
2550 Intro to
cybersecurity

L11: MACs, Public-Key Cryptography

abhi shelat/Ran Cohen

Thanks to Gil Segev (HUJI) for sharing slides

2

Outline

• Message Authentication Code (MAC)
• Authenticating fixed-length messages
• Authenticating arbitrary-length messages

• Public-Key Cryptography

• Authenticated Encryption

3

Message Authentication

Encryption vs. authentication
• Encryption = data secrecy
• Authentication = data integrity

Alice and Bob wish to communicate
• Eve completely controls the channel
• Would like to assure the receiver of a message that it has not been modified

𝑚 ෝ𝑚
“pay Charlie

$10”
“pay Charlie

$10,000”

Orthogonal aspects: In general,
one does not guarantee the other

4

Mac
𝑚

𝑘

Vrfy
(𝑚, 𝑏)

𝑘

(𝑚, 𝑡)

Correctness: ∀𝑘,𝑚

Vrfy𝑘 𝑚,Mac𝑘 𝑚 = 1

Message Authentication Code (MAC)

Syntax: 𝚷 = (𝐆𝐞𝐧,𝐌𝐚𝐜, 𝐕𝐫𝐟𝐲)
• Key-generation algorithm Gen on input 1𝑛 outputs a key 𝑘
• Tag-generation algorithm Mac takes a key 𝑘 and a message 𝑚 ∈ 0,1 ∗

and outputs a tag 𝑡 ∈ 0,1 ∗

• Verification algorithm Vrfy takes a key 𝑘, a message 𝑚, a tag 𝑡, and outputs a bit 𝑏

5

The Security of MACs

Definition:
A MAC scheme Π is secure if for every PPT
adversary 𝒜 there exists a negligible function 𝜈 ⋅
such that

Pr MacForgeΠ,𝒜(𝑛) = 1 ≤ 𝜈(𝑛)

• 𝒜 can adaptively ask for tags of messages of its choice
• 𝒜 tries to forge a valid tag on a new message

MacForgeΠ,𝒜(𝑛) = ቐ
1,

if Vrfy𝑘 𝑚∗, 𝑡∗ = 1
and 𝑚∗ ∉ 𝒬

0, otherwise

𝒬 = Set of all queries asked by 𝒜

• Does not prevent “replay attacks”!

𝒜

𝑘 ← Gen 1𝑛

(𝑚∗, 𝑡∗)

𝑚

Mac𝑘 𝑚

ChallengerAdversary

6

A Fixed-Length MAC

Let 𝐹: 0,1 𝑛 × 0,1 𝑛 → 0,1 𝑛 be a PRF

• Key generation: Sample 𝑘 ← 0,1 𝑛

• Tag generation: On input 𝑘 ∈ 0,1 𝑛 and 𝑚 ∈ 0,1 𝑛 output 𝑡 = 𝐹𝑘 𝑚
• Verification: On input 𝑘 ∈ 0,1 𝑛, 𝑚 ∈ 0,1 𝑛, and 𝑡 ∈ 0,1 𝑛,

output 1 if 𝑡 = 𝐹𝑘 𝑚 and 0 otherwise

𝐹
𝑚

𝑘

𝐹

𝑘

(𝑚, 𝑡 = 𝐹𝑘 𝑚)
“Accept 𝑚”

𝑡 = 𝐹𝑘 𝑚

⇕

7

A Fixed-Length MAC

Let 𝐹: 0,1 𝑛 × 0,1 𝑛 → 0,1 𝑛 be a PRF

• Key generation: Sample 𝑘 ← 0,1 𝑛

• Tag generation: On input 𝑘 ∈ 0,1 𝑛 and 𝑚 ∈ 0,1 𝑛 output 𝑡 = 𝐹𝑘 𝑚
• Verification: On input 𝑘 ∈ 0,1 𝑛, 𝑚 ∈ 0,1 𝑛, and 𝑡 ∈ 0,1 𝑛,

output 1 if 𝑡 = 𝐹𝑘 𝑚 and 0 otherwise

Theorem:
If 𝐹 is a PRF then the above MAC scheme is secure

8

Authenticating Arbitrary-Length Messages

𝑚1 𝑚2 ⋯ ⋯ 𝑚𝑑𝑚 =

Attempt 1: authenticate each block on its own
• Gen = ෢Gen

• Mac𝑘 𝑚1, …𝑚𝑑 = 𝑡1, … , 𝑡𝑑 where 𝑡𝑖 = ෢Mac𝑘 𝑚𝑖

• Vrfy𝑘 𝑚1, …𝑚𝑑 , 𝑡1, … , 𝑡𝑑 = 1⟺෣Vrfy𝑘 𝑚𝑖 , 𝑡𝑖 = 1

for every 𝑖 ∈ 1,… , 𝑑

Given ෡Π = (෢Gen, ෢Mac,෣Vrfy) for fixed-length messages,
define Π = Gen,Mac, Vrfy for arbitrary-length messages as follows:

