2550 Intro to cybersecurity

L10: PRF, Block Ciphers

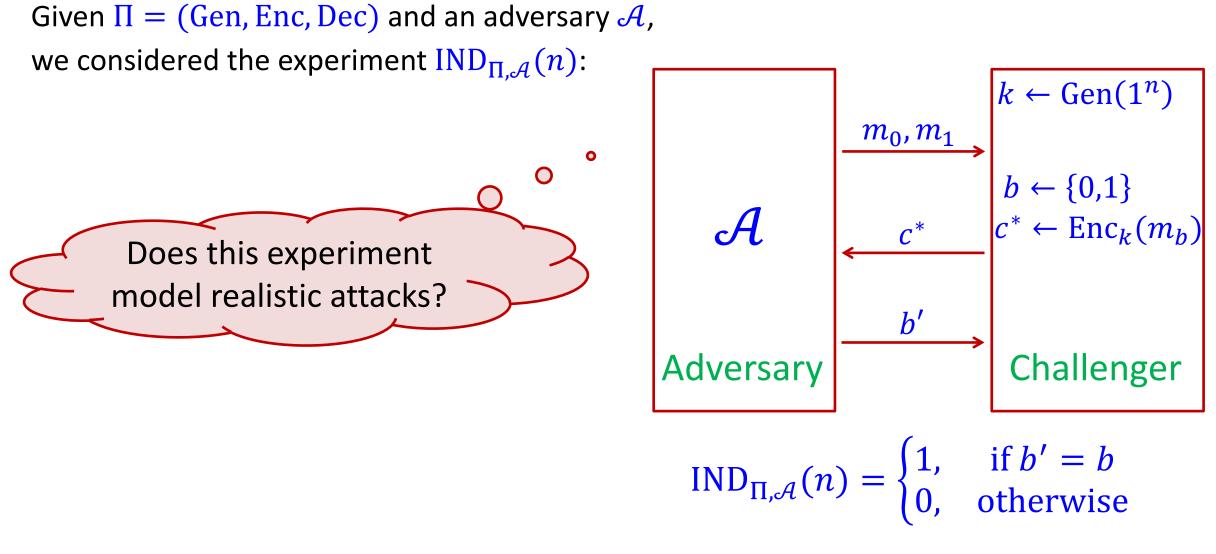
abhi shelat/Ran Cohen

Thanks to Gil Segev (HUJI) for sharing slides

This Week

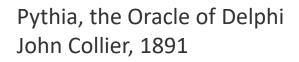
- Security against a chosen-plaintext attack (CPA)
- Tool: Pseudorandom functions (PRFs)
- CPA-secure encryption from PRFs
- Practical heuristics: Block ciphers
 - Modes of operation

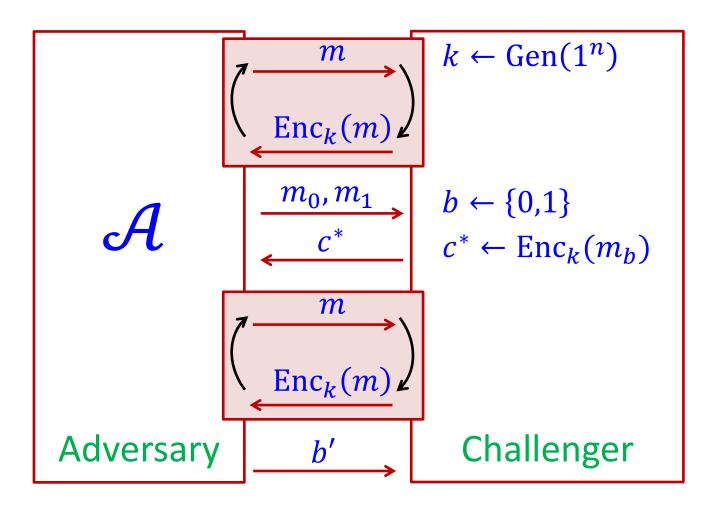
Recall: Indistinguishable Encryptions



Chosen-Plaintext Attack (CPA)

