
L11 
Why does it work?

abhi shelat



Given PLS/FLM 
impossibility, how can 

Bitcoin tolerate 1/2 
adversary?



B1

C0A0

B0

A1
C1

0

1

Adv B’



New adv model
Adv controls <1/2 of CPUs



How realistic is this model?



From blockchain.info

http://blockchain.info


8m TH/s





Incentives

Not clear how to use a 51% 
attack to earn back the 

investment in mining hardware.



Why does it work?
“Because it is hard to mine”



How to mine

1. Listen for new {blocks, txs} 
2. Organize valid txs into a new pre-block 
3. Hash pre-block, while changing nonce/

time/txs in pre-block in order to find a 
valid block 

4. Broadcast new valid blocks to peers.



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Eureka! BOB finds a block B & broadcasts it.



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

Eureka! BOB finds a block B & broadcasts it.



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

Network Delay{
Eureka! BOB finds a block B & broadcasts it.



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

All miners have received B. 
They now begin mining using 
B as the previous block.

Network Delay{
Eureka! BOB finds a block B & broadcasts it.



What could go wrong?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

Some miners received B first, some received C 
first. Network is trying to extend both B and C.

Eureka! ALICE finds a block C & broadcasts it.

Block C is being transmitted 
over the network.

Eureka! BOB finds a block B & broadcasts it.

A

B C



It could happen again

A

B C

B C D E F

E D F

What prevents 
forking ad 
nauseum?



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine



13-th IEEE International Conference on Peer-to-Peer Computing

Fig. 3. The normalized histogram of times since the first block announcement
with fitted exponential curve.

nodes in the network. Our implementation behaves exactly
like a normal node with one caveat: it does not relay inv
messages, transactions or blocks. It tracks how transactions
and blocks are propagated through the network by listening
for the announcement of their availability in the form of inv
messages. Once the measuring node receives an inv message
containing the reference to a block we know that the node
which sent the announcement has received and verified the
block.

The measuring node collected timing information from
blockchain height 180’000 for 10’000 blocks. The timing
information contains the hash of the block, the announcing
nodes IP and a local timestamp when the announcement was
received. An estimate for the ti,j is given by subtracting
the timestamp of the first announcement of a block from all
announcements for that data item.

Figure 3 shows the normalized histogram of tb,j for all
blocks b in the measured interval. The normalization allows
us to use this as an approximation of the probability density
function of the rate at which nodes learn about a block. Notice
that we do not differentiate between the blocks’ sizes and
instead aggregate over all blocks. The median time until a
node receives a block is 6.5 seconds whereas the mean is at
12.6 seconds. The long tail of the distribution means that even
after 40 seconds there still are 5% of nodes that have not yet
received the block.

C. Size Matters

There is a strong correlation between the size of a message
and the propagation delay in the network. The delay cost

is defined as the time delay each kilobyte causes to the
dissemination of a transaction or block. Notice that the cost
is a combination of both verification and transmission time.
Figure 4 plots the costs for the 50, 75 and 90 percentile
for various sizes. For sizes larger than 20kB the cost can
be said to be constant, whereas for small sizes there is
a considerable overhead. The overhead for small sizes is

Fig. 4. Delay costs for the 50, 75 and 90 percentile. The plot is focused on
the lower y-range to show the constant behavior after 20kB.

caused by the roundtrip delay, i.e. the fact that even small
messages are announced via an inv message and then retrieved
via a getdata message. The roundtrip delay is dominant for
transactions as 96% of all transactions are smaller than 1kB.
For blocks, whose size is larger than 20kB, each kilobyte in
size costs an additional 80ms delay until a majority knows
about the block. It would therefore be sensible to forward
transactions directly, and thus avoiding the overhead of the
added roundtrip. However the same cannot be said for blocks
where the overhead does not contribute as much to the overall
time to disseminate.

D. Information Eclipsing

So far we have discussed how information is propagated
in the case that the information is not contradicting. Another
important part in the dissemination of information in the
Bitcoin network is the visibility of information. When a node
receives a new block or transaction, that it deems invalid,
possibly because it contradicts information it received earlier,
it will ignore it and not forward it.

Let us consider the case of a block being disseminated in
the network and how it may lead to a blockchain fork that is
only detected by a minority of the nodes.

Let G = (V,E) be the network’s underlying connection
graph, V being the set of all nodes and E the set of con-
nections between the nodes. Starting from a single partition
Ph ⇢ V containing all nodes whose blockchain head is at
height h, i.e., they do not know any block for the next height
h + 1. Finding a new block bh+1 introduces a new partition
Ph+1,b which contains the nodes that believe this block to
be the head, i.e., it is the first block for height h + 1 they
received. If no other block is found, then nodes adjacent to
the cut between Ph and Ph+1,b leave Ph and join Ph+1,b until
Ph is empty and the network as a whole proceeds with the
new blockchain height h+ 1.

On the other hand, should another block b0h+1 for height
h + 1 be found by a node in Ph, it again introduces a new

5

Decker-Wattenhofer’13



13-th IEEE International Conference on Peer-to-Peer Computing

partition Ph+1,b0 . In this case nodes from Ph will join Ph+1,b

and Ph+1,b0 concurrently until Ph is empty, and all nodes are
in one of the partitions with height h+ 1.

