
L8
feb 16 2016

abhi shelat

FFT,Median

merge-sort
if

merge-sort
merge-sort
merge

(A, p, r)
p < r
q � ⇥(p + r)/2⇤

(A, p, q)
(A, q + 1, r)

(A, p, q, r)

5 2 4 7 1 3 2 6

Algorithms Lecture 2: Divide and Conquer

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

2 Divide and Conquer

2.1 MergeSort

Mergesort is one of the earliest algorithms proposed for sorting. According to Knuth, it was sug-
gested by John von Neumann as early as 1945.

1. Divide the array A[1 .. n] into two subarrays A[1 ..m] and A[m + 1 .. n], where m = ⇥n/2⇤.
2. Recursively mergesort the subarrays A[1 ..m] and A[m + 1 .. n].

3. Merge the newly-sorted subarrays A[1 ..m] and A[m + 1 .. n] into a single sorted list.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P S R T X

A Mergesort example.

The first step is completely trivial; we only need to compute the median index m. The second
step is also trivial, thanks to our friend the recursion fairy. All the real work is done in the final
step; the two sorted subarrays A[1 ..m] and A[m + 1 .. n] can be merged using a simple linear-time
algorithm. Here’s a complete specification of the Mergesort algorithm; for simplicity, we separate
out the merge step as a subroutine.

MERGESORT(A[1 .. n]):
if (n > 1)

m � ⇥n/2⇤
MERGESORT(A[1 ..m])
MERGESORT(A[m + 1 .. n])
MERGE(A[1 .. n],m)

MERGE(A[1 .. n],m):
i � 1; j � m + 1
for k � 1 to n

if j > n
B[k] � A[i]; i � i + 1

else if i > m
B[k] � A[j]; j � j + 1

else if A[i] < A[j]
B[k] � A[i]; i � i + 1

else
B[k] � A[j]; j � j + 1

for k � 1 to n
A[k] � B[k]

To prove that the algorithm is correct, we use our old friend induction. We can prove that
MERGE is correct using induction on the total size of the two subarrays A[i ..m] and A[j .. n] left to
be merged into B[k .. n]. The base case, where at least one subarray is empty, is straightforward;
the algorithm just copies it into B. Otherwise, the smallest remaining element is either A[i] or A[j],
since both subarrays are sorted, so B[k] is assigned correctly. The remaining subarrays—either
A[i + 1 ..m] and A[j .. n], or A[i ..m] and A[j + 1 .. n]—are merged correctly into B[k + 1 .. n] by the
inductive hypothesis.1 This completes the proof.

1“The inductive hypothesis” is just a technical nickname for our friend the recursion fairy.

1

je
ff

e
ric

ks
o

n

Karatsuba(ab, cd)
Base case: return b*d if inputs are 1-digit

ac = Karatsuba(a,c)
bd = Karatsuba(b,d)
t = Karatsuba((a+b),(c+d))

mid = t - ac - bd

RETURN ac*1002 + mid*100 + bd

3T (n/2) + 2n

4n

3n

Closest(P,SX,SY)

Let q be the middle-element of SX

Divide P into Left, Right according to q

delta,r,j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY)

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):

Compute distance to its next 15 neighbors
Update delta,r,j if any pair (x,y) is < delta

Can be reduced to 7!

)

Return (delta,r,j)

second attempt
arbit+(A[1...n])
base case if |A|<=2, …
(lg,minl,maxl) = arbit(left(A))
(rg,minr,maxr) = arbit(right(A))

return max{maxr-minl,lg,rg},
 min{minl, minr},
 max{maxl, maxr}

[strassen]

FFT(f=a[1,...,n])

E[...] <- FFT(Ae) // eval Ae on n/2 roots of unity

combine results using equation:

O[...] <- FFT(Ao) // eval Ao on n/2 roots of unity

Return n resulting values.

