$$
\text { Correction: HWS Oct } 4
$$

4102
 Sep 242013
 abhi shelat

Dynamic programming: log cutter, matrix chains, typesetting

What are the inputs and outputs of the FFT algorithm?

Describe the algorithm in a few sentences.

Do you remember any applications of the FFT?

Name:

$S(n) \sim S(n-1)+S(n-2) \rightarrow F^{S}$ bonacii number $\sim O\left(\Phi^{n}\right)$

Stairs(n) if $\mathrm{n}<=\mathrm{I}$ return I ret Stairs $(\mathrm{n}-\mathrm{I})+$ Stairs $(\mathrm{n}-2)$

Stairs(5)

Stairs(4)

Stairs(n) if $\mathrm{n}<=\mathrm{I}$ return I ret Stairs $(\mathrm{n}-\mathrm{I})+$ Stairs $(\mathrm{n}-2)$

Stairs(5)

Stairs(4)

Stairs (3)
Stairs(3) Stairs(2) Stairs(2) Stairs(I)

Stairs(n) if $\mathrm{n}<=\mathrm{I}$ return I ret Stairs $(\mathrm{n}-\mathrm{I})+$ Stairs $(\mathrm{n}-2)$

Stairs(5)

Stairs(4)

Stairs (3)
Stairs(3) Stairs(2) Stairs(2) Stairs(I)

Stairs(2) Stairs(I) Stairs(I) Stairs(o) Stairs(I) Stairs(o)
initialize memory M

Stairs (n)
Base case as before
if M contains n, return $M[n]$
else answer $=\operatorname{stairs}(n-1)+\operatorname{stairs}(n-2)$

$$
\frac{M[n]=\text { answer }}{\text { return answer }}
$$

```
Stairs(n)
    if n<=1 then return n
    if n is in M, return M[n]
    answer = Stairs(i-1)+ Stairs(i-2)
    M[n] = answer
    return answer
```



```
Stairs(n)
    stair[0]=1
    stair[1]=1
    for \((i=2\), to \(n\) )
        Stairs \([i]=\operatorname{stairs}[i-1]+\operatorname{stairs}[i-2]\)
    relurn stairs \([n]\)
```

Stairs(n)

$$
\begin{aligned}
& \text { stair }[0]=1 \\
& \text { stair }[1]=1 \\
& \text { for } i=2 \text { to } n \\
& \quad \text { stair[i] = stair[i-1]+stair[i-2] } \\
& \text { return stair[i] }
\end{aligned}
$$

Dynamic
Programming
two big ideas
(1) recursive substructure.

$$
\underline{T(n)}=\underline{T(n-1)}+T(n-2)
$$

(2) memorization

Keep track of intermedide results,
Solve the intermediate problems in n specific order to maximize efficiency

two big ideas

recursive structure
1
memoizing

wood cutting

http://snlm.files.wordpress.com/2008/08/bill-wakefield-and-carl-fie.gif

Spot price for lumber

$$
\begin{array}{llllllll}
\underline{I "} & 2 " & 3 " & 4 & 5 " & 6 " & 7 " & 8 " \\
P_{1} & P_{2} & P_{3} & P_{4} & \ldots & & & \\
P_{q}
\end{array}
$$

$P_{i} \rightarrow$ spot price for an $i^{\prime \prime}$-wide slab of lumber

$$
n=5 \quad \frac{P_{1} P_{4}}{P_{2} P_{3}} \quad n=200^{\prime \prime}
$$

Log cutter dilemna
input to the problem: $n,\left(p_{1}, \ldots, p_{n}\right)$
n" wide $\log { }^{2}$ spot prices for slabs of width $i^{"}$
goal: MAXIMIZe profits!!
find a set of cuts $i_{1} i_{2} i_{3} \ldots i_{k}$

$$
\sum_{j=0}^{n} i_{j}<n
$$

$\max \sum_{j=0}^{k} \rho_{i_{j}}$

Observation

Solution equation

$$
B_{n}=\frac{P_{i x}}{\tau_{\text {how }}}+B_{n-i k}
$$

how many possibe values of in are there??

$$
\underline{\left\{\begin{array}{l}
B_{n}=\max _{i=1}^{n}\left\{P_{i}+B_{n-i}\right\} \\
B_{\operatorname{est}}^{200}
\end{array}\right.}=\max \left\{\begin{array}{l}
p_{1}+\underline{B_{199}} \\
p_{2}+\underline{\underline{B_{198}}} \\
p_{3}+\underline{\underline{B_{197}}} \\
p_{200}+B_{0}
\end{array}\right.
$$