- Allow *A* to ask for any number of encryptions of messages of its choice
- In other words, \mathcal{A} has access to an "encryption oracle" denoted $\mathcal{A}^{\operatorname{Enc}_k(\cdot)}$

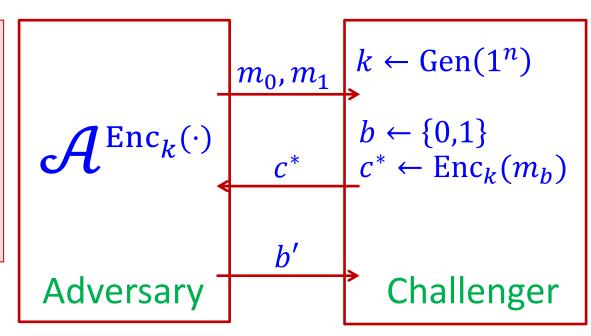




Chosen-Plaintext Attack (CPA)

Definition:

 $\begin{array}{l} \Pi \text{ has indistinguishable encryptions under a} \\ \textbf{chosen-plaintext attack} \text{ if for every PPT adversary} \\ \mathcal{A} \text{ there exists a negligible function } \nu(\cdot) \text{ such that} \\ \Pr\left[\mathrm{IND}_{\Pi,\mathcal{A}}^{\mathrm{CPA}}(n) = 1\right] \leq \frac{1}{2} + \nu(n) \end{array}$



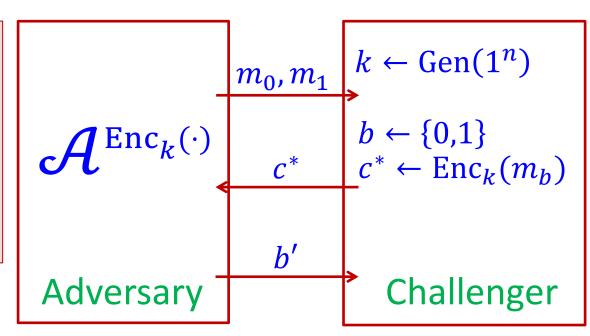
- In short: Π is CPA-secure
- Must use a **randomized** encryption algorithm Enc!
- Implies security for multiple messages

 $IND_{\Pi,\mathcal{A}}^{CPA}(n) = \begin{cases} 1, & \text{if } b' = b \\ 0, & \text{otherwise} \end{cases}$

Chosen-Plaintext Attack (CPA)

Definition:

 $\begin{array}{l} \Pi \text{ has indistinguishable encryptions under a} \\ \textbf{chosen-plaintext attack} \text{ if for every PPT adversary} \\ \mathcal{A} \text{ there exists a negligible function } \nu(\cdot) \text{ such that} \\ \Pr\left[\text{IND}_{\Pi,\mathcal{A}}^{\text{CPA}}(n) = 1\right] \leq \frac{1}{2} + \nu(n) \end{array}$



Is CPA security "too strong"?

- Adversaries may often know, influence or even determine the encrypted content
- CPA security captures all such influences

$$IND_{\Pi,\mathcal{A}}^{CPA}(n) = \begin{cases} 1, & \text{if } b' = b \\ 0, & \text{otherwise} \end{cases}$$

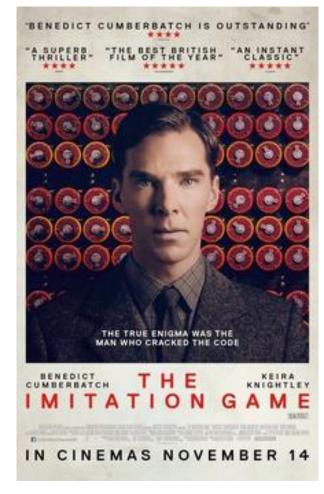
CPA Example I

- In May 1942, US Navy cryptanalysts had discovered that Japan was planning an attack on Midway island in the Central Pacific.
- They had learned this by intercepting a communication message containing the ciphertext fragment "AF" that they believed corresponded to the plaintext "Midway island".
- Unfortunately, their attempts to convince Washington planners that this was indeed the case were futile
- The Navy cryptanalysts then devised the following plan. They
 instructed the US forces at Midway to send a plaintext message
 that their freshwater supplies were low. The Japanese intercepted
 this message and reported to their superiors that "AF" was low on
 water.