Base case if n<=2

FastFourier
Transform 2

a0, a1, a2, . . . , an�1

output: evaluate polynomial A at (any) n different points.

n points on a curve

FFT
input:

Brute force method to evaluate A at n points:

FFT(f=a[1,...,n])
Evaluates degree n poly on the nth roots of unityFFT(f=a[1,...,n])

Evaluates degree n poly on the nth roots of unity

Last remaining issue: Which points to use?

Roots of unity

should have n solutions
what are they?

n

1, e2⇡i/n, e2⇡i2/n, e2⇡i3/n, . . . , e2⇡i(n�1)/n
o

the n solutions are:

e2⇡i = 1because

consider

is an nth root of unity=

for j=0,1,2,3,...,n-1

the n solutions are:

What is this number?
is an nth root of unity=

f (y) = f (a) +
f 0(a)

1!
(y � a) +

f 00(a)
2!

(y � a)2 +
f 000(a)

3!
(y � a)2 + · · ·

Taylor series expansion
of a function f around point a

ex =
around 0

What is this number?
is an nth root of unity=

e2pij/n = cos(2p j/n) + i sin(2p j/n)

is an nth root of unity=

Lets compute !1,8

Compute all 8 roots of unity

Then graph them

should have n solutions

roots of unity

e2pij/n = cos(2p j/n) + i sin(2p j/n)

squaring the nth roots of unity

Thm: Squaring an nth root produces an n/2th root.

!1,8 =

✓
1p
2
+

ip
2

◆

!2
1,8 =

✓
1p
2
+

ip
2

◆2

=

✓
1p
2

◆2

+ 2

✓
1p
2

ip
2

◆
+

✓
ip
2

◆2

= 1/2 + i� 1/2

= i

example:

squaring the nth roots of unity

Thm: Squaring an nth root produces an n/2th root.

n

1, e2⇡i(1/n), e2⇡i(2/n), e2⇡i(3/n), . . . , e2⇡i(n/2)/n, e2⇡i(n/2+1)/n, . . . , e2⇡i(n�1)/n
o

Thm: Squaring an nth root produces an n/2th root.

n

1, e2⇡i(1/n), e2⇡i(2/n), e2⇡i(3/n), . . . , e2⇡i(n/2)/n, e2⇡i(n/2+1)/n, . . . , e2⇡i(n�1)/n
o

e2⇡i(1/(n/2)) e2⇡i(2/(n/2)) e2⇡i(3/(n/2))1

e2⇡i((n/2)+1/(n/2))

1

= e2⇡i(1+1/(n/2))

= 1 · e2⇡i(1/(n/2))

If n=16

A(!
i,n

) = A
e

(!2
i,n

) + !
i,n

A
o

(!2
i,n

)

evaluate at a root of unity

nth root
of unity

n/2th root
of unity

n/2th root
of unity

FFT(f=a[1,...,n])
Evaluates degree n poly on the nth roots of unity

FFT(f=a[1,...,n])

E[...] <- FFT(Ae) // eval Ae on n/2 roots of unity

combine results using equation:

O[...] <- FFT(Ao) // eval Ao on n/2 roots of unity

Return n resulting values.

Base case if n<=2

7 8 9

4 3 2

8753

7635

6517

1

1

9871

✛✛✛✛

✛✛✛✛

✛✛✛✛

a1a2a3

b1b2b3

a0

b0
★

a3b3 a2b3 a1b3 a0b3

a3b2 a2b2 a1b2 a0b2

a3b1 a2b1 a1b1 a0b1

a3b0 a2b0 a1b0 a0b0

C(x) =

a3b3x
6+

(a3b2 + a2b3)x5+
(a3b1 + a2b2 + a1b3)x4+
(a3b0 + a2b1 + a1b2 + a0b3)x3+
(a2b0 + a1b1 + a0b2)x2+
(a1b0 + a0b1)x+
a0b0

A(x) = a3x
3 + a2x

2 + a1x+ a0

B(x) = b3x
3 + b2x

2 + b1x+ b0

y=x+1

y=2x+1

y=x+1

y=2x+1

★a0a1a2a3 b3 b2 b1 b0

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2)
FFT

FFT

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

C(!2)C(!0) C(!1) C(!7)
....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2)
FFT

FFT

★a0a1a2a3 b3 b2 b1 b0

A(!0) A(!1) A(!2) A(!7)....