Approach

stat here

Approach
BC

$B(1)=p_{1}+B_{0}$

$$
B_{2}=\max \left\{\begin{array}{l}
P_{2}+B_{0} \\
P_{1}+B_{1}
\end{array}\right.
$$

$$
B_{3}=\left\{\begin{array}{l}
P_{3}+B_{0} \\
P_{2}+B_{1} \\
P_{1}+B_{2}
\end{array}\right.
$$

$\operatorname{BestLogs}\left(n,\left(p_{1}, \ldots, p_{n}\right)\right)$
if $\mathrm{n}<=0$ return 0
\rightarrow for $i=1$ to n

$$
\left.B B_{i}\right]=-\infty
$$

Running time: $\underbrace{I+2+31 \ldots+(n-1)} \sim \theta\left(n^{2}\right)$

```
BestLogs(n,( }\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{})
    if n<=0 return 0
    for i=1 to n
    -Best[i] = max { { { < w
    Choice[i] = K*,k
    }return Best[n]
                the particular value of that resulted in the max at this step
```

$$
\frac{(\text { work on example) }}{0}
$$

The actual cuts?

```
BestLogs(n,( p1, .., p
    if n<=0 return 0
    for j=1 to n
    Best[i] = max m=1\ldotsi}{\mp@subsup{p}{k}{}+\operatorname{Best}[i-k]
    return Best[n]
```

Matrix

$$
c_{1}=r_{2}
$$

$$
c_{1} \times r_{1} \cdot c_{2}=\# \text { of opeatiors }
$$

$$
\left(A_{1} \cdot A_{2}\right) \cdot A_{3} \quad A_{1} \cdot\left(A_{2} \cdot A_{3}\right)
$$

$A_{1} \cdot A_{2} \cdot A_{3}$
$\left(A_{1} \cdot A_{2}\right) \cdot A_{3} \quad A_{1} \cdot\left(A_{2} \cdot A_{3}\right)$

$10 \cdot 100 \cdot 5+10 \cdot 5 \cdot 50$ operations

$$
10 \cdot 100 \cdot 50=
$$

$$
100 \cdot 5 \cdot 50=
$$

$$
=>\Rightarrow S / N I_{1}
$$

$$
A_{1} \cdot A_{2} \cdot A_{3}
$$

$100 \cdot 5 \cdot 50+10 \cdot 100 \cdot 50$

operations

order matters
(for efficiency)
how many ways to compute?

$$
A_{1} A_{2} A_{3} \ldots A_{n}
$$

how many ways to compute?

$$
A_{1} A_{2} A_{3} \ldots A_{n}
$$

how do we solve it?

identify smaller instances of the problem
devise method to combine solutions
small \# of different subproblems
solved them in the right order
optimal way to compute
$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$

optimal way to compute

$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$

$$
B_{1, n}=B_{1, \ell}+B_{\ell+1, n}+r_{1} c_{\ell} c_{n}
$$

optimal way to compute
$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$
$\mathrm{B}[1, \mathrm{n}]$

optimal way to compute

$A_{1} A_{2} A_{3} A_{4} \ldots A_{n}$

$$
\mathrm{B}[1, \mathrm{n}]
$$

$\mathrm{B}[1,1]$	$\mathrm{B}[1,2]$	\ldots	$\mathrm{B}[1, \mathrm{n}-2]$	$\mathrm{B}[1, \mathrm{n}-1]$
$\mathrm{B}[2, \mathrm{n}]$	$\mathrm{B}[3, \mathrm{n}]$	\ldots	$\mathrm{B}[\mathrm{n}-1, \mathrm{n}]$	$\mathrm{B}[\mathrm{n}, \mathrm{n}]$
$R_{1} C_{1} C_{n}$	$R_{1} C_{2} C_{n}$		$R_{1} C_{n-2} C_{n}$	$R_{1} C_{n-1} C_{n}$

$$
\begin{aligned}
& B(i, i)=1 \\
& B(1, n)=\min
\end{aligned}
$$

$$
\begin{aligned}
& B(i, i)=1 \\
& B(1, n)=\min \left\{\begin{array}{l}
B(1,1)+B(2, n)+r_{1} c_{1} c_{n} \\
B(1,2)+B(3, n)+r_{1} c_{2} c_{n} \\
\vdots \\
B(1, n-1)+B(n, n)+r_{1} c_{n-1} c_{n}
\end{array}\right.
\end{aligned}
$$

$B(i, j)=$

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

how did we solve it?

identified smaller instances of the problem
devised method to combine solutions
small \# of different subproblems
solved them in the right order
$B(i, j)=$

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

which order to solve?

