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Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.
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Karatsuba(ab, cd)
Base case: return b*d if inputs are 1-digit

ac = Karatsuba(a,c)
bd = Karatsuba(b,d)
t = Karatsuba((a+b),(c+d))

mid = t - ac - bd

RETURN ac*1002 + mid*100 + bd

3T (n/2) + 2n

4n

3n



Closest(P,SX,SY)

Let q be the middle-element of SX

Divide P into Left, Right according to q

delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):

Compute distance to its next 15 neighbors 
Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)



second attempt
arbit+(A[1...n])
base case if |A|<=2, …
(lg,minl,maxl) = arbit(left(A))
(rg,minr,maxr) = arbit(right(A))

return max{maxr-minl,lg,rg}, 
 min{minl, minr}, 
 max{maxl, maxr} 



 

[strassen]



FFT(f=a[1,...,n])
 

E[...] <- FFT(Ae)    // eval Ae on n/2 roots of unity

combine results using equation:

O[...] <- FFT(Ao)    // eval Ao on n/2 roots of unity

 

Return n resulting values.

Base case if n<=2



FastFourier
Transform 2 



a0, a1, a2, . . . , an�1

output: evaluate polynomial A at (any) n different points.

 
 

n points on a curve

 
  

 

 

FFT
input: 

 



Brute force method to evaluate A at n points:



 

 



FFT(f=a[1,...,n])
Evaluates degree n poly on the nth roots of unityFFT(f=a[1,...,n])

Evaluates degree n poly on the nth roots of unity



Last remaining issue: Which points to use?

Roots of unity

should have n solutions
what are they?



n

1, e2⇡i/n, e2⇡i2/n, e2⇡i3/n, . . . , e2⇡i(n�1)/n
o

the n solutions are:

e2⇡i = 1because



consider

is an nth root of unity=

 

for j=0,1,2,3,...,n-1

the n solutions are:



What is this number?
is an nth root of unity=



f (y) = f (a) +
f 0(a)

1!
(y � a) +

f 00(a)
2!

(y � a)2 +
f 000(a)

3!
(y � a)2 + · · ·

Taylor series expansion
of a function f around point a

ex =
around 0



What is this number?
is an nth root of unity=

e2pij/n = cos(2p j/n) + i sin(2p j/n)



is an nth root of unity=

 

Lets compute !1,8



Compute all 8 roots of unity

Then graph them



should have n solutions

roots of unity

e2pij/n = cos(2p j/n) + i sin(2p j/n)

 

  

 

 
  

  



squaring the nth roots of unity

 

  

 

 
  

  



Thm: Squaring an nth root produces an n/2th root.

!1,8 =
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example:



 

  

 

 

squaring the nth roots of unity

 

  

 

 
  

  



 

Thm: Squaring an nth root produces an n/2th root.

n

1, e2⇡i(1/n), e2⇡i(2/n), e2⇡i(3/n), . . . , e2⇡i(n/2)/n, e2⇡i(n/2+1)/n, . . . , e2⇡i(n�1)/n
o



Thm: Squaring an nth root produces an n/2th root.

n

1, e2⇡i(1/n), e2⇡i(2/n), e2⇡i(3/n), . . . , e2⇡i(n/2)/n, e2⇡i(n/2+1)/n, . . . , e2⇡i(n�1)/n
o

e2⇡i(1/(n/2)) e2⇡i(2/(n/2)) e2⇡i(3/(n/2))1

e2⇡i((n/2)+1/(n/2))

1

= e2⇡i(1+1/(n/2))

= 1 · e2⇡i(1/(n/2))



 
  

 

   

  

If n=16
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evaluate at a root of unity

nth root 
of unity

n/2th root 
of unity

n/2th root 
of unity



FFT(f=a[1,...,n])
Evaluates degree n poly on the nth roots of unity



FFT(f=a[1,...,n])
 

E[...] <- FFT(Ae)    // eval Ae on n/2 roots of unity

combine results using equation:

O[...] <- FFT(Ao)    // eval Ao on n/2 roots of unity

 

Return n resulting values.

Base case if n<=2
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8753

7635

6517

1

1

9871

✛✛✛✛

✛✛✛✛

✛✛✛✛



a1a2a3

b1b2b3

a0

b0
★

a3b3 a2b3 a1b3 a0b3

a3b2 a2b2 a1b2 a0b2

a3b1 a2b1 a1b1 a0b1

a3b0 a2b0 a1b0 a0b0



C(x) =

a3b3x
6+

(a3b2 + a2b3)x5+
(a3b1 + a2b2 + a1b3)x4+
(a3b0 + a2b1 + a1b2 + a0b3)x3+
(a2b0 + a1b1 + a0b2)x2+
(a1b0 + a0b1)x+
a0b0

A(x) = a3x
3 + a2x

2 + a1x+ a0

B(x) = b3x
3 + b2x

2 + b1x+ b0



y=x+1

y=2x+1



y=x+1

y=2x+1



★a0a1a2a3 b3 b2 b1 b0

 

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7



★a0a1a2a3 b3 b2 b1 b0

 

A(!0) A(!1) A(!2) A(!7)....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7



★a0a1a2a3 b3 b2 b1 b0

 

A(!0) A(!1) A(!2) A(!7)....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2) ....
FFT

FFT



★a0a1a2a3 b3 b2 b1 b0

 

A(!0) A(!1) A(!2) A(!7)....