C(!2)C(!0) C(!1) C(!7)
....

A(x) = a0 + a1x+ a2x
2 + a3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(x) = b0 + b1x+ b2x
2 + b3x

3 + 0x4 + 0x5 + 0x6 + 0x7

B(!7)B(!0) B(!1) B(!2)
FFT

FFT

C(x) = c0 + c1x+ c2x
2 + · · · c7x7

IFFT

application to mult
7 8 9 4 3 21 1★

a b c dka
ra

ts
ub

a

application to mult
7 8 9 4 3 21 1★

a b c dka
ra

ts
ub

a

https://en.wikipedia.org/wiki/File:Integer_multiplication_by_FFT.svg

Schönhage–Strassen ‘71

Fürer ‘07

O(n log n log log n)

O(n log(n)2log
⇤
(n)

)

Multiplying n-bit
numbers

A GMP-BASED IMPLEMENTATION OF SCHÖNHAGE-STRASSEN’S
LARGE INTEGER MULTIPLICATION ALGORITHM

PIERRICK GAUDRY, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract. Schönhage-Strassen’s algorithm is one of the best known algorithms for multi-
plying large integers. Implementing it efficiently is of utmost importance, since many other
algorithms rely on it as a subroutine. We present here an improved implementation, based
on the one distributed within the GMP library. The following ideas and techniques were
used or tried: faster arithmetic modulo 2n + 1, improved cache locality, Mersenne trans-
forms, Chinese Remainder Reconstruction, the

√
2 trick, Harley’s and Granlund’s tricks,

improved tuning. We also discuss some ideas we plan to try in the future.

Introduction

Since Schönhage and Strassen have shown in 1971 how to multiply two N -bit integers in
O(N log N log log N) time [21], several authors showed how to reduce other operations —
inverse, division, square root, gcd, base conversion, elementary functions — to multiplication,
possibly with log N multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common
practice to express complexities in terms of the cost M(N) to multiply two N -bit numbers,
and many researchers tried hard to get the best possible constants in front of M(N) for the
above-mentioned operations (see for example [6, 16]).

Strangely, much less effort was made for decreasing the implicit constant in M(N) itself,
although any gain on that constant will give a similar gain on all multiplication-based op-
erations. Some authors reported on implementations of large integer arithmetic for specific
hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on
the question of an optimized implementation of Schönhage-Strassen’s algorithm on a classical
workstation.

In the last years, the multiplication of large integers has found several new applications
in “real life”, and not only in computing billions of digits of π. One such application is the
segmentation method (called Kronecker substitution in [25]) to reduce the multiplication of
polynomials with integer coefficients to one huge integer multiplication; this is used for exam-
ple in the GMP-ECM software [27]. Another example is the multiplication or factorization
of multivariate polynomials [23, 24].

In this article we detail several ideas or techniques that may be used to implement
Schönhage-Strassen’s algorithm (SSA) efficiently. As a consequence, we obtain what we
believe is the best existing implementation of SSA on current processors; this implementa-
tion might be used as a reference to compare with other algorithms based on Fast Fourier
Transform, in particular those using complex floating-point numbers.

The paper is organized as follows: §1 revisits the original SSA and defines the notations
used in the rest of the paper; §2 describes the different ideas and techniques we tried, explains
which ones were useful, and which ones were not; finally §3 provides timing figures and graphs
obtained with our new GMP implementation, and compares it to other implementations.

1

Applications of FFT

Applications of FFT

418.127418.222 417.929 414.795 400.868408.15398.417 397.617 401.902 405.7328 411.8386

String matching with *
ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC
CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC
CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG
AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC
CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG
TTTAATTACAGACCTGAA

Looking for all occurrences of

GGC*GAG*C*GC

where I don't care what the * symbol is.