CPA Example II

 The cryptanalysts at Bletchley Park would sometimes ask the Royal Air Force to lay mines at specific positions, hoping that the Germans would encrypt a "warning" message and an "all clear" message after they were removed.

 A daily weather report was transmitted by the Germans at the same time every day, containing the word "Wetter" (German for "weather") at the same location in every message.



This Week

- Security against a chosen-plaintext attack (CPA)
- Tool: Pseudorandom functions (PRFs)
- CPA-secure encryption from PRFs
- Practical heuristics: Block ciphers
 - Modes of operation

- A pseudorandom function is a function that "looks like" a truly random function
- What is a truly random function?

Func_{$n \to \ell$} = set of all functions from $\{0,1\}^n$ to $\{0,1\}^\ell$

• Func_{2→1}: there are $|\{0,1\}|^{|\{0,1\}^2|} = 2^{(2^n)} = 16$ functions from $\{0,1\}^2$ to $\{0,1\}$

X	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$	$f_7(x)$	$f_8(x)$	$f_9(x)$	$f_{10}(x)$	$f_{11}(x)$	$f_{12}(x)$	$f_{13}(x)$	$f_{14}(x)$	$f_{15}(x)$	$f_{16}(x)$
00	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
01	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
10	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
11	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

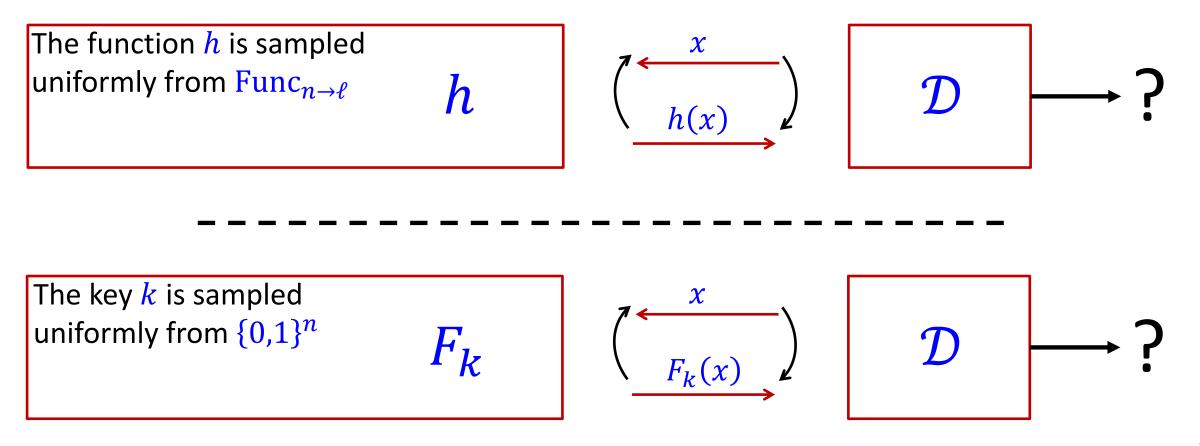
- A pseudorandom function is a function that "looks like" a truly random function
- What is a truly random function?

Func_{$n \rightarrow \ell$} = set of all functions from $\{0,1\}^n$ to $\{0,1\}^\ell$ $|\operatorname{Func}_{n \rightarrow \ell}| = |\{0,1\}^\ell|^{|\{0,1\}^n|} = 2^{\ell \cdot 2^n}$

A truly random function is a function *h* sampled uniformly from Func_{n→ℓ}:
 For each *x* ∈ {0,1}ⁿ the value *h*(*x*) ∈ {0,1}^ℓ is chosen uniformly and independently of all other *x*'s

x	h(x)
00	01001010
01	00101010
10	11101100
11	10100110

A pseudorandom function is an efficiently-computable keyed function $F_k(\cdot): \{0,1\}^n \to \{0,1\}^\ell$ that is computationally indistinguishable from a truly random function