C(!2)C(!0) C(!1) C(!7)
....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2) ....
FFT

FFT



★a0a1a2a3 b3 b2 b1 b0

 

A(!0) A(!1) A(!2) A(!7)....

C(!2)C(!0) C(!1) C(!7)
....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2) ....
FFT

FFT

C(x) = c0 + c1x+ c2x
2 + · · · c7x7

IFFT
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https://en.wikipedia.org/wiki/File:Integer_multiplication_by_FFT.svg

Schönhage–Strassen ‘71 

Fürer ‘07

O(n log n log log n)

O(n log(n)2log
⇤
(n)

)

Multiplying n-bit 
numbers



A GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN’S
LARGE INTEGER MULTIPLICATION ALGORITHM

PIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract. Schönhage-Strassen’s algorithm is one of the best known algorithms for multi-
plying large integers. Implementing it efficiently is of utmost importance, since many other
algorithms rely on it as a subroutine. We present here an improved implementation, based
on the one distributed within the GMP library. The following ideas and techniques were
used or tried: faster arithmetic modulo 2n + 1, improved cache locality, Mersenne trans-
forms, Chinese Remainder Reconstruction, the

√
2 trick, Harley’s and Granlund’s tricks,

improved tuning. We also discuss some ideas we plan to try in the future.

Introduction

Since Schönhage and Strassen have shown in 1971 how to multiply two N -bit integers in
O(N log N log log N) time [21], several authors showed how to reduce other operations —
inverse, division, square root, gcd, base conversion, elementary functions — to multiplication,
possibly with log N multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common
practice to express complexities in terms of the cost M(N) to multiply two N -bit numbers,
and many researchers tried hard to get the best possible constants in front of M(N) for the
above-mentioned operations (see for example [6, 16]).

Strangely, much less effort was made for decreasing the implicit constant in M(N) itself,
although any gain on that constant will give a similar gain on all multiplication-based op-
erations. Some authors reported on implementations of large integer arithmetic for specific
hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on
the question of an optimized implementation of Schönhage-Strassen’s algorithm on a classical
workstation.

In the last years, the multiplication of large integers has found several new applications
in “real life”, and not only in computing billions of digits of π. One such application is the
segmentation method (called Kronecker substitution in [25]) to reduce the multiplication of
polynomials with integer coefficients to one huge integer multiplication; this is used for exam-
ple in the GMP-ECM software [27]. Another example is the multiplication or factorization
of multivariate polynomials [23, 24].

In this article we detail several ideas or techniques that may be used to implement
Schönhage-Strassen’s algorithm (SSA) efficiently. As a consequence, we obtain what we
believe is the best existing implementation of SSA on current processors; this implementa-
tion might be used as a reference to compare with other algorithms based on Fast Fourier
Transform, in particular those using complex floating-point numbers.

The paper is organized as follows: §1 revisits the original SSA and defines the notations
used in the rest of the paper; §2 describes the different ideas and techniques we tried, explains
which ones were useful, and which ones were not; finally §3 provides timing figures and graphs
obtained with our new GMP implementation, and compares it to other implementations.
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Applications of FFT



Applications of FFT



418.127418.222 417.929 414.795 400.868408.15398.417 397.617 401.902 405.7328 411.8386



String matching with *
ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC 
CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC 
CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG 
AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC 
CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG 
TTTAATTACAGACCTGAA

Looking for all occurrences of 

GGC*GAG*C*GC

where I don't care what the * symbol is.



Median



                      

problem: given a list of n elements, find the element 
of rank n/2. (half are larger, half are smaller)



                      

problem: given a list of n elements, find the element 
of rank n/2. (half are larger, half are smaller)

 

first solution: sort and pluck.

can generalize to i



                      

 

key insight:
we do not have to “fully” sort.
semi sort can suffice.

problem: given a list of n elements, find the element 
of rank i. 



                      

pick first element 
partition list about this one 
see where we stand



                      
review: how to partition a list   



                      
review: how to partition a list   

GOAL: start with THIS LIST and END with THAT LIST

                     
less than greater than 

 



                      
review: how to partition a list   



                      

review: how to partition a list   



                      

review: how to partition a list   

                      

  



                      

review: how to partition a list   

                      

  

                      

  



                      

review: how to partition a list   

                      

  

                      

  

                      

  



                      

review: how to partition a list   

                      

  

                      

  

                      

  

 
partitioning a list about an element takes linear time.