Only nodes adjacent to the cut between Ph+1,b and Ph+1,b0

will know both b and b0 and therefore able to detect the
resulting blockchain fork. Nodes that are in the partition
Ph+1,b, and not adjacent to Ph+1,b0 , will only know b and be
completely oblivious to the existence of a conflicting block. A
partition Ph+1,b could potentially contain only a single node,
in the case that the node’s neighbors already know a conflicting
block and immediately stop the propagation of b.

The above also applies for transactions that are being
propagated. If two transactions that attempt to spend the same
output are propagated in the network only the first transaction
a node receives will be deemed valid, the second transaction
will be invalid according to that node’s state and will therefore
not be announced to its neighbors.

This behavior has the advantage that a malicious node may
not flood the network by issuing hundreds of contradicting
transactions with no additional cost, in the form of fees, to the
malicious node. On the downside this very behavior makes
double spend attacks that are invisible to the merchant [11]
possible.

In the case of transactions, stopping the propagation is a
reasonable trade off, that protects the network from transaction
spam, at the expense of individual users. However, in the
case of blocks, stopping the propagation is not reasonable.
The blockchain forks, that are hidden from a majority of the
nodes by doing so, are an important indicator of an ongoing
unresolved inconsistency. As valid, but potentially conflicting
blocks, cannot be created at an arbitrary rate like transactions,
forwarding them would not create the possibility of an attack.

IV. BLOCKCHAIN FORKS

In this section we focus on the block propagation and the
blockchain forks that occur in the network. We show that
blockchain forks are caused by the long propagation time by
presenting a model that matches the observed blockchain fork
rate.

A. Observing Blockchain forks

Some blockchain forks may be observed by participating
in the network and receiving the two conflicting blocks.
Observing all blockchain forks however is difficult. If a node
detects that an incoming block conflicts with the block it
believes to be the chain’s head, then it will not propagate the
block any further.

Recall that the partitions in a blockchain fork may have size
1. As a direct result, faithfully reporting all blockchain fork
would require being connected to every node in the network.
Due to some nodes not being reachable, either because they
are behind a firewall or network address translation, only an
approximation of the actual number of blockchain forks can
be given.

Using the implementation from Section III we collected
the blocks that have been propagated in the network between

Fig. 5. Histogram of blockchain forks for 10’000 blocks starting at height
180’000, observed while participating in the network.

height 180’000 and height 190’000. We are confident that due
to our large sample, which includes all reachable nodes, nearly
all the found blocks have been propagated to us, allowing us
to identify close to all blockchain forks that occurred in the
measurement interval.

Figure 5 shows the histogram of blockchain forks in the col-
lected blocks. There were 169 blockchain forks in the observed
10’000 block interval, resulting in an observed blockchain fork
rate r = 1.69%.

B. Model

The proof-of-work causes valid blocks to be found inde-
pendently at random. Since blocks are found independently
at random by the participants in the network, a block might
be found while a conflicting block is being propagated in the
network. We claim that blockchain forks are caused by the
block propagation delay in the network.

1) Probability of finding a block: The bitcoin protocol
adjusts the difficulty of the proof-of-work required to find
a block so that in expectation one block is found every 10
minutes.

If Xb is the random variable of the time difference in
seconds between a block being found and its predecessor being
found, then the probability of a block being found by the
network as a whole in any given second is

Pb = Pr[Xb < t+ 1|Xb � t] ⇡ 1/600 (1)

2) Part of the network that could find a conflicting block:

A blockchain fork occurs if, during the propagation of a block
b, a conflicting block b0 is found. Such a block b0 may only
be found by the part of the network that does not yet know
about b.

Let tj be the time in seconds at which node j learns about
the existence of b since it has been found. Let the Ij(t) be
the indicator function whether node j knows about b at time
t. Let I(t) be the indicator function that counts the number of

6

Decker-Wattenhofer’13



1 2 4 10 25 60 100

1
10

3
10

1
2

c (blocktime in terms of network delay �)

⇢
(
A
d
v
e
r
s
a
r
y
fr
a
c
t
io
n
)

Figure 1: For n = 10
5
and � = 10

13
(i.e., 10s delays at 1TH/s for commercially avail-

able mining hardware—these parameters roughly coincide with estimates of hashrate as of

February 2016), we set hardness parameter p =
1

c·n� where c varies along the x-axis. We

can interpret c as the expected blocktime in terms of the network delay �. The blue graph

depicts a numerically-computed maximum value of ⇢ for which ↵(1 � (2� + 2)↵) > �, i.e.
parameters under which our theorem shows consistency of the Nakamoto protocol. The gray

plot shows our consistency theorem if Nakamoto adopted a deterministic tie-breaking rule.

The red plot shows when our best attack succeeds in violating consistency. When c = 60,

the hardness roughly corresponds to an expected 10-minute blocktime, and our theorem

shows that Nakamoto tolerates a ⇢ < 49.57% attack, deterministic tie-breaking tolerates

⇢ < 49.78% attack, and our best attack succeeds when ⇢ > 49.79%.
1



Ethereum



Sep 28 2017 https://coinmarketcap.com/





https://github.com/ethereum/mist/releases