Definition (PRF):

An efficiently-computable keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is **pseudorandom** if for every PPT distinguisher \mathcal{D} there exists a negligible function $\nu(\cdot)$ such that

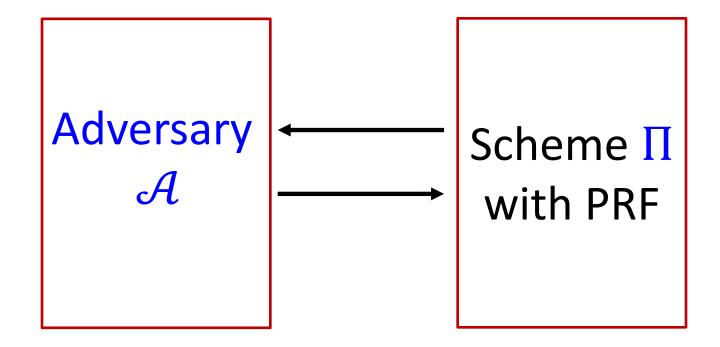
$$\left|\Pr\left[\mathcal{D}^{F_k(\cdot)}(1^n) = 1\right] - \Pr\left[\mathcal{D}^{h(\cdot)}(1^n) = 1\right]\right| \le \nu(n)$$

where $k \leftarrow \{0,1\}^n$ and $h \leftarrow \operatorname{Func}_{n \rightarrow \ell}$.

Claim (PRF \Rightarrow PRG): Let $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ be a PRF, then $G(s) = F_s(1) \cdots F_s(n+1)$ is a PRG

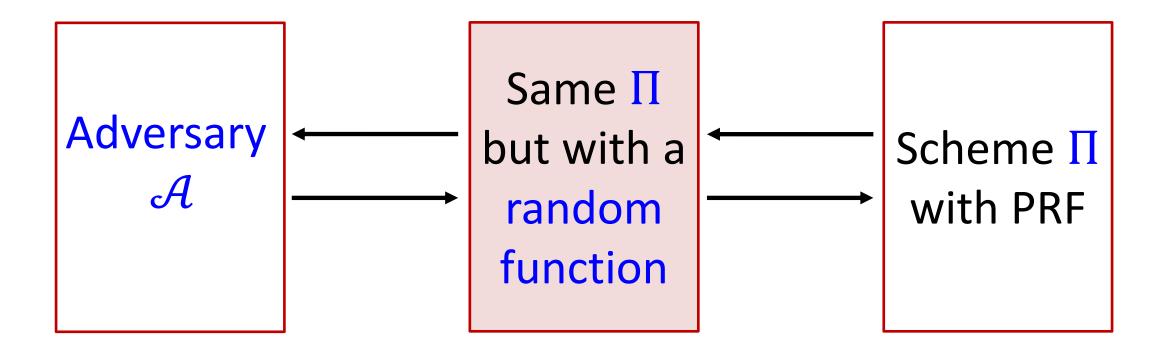
The methodology of using PRFs

- 1. Prove security assuming a truly random function is used
- 2. Prove that if an adversary can break the scheme when PRF is used, then it can be used to distinguish the PRF from a truly random function



The methodology of using PRFs

- 1. Prove security assuming a truly random function is used
- 2. Prove that if an adversary can break the scheme when PRF is used, then it can be used to distinguish the PRF from a truly random function



This Week

- Security against a chosen-plaintext attack (CPA)
- Tool: Pseudorandom functions (PRFs)
- CPA-secure encryption from PRFs
- Practical heuristics: Block ciphers
 - Modes of operation

CPA-Secure Encryption from PRFs

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{\ell}$ be a PRF

- Key generation: Sample $k \leftarrow \{0,1\}^n$
- Encryption: On input $k \in \{0,1\}^n$ and $m \in \{0,1\}^\ell$ sample $r \leftarrow \{0,1\}^n$ and output