                      

  

select



                      

  

handle base case. 
partition list about first element 
if pivot p is position i, return pivot 
else if pivot p is in position > i
else

select
select

select



Assume our partition always  
splits list into two eql parts

handle base case. 
partition list about first element 
if pivot is position i, return pivot 
else if pivot is in position > i
else

select

select
select



Assume our partition always  
splits list into two eql parts

handle base case. 
partition list about first element 
if pivot is position i, return pivot 
else if pivot is in position > i
else

select

select
select



  problem: what if we always pick bad partitions?

                      



  

problem: what if we always pick bad partitions?

                      

                      



  

                      

                      

                    

  

                   

problem: what if we always pick bad partitions?



  

problem: what if we always pick bad partitions?

                      

                      

                    

  

                   

 



handle base case. 
partition list about first element 
if pivot is position i, return pivot 
else if pivot is in position > i
else

select

select
select



T (n) = T (n� 1) +O(n)

⇥(n2)
 

handle base case. 
partition list about first element 
if pivot is position i, return pivot 
else if pivot is in position > i
else

select

select
select



Needed:
a good partition element

partition



Needed:
a good partition element

partition produce an element where  
30% smaller, 30% larger

 



solution: 
bootstrap

image: gucci

image: d&g

image: mark nason



                 

partition

     



                      

partition



                      

partition

    

    

 

 



                      

partition

    

 

    

 

 

select  

 

median of 
each group

form a 
smaller list

use the median of this 
smaller list as the 
partition element



                      

partition

1.
2.
3.
4.
5.



                      

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result



                      

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result



                      
a nice property of our partition



                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a nice property of our partition



                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a nice property of our partition



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWITCH TO A BIGGER EXAMPLE
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a nice property of our partition
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this implies there are  
at most numbers

larger than
/smaller

a nice property of our partition

 



                       
a nice property of our partition



                       

 



select

                      

  



select
handle base case for small list 
else pivot = FindPartitionValue(A,n) 
partition list about pivot 
if pivot is position i, return pivot 
else if pivot is in position > i
else

select
select

                      

  





                      
FindPartition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result



                      

  

 

select
handle base case for small list 
else pivot = FindPartitionValue(A,n) 
partition list about pivot 
if pivot is position i, return pivot 
else if pivot is in position > i
else

select
select



                      

  

 

select
handle base case for small list 
else pivot = FindPartitionValue(A,n) 
partition list about pivot 
if pivot is position i, return pivot 
else if pivot is in position > i
else

select
select







Stairs(n)

return Stairs(n-1) + Stairs(n-2)

if n<=1 return 1



Stairs(5)

Stairs(4) Stairs(3)

Stairs(3) Stairs(2) Stairs(2) Stairs(1)

Stairs(2) Stairs(1) Stairs(1) Stairs(0) Stairs(1) Stairs(0)

Stairs(n)
ret Stairs(n-1) + Stairs(n-2)
if n<=1 return 1



initialize memory M

Stairs(n)

answer = Stairs(i-1)+ Stairs(i-2)

if n<=1 then return 1

return answer

if n is in M, return M[n]

M[n] = answer



Stairs(n)

answer = Stairs(i-1)+ Stairs(i-2)

if n<=1 then return 1

return answer

if n is in M, return M[n]

M[n] = answer

Stairs(5)



Stairs(n)

stair[i] = stair[i-1]+stair[i-2]
for i=2 to n

stair[0]=1
stair[1]=1

return stair[i]



initialize memory M

Stairs(n)



Stairs(n)

answer = Stairs(i-1)+ Stairs(i-2)

if n<=1 then return 1

return answer

if n is in M, return M[n]

M[n] = answer

Stairs(5)



Stairs(n)

stair[i] = stair[i-1]+stair[i-2]
for i=2 to n

stair[0]=1
stair[1]=1

return stair[i]



Dynamic 
Programming



two big ideas



two big ideas

recursive structure

memoizing



wood cutting

http://www.amishhandcraftedheirlooms.com/quarter-sawn-oak.htm



http://snlm.files.wordpress.com/2008/08/bill-wakefield-and-carl-fie.gif



Spot price for lumber



Spot price for lumber
1” 2” 3” 4” 5” 6” 7” 8”



Log cutter dilemna
input to the problem: n, (p1, . . . , pn)

goal:



Observation



Solution equation



Approach

..... i0



BestLogs(                          ) n, (p1, . . . , pn)
if n<=0 return 0 



BestLogs(                          ) n, (p1, . . . , pn)
if n<=0 return 0 
for i=1 to n 
Best[i] = max

k=1...i
{pk + Best[i� k]}



The actual cuts?



BestLogs(                          ) n, (p1, . . . , pn)
if n<=0 return 0 
for i=1 to n 
Best[i] = max

k=1...i
{pk + Best[i� k]}