matrix-chain-mult(p)

initialize array $\mathrm{m}[\mathrm{x}, \mathrm{y}]$ to zero

matrix-chain-mult(p)

initialize array $\mathrm{m}[\mathrm{x}, \mathrm{y}]$ to zero
starting at diagonal, working towards upper-left
compute $m[i, j]$ according to

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

running time?

initialize array $\mathrm{m}[\mathrm{x}, \mathrm{y}]$ to zero
starting at diagonal, working towards upper-left
compute $m[i, j]$ according to

$$
\left\{\begin{array}{l}
0 \text { if } i=j \\
\min _{k}\left\{B(i, k)+B(k+1, j)+r_{i} c_{k} c_{j}\right.
\end{array}\right.
$$

Typesetting

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

It was the best of times, it was the worst of times, it was the age of wisdom, i the age of foolishness, it was the epoch of it was the epoch of incredulity, it was the of Light, it was the season of Darkness, it spring of hope, it was the winter of despai had everything before us, we had nothing be we were all going direct to heaven, we were going direct the other way - in short, the period was so far like the present period, that sone of its noisiest authorities insisted on its be ng received, for good or for evil, in the supe lative degree of comparison only.
never print in the margin!
are simply not allowed

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of \qquad incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of \qquad despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.
\qquad

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of \qquad incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of f despair, we had everything before us, we
had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch_ of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of f, we we despair, we had everything before us, we
had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.
$0 \quad 0$
0 0
0

2 4
12144 24
11
636
24
24
00
f its 197

It was the best of times, it was the \qquad worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of \qquad incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of \qquad despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.	6 1 1 6 2 1 6 2 2	$\begin{array}{r} 36 \\ 1 \\ 1 \\ 36 \\ 4 \\ 1 \\ 36 \\ 4 \\ 4 \\ 0 \end{array}$

Typesetting problem

input:
output:

such that

Typesetting problem

input: $\quad W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\} \quad M$
output: $\quad L=\left(w_{1}, \ldots, w_{\ell_{1}}\right),\left(w_{\ell_{1}+1}, \ldots, w_{\ell_{2}}\right), \ldots,\left(w_{\left.\ell_{x+1}, \ldots, w_{n}\right)}\right.$
such that

Typesetting problem

input:

$$
W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\} \quad M
$$

output: $L=\left(w_{1}, \ldots, w_{\ell_{1}}\right),\left(w_{\ell_{1}+1}, \ldots, w_{\ell_{2}}\right), \ldots,\left(w_{\ell_{x+1}, \ldots, w_{n}}\right)$

$$
c_{i}=\left(\sum_{j=\ell_{i}+1}^{\ell_{i+1}}\left|w_{j}\right|\right)+\left(\ell_{i+1}-\ell_{i}-1\right)
$$

such that

$$
\begin{aligned}
& c_{i} \leq M \forall i \\
& \min \sum\left(M-c_{i}\right)^{2}
\end{aligned}
$$

how to solve

define the right variable:
imagine optimal solution

imagine optimal solution

last line

some word has to be the

first-word-of-last-line

 (fwoll)
imagine optimal solution

imagine optimal solution

how many candidates are there for the fwoll?

imagine optimal solution

which word is fwoll?

which word is fwoll?

how to computę $S_{i, j}$

$S_{i, j}$
slack when line starts with w_{i} and ends w_{j}

Simplest case

Simplest case

how to computę $S_{i, j}$

$S_{i, j}$
slack when line starts with w_{i} and ends w_{j}

typesetting algorithm

make table for $S_{i, j}$

typesetting algorithm

make table for $S_{i, j}$
for $i=1$ to n

$$
\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}
$$

```
// compute best_0,...,best_n
    int best[] = new int[n+1];
    int choice[] = new int[n+1];
    best[0] = 0;
    for(int i=1;i<=n;i++) {
        int min = infty;
        int ch = 0;
        for(int j=0;j<i;j++) {
            int t = best[j] + S[j+1][i]*S[j+1][i];
            if (t<min) { min = t; ch = j;}
        }
        best[i] = min;
        choice[i] = ch;
```


example

It was the best of times, it was the worst of times; it was the age o wisdom, it was the age of foolishness; it was the epoch of belief, it was the epoch of incredulity; it was the season of
$\begin{array}{lllllllllllllllllllll}2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3\end{array}$
$\begin{array}{lllllllllllllllllll}3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6\end{array} 2$

first step: make $S_{i, j}$

1

$$
\begin{array}{llllllllllllllllllllll}
2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\
3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 12 & 2 & 3 & 3 & 6 & 2 & M=42
\end{array}
$$

$$
S_{i, i}=M-\left|w_{i}\right|
$$

$$
S_{i, j}=S_{i, j-1}-1-\left|u_{j}\right|
$$

first step: make $S_{i, j}$

1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 36 | 32 | 27 | 24 | 17 | 14 | 10 | 6 | 0 | 99 | 99 | 99 |
| | \square | | \square | | \square | \square | | | \square | | \square | |