 $c = (r, F_k(r) \oplus m)$

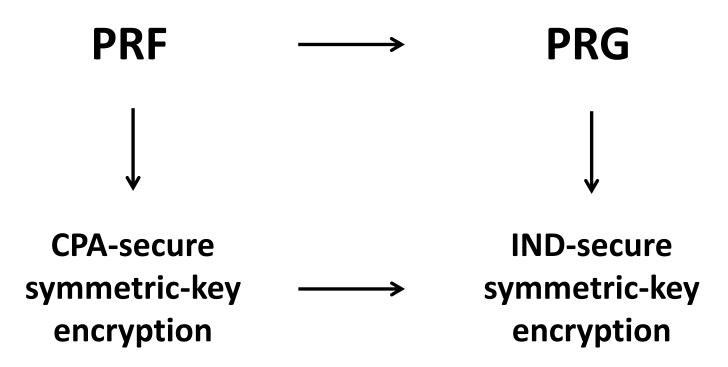
• **Decryption:** On input $k \in \{0,1\}^n$ and c = (r,s) output $m = F_k(r) \bigoplus s$

Theorem:

If F is a PRF, then the scheme Π_F above is CPA-secure

Proof idea:

- Consider the scheme Π_h that is obtained by using a truly random function h
- The scheme Π_h is (unconditionally) CPA-secure
- The schemes Π_h and Π_F are computationally indistinguishable



This Week

- Security against a chosen-plaintext attack (CPA)
- Tool: Pseudorandom functions (PRFs)
- CPA-secure encryption from PRFs
- Practical heuristics: Block ciphers
 - Modes of operation

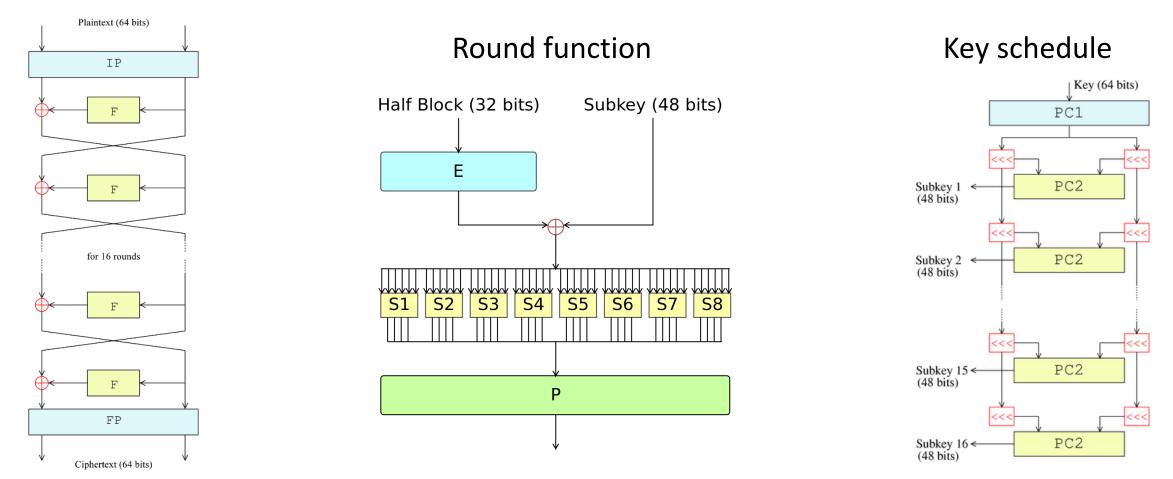
- In practice, block ciphers are designed to be secure instantiations of pseudorandom permutations (PRPs)
- A block cipher is an efficiently-computable keyed permutation

 $F: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell$ $F_k: \{0,1\}^\ell \to \{0,1\}^\ell$ is a permutation for any key k

- Concrete security rather than asymptotic security
- A block cipher is considered "secure" if the best known "attack" requires time roughly 2ⁿ (≈brute-force search for the key)

DES: The Data Encryption Standard

- Developed in the 1970s by IBM (with help from the NSA), adopted in 1977
- Key length is 56 bits, block length is 64 bits