Median

problem: given a list of n elements, find the element
of rank n/2. (half are larger, half are smaller)

problem: given a list of n elements, find the element
of rank n/2. (half are larger, half are smaller)

first solution: sort and pluck.

can generalize to i

key insight:
we do not have to “fully” sort.
semi sort can suffice.

problem: given a list of n elements, find the element
of rank i.

pick first element
partition list about this one
see where we stand

review: how to partition a list

review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

less than greater than

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

review: how to partition a list

partitioning a list about an element takes linear time.

select

handle base case.
partition list about first element
if pivot p is position i, return pivot
else if pivot p is in position > i
else

select
select

select

Assume our partition always
splits list into two eql parts

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

Assume our partition always
splits list into two eql parts

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

 problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

problem: what if we always pick bad partitions?

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

T (n) = T (n� 1) +O(n)

⇥(n2)

handle base case.
partition list about first element
if pivot is position i, return pivot
else if pivot is in position > i
else

select

select
select

Needed:
a good partition element

partition

Needed:
a good partition element

partition produce an element where
30% smaller, 30% larger

solution:
bootstrap

image: gucci

image: d&g

image: mark nason

partition

partition

partition

partition

select

median of
each group

form a
smaller list

use the median of this
smaller list as the
partition element

partition

1.
2.
3.
4.
5.

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

partition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

a nice property of our partition

a nice property of our partition

a nice property of our partition

SWITCH TO A BIGGER EXAMPLE

 < < < <

<
<

<
<

<
<

<

a nice property of our partition

 < < < <

<
<

<
<

<
<

<

this implies there are
at most numbers

larger than
/smaller

a nice property of our partition

a nice property of our partition

select

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

FindPartition

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

select
handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else

select
select

Stairs(n)

return Stairs(n-1) + Stairs(n-2)

if n<=1 return 1

Stairs(5)

Stairs(4) Stairs(3)

Stairs(3) Stairs(2) Stairs(2) Stairs(1)

Stairs(2) Stairs(1) Stairs(1) Stairs(0) Stairs(1) Stairs(0)

Stairs(n)
ret Stairs(n-1) + Stairs(n-2)
if n<=1 return 1

initialize memory M

Stairs(n)

answer = Stairs(i-1)+ Stairs(i-2)

if n<=1 then return 1

return answer

if n is in M, return M[n]

M[n] = answer

Stairs(n)

answer = Stairs(i-1)+ Stairs(i-2)

if n<=1 then return 1

return answer

if n is in M, return M[n]

M[n] = answer

Stairs(5)

Stairs(n)

stair[i] = stair[i-1]+stair[i-2]
for i=2 to n

stair[0]=1
stair[1]=1

return stair[i]

initialize memory M

Stairs(n)

Stairs(n)

answer = Stairs(i-1)+ Stairs(i-2)

if n<=1 then return 1

return answer

if n is in M, return M[n]

M[n] = answer

Stairs(5)

Stairs(n)

stair[i] = stair[i-1]+stair[i-2]
for i=2 to n

stair[0]=1
stair[1]=1

return stair[i]

Dynamic 
Programming

two big ideas

two big ideas

recursive structure

memoizing

wood cutting

http://www.amishhandcraftedheirlooms.com/quarter-sawn-oak.htm

http://snlm.files.wordpress.com/2008/08/bill-wakefield-and-carl-fie.gif

Spot price for lumber

Spot price for lumber
1” 2” 3” 4” 5” 6” 7” 8”

Log cutter dilemna
input to the problem: n, (p1, . . . , pn)

goal:

Observation

Solution equation

Approach

..... i0

BestLogs() n, (p1, . . . , pn)
if n<=0 return 0

BestLogs() n, (p1, . . . , pn)
if n<=0 return 0
for i=1 to n
Best[i] = max

k=1...i
{pk + Best[i� k]}

The actual cuts?

BestLogs() n, (p1, . . . , pn)
if n<=0 return 0
for i=1 to n
Best[i] = max

k=1...i
{pk + Best[i� k]}

