAGGAACTTCTCTGGAAGACCTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG ITAATTACAGACCTGAA

Looking for all occurrences of

where I don't care what the * symbol is.

|||IIIDIAN

problem: given a list of n elements, find the element of rank[n/2\} (half are larger, half are smaller)
problem: given a list of n elements, find the element
of rank [r12. (half are larger, half are smaller)
can generalize to i
first solution: sort and pluck.

$$
O(n \log n)
$$

problem: given a list of n elements, find the element of rank i.

key insight:

 we do not have to "fully" sort. semi sort can suffice.

Partition elemet
pick first element
partition list about this one see where we stand

GOAL: start with THIS LIST and END with THAT LIST

less than

greater than
left
right

partitioning a list about an element takes linear time.
select $(i, A[1, \ldots, n])$
$p_{\hat{T}_{\text {index }}}$ \& the partition
Base case if $|A| \leq 2$
$p \notin \operatorname{portition}(A)$ so that all elemats are pith $<r>_{p}$
if $(i==p)$ return $A[p]$.
else $(i=p)$ select $(i, A[0 \ldots p-1])$
else \quad select $(i-p-1, A[p, \ldots n])$

select $(i, A[1, \ldots, n])$
handle base case.
partition list about first element $\longrightarrow \theta(n)$
if pivot p is position i , return pivot $\rightarrow \theta(1)$
else if pivot p is in position > i select $(\underline{i}, A[1, \ldots, p-1])) \rightarrow$
else select $((i-p-1), A[p+1, \ldots, n])$

$$
T(n)=\underline{\sum_{1} T\left(\frac{n}{2}\right)+} \quad \underset{(n)}{ }
$$

handle base case. partition list about first element if pivot is position i , return pivot else if pivot is in position $>\mathrm{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$
handle base case. partition list about first element if pivot is position i, return pivot else if pivot is in position $>\boldsymbol{i}$ select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
T(n)=T(n / 2)+O(n)
$$

problem: what if we always pick bad partitions?
problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

0,0000000000000000000000
子q0e0000000ce00000000 Kbocecccecccecccece

problem: what if we always pick bad partitions?

$$
\begin{aligned}
T(n) & =T(n-5)+\theta(n)=\theta\left(n^{2}\right) \\
& =T(n-5)+\theta(n)
\end{aligned}
$$

select $(i, A[1, \ldots, n])$

handle base case.
partition list about first element if pivot is position i , return pivot else if pivot is in position $>\mathrm{i}$ select ($(, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

select $(i, A[1, \ldots, n])$

handle base case.
partition list about first element
if pivot is position i , return pivot
else if pivot is in position > i select $(i, A[1, \ldots, p-1])$
else select $((i-p-1), A[p+1, \ldots, n])$
if we always

$$
\begin{aligned}
& T(n)=T(n-1)+O(n) \\
& \Theta\left(n^{2}\right)
\end{aligned}
$$

pick bad
Partitions!!

a good partition element
partition $(A[1, \ldots, n])$
\qquad

One in which So\% of the elements ore smaller, 30% are langer 1 good partition clement.

a good partition element
partition $(A[1, \ldots, n]) \quad$ produce an element where 30\% smaller, 30\% larger

$$
\begin{gathered}
\text { divile list into } \\
\text { chouks if } 5
\end{gathered}
$$

partition $(A[1, \ldots, n])$

Select $\left(\frac{n}{10}, \mu\right)$ to pick $p \cdot \underbrace{}_{\text {our partition elematt. }}$
partition $(A[1, \ldots, n])$
form a

$$
B[1, \ldots,\lceil n / 5\rceil]
$$

smaller list
$\operatorname{select}(\lceil n / 5\rceil / 2, B[1, \ldots,\lceil n / 5\rceil])$ -
use the median of this smaller list as the partition element
1.
2.
3.
4.
5.
-divide list into groups of 5 elements

- find median of each small list
- gather all medians
call select(...) on this sublist to find median return the result
divide list into groups of 5 elements $\rightarrow \theta(n)$ find median of each small list $\longrightarrow \theta(n)$ gather all medians $\rightarrow \theta(1 / 5)$ call select $(\ldots$.$) on this sublist to find median \longrightarrow S\binom{n}{5}$ return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

a nice property of our partition

a nice property of our partition

a nice property of our partition

a nice property of our partition

a nice property of our partition

$$
\begin{gathered}
3\left(\left\lceil\frac{1}{2}\lceil n / 5\rceil\right\rceil-2\right) \\
\quad \geq \frac{3 n}{10}-6 \\
\sim 30 \%
\end{gathered}
$$

