CS4102 - ALGORITHMS - S'16 — ABHI SHELAT
DUE FRI FEB 12, 2016 AT 5P VIA SUBMISSION SITE H2 .

You may collaborate with other students on the homework but you must submit your own
individually written solution, identify your collaborators, and acknowledge any external
sources that you consult. Do no submit a solution that you cannot explain to me.

PROBLEM 1 Flip-flop

Consider the recurrence T(n) = 2T(n/2) + f(n) in which

fln) = { n® if [log(n)] is even

n? otherwise

Show that f(n) = Q(n'°8(?)+€). Explain why the third case of the Master’s theorem
stated above does not apply. Prove a ®-bound for the recurrence.

PROBLEM 2 Skyline

A great skyline must have variations. Define the left skyline function, denoted n,(s),
of a skyline s as the total number of times that a building is taller than one of its left
neighbors. The right skyline function, n,(), is defined analogously. The skyline s below
has 4 buildings, and n,(s) = 3 and n,(s) = 3 because building 2 is taller than building 1
and building 4 is taller than buildings 3 and 1, and alternatively, building 1 is taller than
3, and building 2 is taller than 3 and 4.

As another example, this skyline has 1y = 19, the contribution of each building is listed
below the building.

LeftNifty(A[1.....n])

(=]

Epp|E0E
ppp|ODEE DD E
e gEE OO0 mmm EEE
g DpEn | D00 | mmm IEE
poe| Do | DD |DED|BEE @@ EEE
B ==s) | EEE|EED| g an|EEE
0 1 1 3 I 3 2 5

Design and analyze a divide and conquer algorithm that computes the right and left
skyline functions of a skyline s with n buildings. The input A[l,...,n] consists of the
heights of each building along a street; assume all buildings have unique heights. Your
solution should have a running time of ®@(nlogn).

H2-1

https://www.cs.virginia.edu/~shelat/16s-4102
https://church.cs.virginia.edu/16s-4102/submission.html

PROBLEM 3 Trolley

The city of Charlottesville commissions you to design a new bus system for Main Avenue
which has n stops on the North-bound route (lets ignore the South-bound route). Com-
muters may begin their journey at any stop i and end at any other stop i < j. There are
some obvious options:

1. You can have a bus run from the southern-most point to the northern-most point as
a traditional busline might run. The system would be cheap because it only requires
n segments for the entire system. However, a person traveling from stop i = 0 to
stop j = n must travel through all n segments. This system will be slow.

2. You can have a special express bus run from every point to every other destination.
No person will every wait through any unnecessary segments no matter where they
start and end. However, this system requires @(n?) segments and will be expensive.

Suggest a compromise solution: Use a divide-and-conquer technique to design a bus
system that uses ©(nlogn) route segments and which requires a person to wait through
at most 1 extra segment when going from any i to any j (as long as i < j, i.e., we only
consider North-bound routes for simplicity, and all buses run North). In other words, a
commuter can travel from any i to any j by using at most 2 segments.

PROBLEM 4 Tiling

An L-tile is an L-shaped tile formed by 1-by-1 adjacent squares. The problem is to cover
any 2P-by-2" chessboard with one missing square (anywhere on the board) with L-tiles. A
solution must cover all squares except the missing one and no two tiles can overlap.

B] ||

(a) (b) (©

Figure 1: (a) An L-tile (b) A 4 X 4 instance of the problem (c) A 16 x 16 instance

An instance is specified by b (which determines the size of the board), and the coor-
dinates (x,y) € [1,...,2%] x [1,...,2%] of the missing square. A solution to an instance
consists of a list of triples, where each triple describes the position of one of the tiles.

1. Describe a divide and conquer strategy for solving this problem. (Hint: Start with
the base case.) Brute force search will not receive credit. Provide pseudo-code for
your solution. You may use macros such as UPPERRIGHT(A) or LOWERLEFT(A) to
refer to the upper-right (lower-left) quadrant of a two-dimensional array A.

2. Show a tight asymptotic bound for the running time of your solution.

H2-2