21

DES: The Data Encryption Standard

- Developed in the 1970s by IBM (with help from the NSA), adopted in 1977
- Key length is 56 bits, block length is 64 bits
- Best known attack in practice is essentially brute-force key search ($\approx 2^{56}$)
- However, no longer considered secure due to its short key length
- Remains widely-used in the strengthened form of **3DES**:

$$3DES_{k_1,k_2,k_3}(x) = DES_{k_1}\left(DES_{k_2}^{-1}\left(DES_{k_3}(x)\right)\right)$$

 3×56 -bit keys but can be broken in time $2^{2 \times 56}$...and also slower than DES

HOME GET CRACKING 100% GUARANTEE THE TECHNOLOGY FAQ CONTACT

THE WORLD'S FASTEST DES CRACKER

In 1998 the Electronic Frontier Foundation built the EFF DES Cracker. It cost around \$250,000 and involved making 1,856 custom chips and 29 circuit boards, all housed in 6 chassis, and took around 9 days to exhaust the keyspace. Today, with the advent of Field Programmable Gate Arrays (FPGAs), we've built a system with 48 Virtex-6 LX240Ts which can exhaust the keyspace in around 26 hours, and have provided it for the research community to use. Our hope is that this will better demonstrate the insecurity of DES and move people to adopt more secure modern encryption standards.

AES: The Advanced Encryption Standard

- In 1997 NIST published a call for candidate block ciphers to replace DES
- 15 candidates were proposed by different teams from all over the world
- Each candidate extensively analyzed by the public and by the other teams
- The winner ("Rijndael") was announced in late 2000 (based on security, efficiency, performance in hardware,...)
- Key length is 128/192/256 bits, block length is 128 bits
- To date, no known practical attacks better than brute-force key search

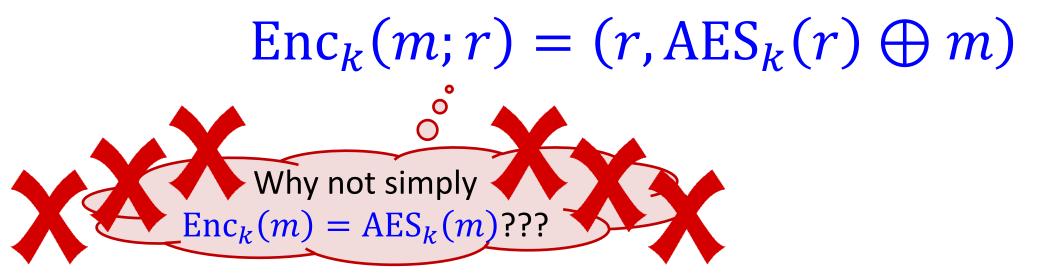
Various design paradigms with insightful structures

Using CPA-Secure Encryption

Recall: CPA-secure encryption from any PRF

$$\operatorname{Enc}_k(m;r) = (r, F_k(r) \oplus m)$$

In practice: AES as a PRF enables to encrypt a 128-bit message



Using CPA-Secure Encryption

How to encrypt long messages?

Partition into blocks and use any CPA-secure encryption

$$\operatorname{Enc}_{k}(m_{1}\cdots m_{\ell}; r_{1}\cdots r_{\ell}) = (r_{1}, F_{k}(r_{1}) \bigoplus m_{1}), \cdots, (r_{\ell}, F_{k}(r_{\ell}) \bigoplus m_{\ell})$$

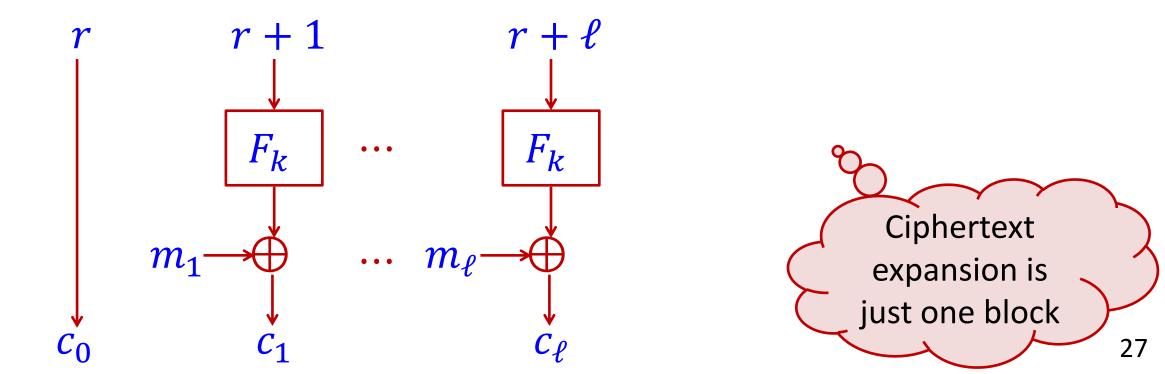
In practice: AES as a PRF enables to encrypt 128-bit blocks