this implies there are
at most $\frac{7 n}{10}+6$ numbers
larger than
/smaller

a nice property of our partitior

select $(i, A[1, \ldots, n])$
select $(i, A[1, \ldots, n])$
handle base case for small list
else pivot $=$ FindPartitionValue $(A, n) \longrightarrow P(n)=S\left(\frac{n}{5}\right)+\theta(n)$
partition list about pivot \qquad
if pivot is position i , return pivot
else if pivot is in position $>\mathrm{i} \quad$ select $(i, A[1, \ldots, p-1]) S\left(\frac{7 n}{10}+6\right)$
else select $((i-p-1), A[p+1, \ldots, n])$

$$
\begin{gathered}
S(n)=\frac{S\left(\frac{\left[\frac{n}{5}\right]}{T}\right)}{}=\frac{\left(\frac{7 n}{5}+1\right.}{\left.\underline{\left(\frac{7 n}{10}+6\right.}\right)}+\theta(n)
\end{gathered}
$$

FindPartition $(A[1, \ldots, n])$
divide list into groups of 5 elements
find median of each small list gather all medians
call select(...) on this sublist to find median return the result

$$
P(n)=S(\lceil n / 5\rceil)+O(n)
$$

select $(i, A[1, \ldots, n])$
handle base case for small list else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i , return pivot else if pivot is in position > i select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
S(n)=S(\lceil n / 5\rceil)+O(n)+S(7 n / 10+6)
$$

select $(i, A[1, \ldots, n])$
handle base case for small list else pivot = FindPartitionValue(A,n) partition list about pivot if pivot is position i , return pivot else if pivot is in position > i select $(i, A[1, \ldots, p-1])$ else select $((i-p-1), A[p+1, \ldots, n])$

$$
S(n)=S(\lceil n / 5\rceil)+O(n)+S(7 n / 10+6)
$$

Stairs(n)
if $\mathrm{n}<=\mathrm{I}$ return I
return $\operatorname{Stairs}(\mathrm{n}-\mathrm{I})+\operatorname{Stairs}(\mathrm{n}-2)$

Stairs(n) if $n<=\mathrm{I}$ return I

ret Stairs $(n-I)+\operatorname{Stairs}(n-2)$

Stairs(5)

Stairs(4)
Stairs (3)

Stairs(3) Stairs(2) Stairs(2) Stairs(I)

Stairs(2) Stairs(I) Stairs(I) Stairs(o) Stairs(I) Stairs(o)

```
Stairs(n)
    if n<=1 then return 1
    if n is in M, return M[n]
    answer = Stairs(i-1)+ Stairs(i-2)
    M[n] = answer
    return answer
```

Stairs(n)
if $n<=1$ then return 1 Stairs(5)
if n is in M, return $M[n]$
answer $=$ Stairs(i-1)+ Stairs(i-2)
M[n] = answer
return answer

Stairs(n)
stair[0]=1
stair[1]=1
for $i=2$ to n
stair[i] = stair[i-1]+stair[i-2]
return stair[i]

Stairs(n)

Stairs(n)
if $n<=1$ then return 1 Stairs(5)
if n is in M, return $M[n]$
answer $=$ Stairs(i-1)+ Stairs(i-2)
M[n] = answer
return answer

Stairs(n)
stair[0]=1
stair[1]=1
for $i=2$ to n
stair[i] = stair[i-1]+stair[i-2]
return stair[i]

Dynamic
Programming
two big ideas

two big ideas

recursive structure $+$ memoizing

wood cutting

http://snlm.files.wordpress.com/2008/08/bill-wakefield-and-carl-fie.gif

Spot price for lumber

Spot price for lumber

$$
\text { I" } 2 " 3 " 4 " 5 " 6 " 7 " 8 "
$$

Log cutter dilemna

input to the problem: $n,\left(p_{1}, \ldots, p_{n}\right)$
goal:

Observation

Solution equation

Approach

$\operatorname{BestLogs}\left(n,\left(p_{1}, \ldots, p_{n}\right)\right)$
if $\mathrm{n}<=0$ return 0
$\operatorname{BestLogs}\left(n,\left(p_{1}, \ldots, p_{n}\right)\right)$

$$
\begin{aligned}
& \text { if } \mathrm{n}<=0 \text { return } 0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& \text { Best }[\mathrm{i}]=\max _{k=1 \ldots i}\left\{p_{k}+\operatorname{Best}[i-k]\right\}
\end{aligned}
$$

The actual cuts?

$\operatorname{BestLogs}\left(n,\left(p_{1}, \ldots, p_{n}\right)\right)$

$$
\begin{aligned}
& \text { if } \mathrm{n}<=0 \text { return } 0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& \text { Best }[\mathrm{i}]=\max _{k=1 \ldots i}\left\{p_{k}+\operatorname{Best}[i-k]\right\}
\end{aligned}
$$