$\left.\begin{array}{lllllllllllllllllllll}2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3\end{array}\right) M=42$

first step: make $S_{i, j}$

1	2	3	4	5	6	7	8	9	10	11	12

2

| 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\left.\begin{array}{llllllllllllllllllll}2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3\end{array}\right]$

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	40	36	32	27	24	17	14	10	6	0	99	99	99

| 2 | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3 \square
\square
\square
\square
\square
\square
\square
\square
\square
$\begin{array}{lllllllllllllllllllll}2 & 3 & 3 & 4 & 2 & 6 & 2 & 3 & 3 & 5 & 2 & 6 & 2 & 3 & 3 & 3 & 2 & 7 & 2 & 3 & 3 \\ 3 & 2 & 12 & 2 & 3 & 3 & 5 & 2 & 7 & 2 & 3 & 3 & 5 & 2 & 1 & 2 & 2 & 3 & 3 & 6 & 2\end{array}$

second step: compute

best 0
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

1

2

39	35	30	27	20	17	13	9	3	0
99	99								

second step: compute

best $0 \quad 1600$
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

second step: compute

best $0 \quad 1600 \quad 1296$
$\operatorname{BEST}_{i}=\min _{j=0}^{i-1}\left\{\operatorname{BEST}_{j}+S_{j+1, i}^{2}\right\}$

1

| 2 | 39 | 35 | 30 | 27 | 20 | 17 | 13 | 9 | 3 | 0 | 99 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Running time

make table for $S_{i, j}$
for $\mathrm{i}=1$ to n
$\operatorname{best}[i]=\min \left\{\operatorname{best}[j]+s[j+1][i]^{2}\right\}$

PROBLEM: REDUCE IMAGE

scaling: distortion
deleting column: distortion
delete the most invisible seam

Shai Avidan

Mitsubishi Electric Research Lab Ariel Shamir
The interdisciplinary Center \& MERL

DEMO?

http://rsizr.com/

WHICH SEAM TO DELETE?

ENERGY OF AN IMAGE

$$
e(\mathbf{I})=\left|\frac{\partial}{\partial x} \mathbf{I}\right|+\left|\frac{\partial}{\partial y} \mathbf{I}\right|
$$

"magnitude of gradient at a pixel"

$$
\frac{\partial}{\partial x} I_{x, y}=I_{x-1, y}-I_{x+1, y}
$$

energy of sample image
thanks to Jason Lawrence for gradient software

BEST SEAM HAS LOWEST ENERGY

FINDING LOWEST ENERGY SEAM?

deffintion: $S_{n}(j)$

 ต

definition:

BEST SEAM TO DELETE HAS TO BE THE BEST AMONG

$$
S_{n}(1), S_{n}(2), \ldots, S_{n}(m)
$$

IDEA: COMPUTE + COMPARE

SMALLER
PROBLEM
APPROACH

IMAGINE YOU HAVE THE SOLUTION TO THE

 FIRST n-1 ROWS

$S_{n}(1)$

$$
S_{n}(1)=e(n, 1)+\min \left\{S_{n-1}(1), S_{n-1}(2)\right\}
$$

$$
S_{i}(j)=
$$

ALGORITHM

start at bottom of picture

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $\mathrm{i}=2, \mathrm{n}$ use formula to compute $S_{i+1}(\cdot)$

$$
S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}
\end{array}\right.
$$

ALGORITHM

start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $i=2$, n use formula to compute $S_{i+1}(\cdot)$

$$
S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{i-1}(j) \\
S_{i-1}(j+1)
\end{array}\right.
$$

ALGORITHM

start at bottom of picture. \quad initialize $\quad S_{1}(i)=e(1, i)$
for $\mathrm{i}=2, \mathrm{n}$ use formula to compute $S_{i+1}(\cdot)$
pick best among top row, backtrack.

RUNNING TIME
start at bottom of picture. initialize $\quad S_{1}(i)=e(1, i)$
for $i=2, n$ use formula to compute

$$
\begin{aligned}
& S_{i+1}(\cdot) \\
& S_{i}(j)=e(i, j)+\min \left\{\begin{array}{l}
S_{i-1}(j-1) \\
S_{S_{i-1}(j)} \\
S_{i-1}(j+1)
\end{array}\right.
\end{aligned}
$$

pick best among top row, backtrack.