$$\operatorname{Enc}_{k}(m_{1}\cdots m_{\ell}; r_{1}\cdots r_{\ell}) = (r_{1}, \operatorname{AES}_{k}(r_{1}) \bigoplus m_{1}), \cdots, (r_{\ell}, \operatorname{AES}_{k}(r_{\ell}) \bigoplus m_{\ell})$$

Drawback: Ciphertext length $= 2 \times$ message length **Can we do better?**

Counter (CTR) mode:

$$\operatorname{Enc}_{k}(m_{1}\cdots m_{\ell}; r) = (r, F_{k}(r+1) \bigoplus m_{1}, F_{k}(r+2) \bigoplus m_{2}, \dots, F_{k}(r+\ell) \bigoplus m_{\ell})$$



Counter (CTR) mode:

 $\operatorname{Enc}_{k}(m_{1}\cdots m_{\ell}; r) = (r, F_{k}(r+1) \bigoplus m_{1}, F_{k}(r+2) \bigoplus m_{2}, \dots, F_{k}(r+\ell) \bigoplus m_{\ell})$

Theorem:

If F is a PRF then counter mode is CPA-secure

Proof idea:

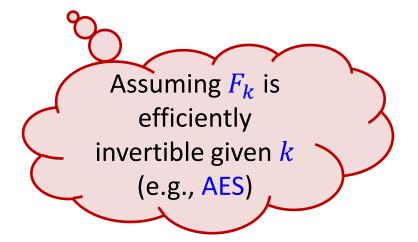
• The sequence $s_i = (r_i, F_k(r_i + 1), ..., F_k(r_i + \ell))$ used for encrypting the *i*th message is pseudorandom

- Several other useful and secure modes of operations
- e.g., CBC (cipher block chaining) and OFB (output feedback)

Electronic CodeBook (ECB) mode:

 $\operatorname{Enc}_{k}(m_{1}\cdots m_{\ell})=\left(F_{k}(m_{1}),F_{k}(m_{2}),\ldots,F_{k}(m_{\ell})\right)$

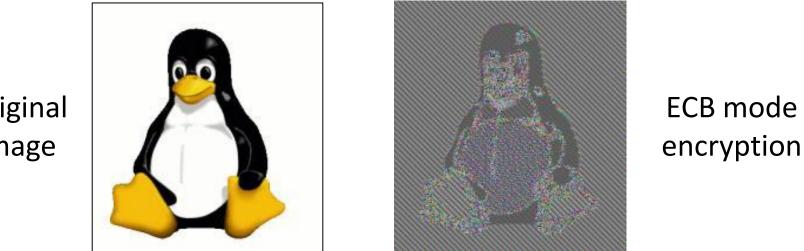
- Deterministic and thus not CPA secure
- Does not even have indistinguishable encryptions
 - E.g., $m_0 = 0^n 0^n$ and $m_1 = 0^n 1^n$



- Several other useful and secure modes of operations
- e.g., CBC (cipher block chaining) and OFB (output feedback)

Electronic CodeBook (ECB) mode:

 $\operatorname{Enc}_{k}(m_{1}\cdots m_{\ell})=\left(F_{k}(m_{1}),F_{k}(m_{2}),\ldots,F_{k}(m_{\ell})\right)$



Original image

https://en.wikipedia.org/wiki/Block cipher mode of operation