Completely insecure…
• If 𝑡 = 𝑡1, 𝑡2 is a valid tag for 𝑚 = 𝑚1, 𝑚2

then 𝑡∗ = 𝑡1 is a valid tag for 𝑚∗ = 𝑚1

9

Authenticating Arbitrary-Length Messages

𝑚1 𝑚2 ⋯ ⋯ 𝑚𝑑𝑚 =

Attempt 2: authenticate the length 𝑑 as well
• Gen = ෢Gen

• Mac𝑘 𝑚1, …𝑚𝑑 = 𝑡1, … , 𝑡𝑑 where 𝑡𝑖 = ෢Mac𝑘 𝒅,𝑚𝑖

• Vrfy𝑘 𝑚1, …𝑚𝑑 , 𝑡1, … , 𝑡𝑑 = 1⟺෣Vrfy𝑘 𝒅,𝑚𝑖 , 𝑡𝑖 = 1

for every 𝑖 ∈ 1,… , 𝑑

Given ෡Π = (෢Gen, ෢Mac,෣Vrfy) for fixed-length messages,
define Π = Gen,Mac, Vrfy for arbitrary-length messages as follows:

Still completely insecure…
• If 𝑡 = 𝑡1, 𝑡2 is a valid tag for 𝑚 = 𝑚1, 𝑚2

then 𝑡∗ = 𝑡2, 𝑡1 is a valid tag for 𝑚∗ = 𝑚2, 𝑚1

10

Authenticating Arbitrary-Length Messages

𝑚1 𝑚2 ⋯ ⋯ 𝑚𝑑𝑚 =

Attempt 3: authenticate the index of each block as well
• Gen = ෢Gen

• Mac𝑘 𝑚1, …𝑚𝑑 = 𝑡1, … , 𝑡𝑑 where 𝑡𝑖 = ෢Mac𝑘 𝑑, 𝒊,𝑚𝑖

• Vrfy𝑘 𝑚1, …𝑚𝑑 , 𝑡1, … , 𝑡𝑑 = 1⟺෣Vrfy𝑘 𝑑, 𝒊,𝑚𝑖 , 𝑡𝑖 = 1

for every 𝑖 ∈ 1,… , 𝑑

Given ෡Π = (෢Gen, ෢Mac,෣Vrfy) for fixed-length messages,
define Π = Gen,Mac, Vrfy for arbitrary-length messages as follows:

Still completely insecure…
• If 𝑡 = 𝑡1, 𝑡2 is a valid tag for 𝑚 = 𝑚1, 𝑚2

and 𝑡′ = 𝑡1
′ , 𝑡2

′ is a valid tag for 𝑚′ = 𝑚1
′ , 𝑚2

′

then 𝑡∗ = 𝑡1, 𝑡2
′ is a valid tag for 𝑚∗ = 𝑚1, 𝑚2

′

11

Authenticating Arbitrary-Length Messages

𝑚1 𝑚2 ⋯ ⋯ 𝑚𝑑𝑚 =

Solution 1: sample a random 𝑟 for each message 𝑚
• Gen = ෢Gen
• Mac𝑘 𝑚 = 𝒓, 𝑡1, … , 𝑡𝑑 where 𝑡𝑖 = ෢Mac𝑘 𝒓, 𝑑, 𝑖,𝑚𝑖 and 𝒓 ← 𝟎, 𝟏 𝒏

• Vrfy𝑘 𝑚1, …𝑚𝑑 , 𝒓, 𝑡1, … , 𝑡𝑑 = 1⟺෣Vrfy𝑘 𝒓, 𝑑, 𝑖,𝑚𝑖 , 𝑡𝑖 = 1

for every 𝑖 ∈ 1,… , 𝑑

Given ෡Π = (෢Gen, ෢Mac,෣Vrfy) for fixed-length messages,
define Π = Gen,Mac, Vrfy for arbitrary-length messages as follows:

Drawback: Long tags

12

Authenticating Arbitrary-Length Messages

𝑚1 𝑚2 ⋯ ⋯ 𝑚𝑑𝑚 =

Solution 2 (CBC-MAC): Mac𝑘 𝑚 = 𝑡𝑑 where
• 𝑡0 = 0𝑛 and 𝑡𝑖 = 𝐹𝑘 𝑡𝑖−1 ⊕𝑚𝑖 for 𝑖 = 1,… , 𝑑
• 𝐹𝑘 can be any PRF
• 𝑑 must be fixed ahead of time

In practice: AES as a PRF
(block length is 128 bits)

𝐹𝑘

𝑚1

𝐹𝑘

⊕

𝑚2

⋯

𝐹𝑘

⊕

𝑚𝑑

𝑡𝑑𝐹𝑘

⊕

𝑚3

13

Solution 3 (“Hash-and-Authenticate”):
• Gen = ෢Gen

• Mac𝑘 𝑚 = ෢Mac𝑘 𝐻 𝑚

• Vrfy𝑘 𝑚 , 𝑡 = 1⟺෣Vrfy𝑘 𝐻 𝑚 , 𝑡 = 1

Authenticating Arbitrary-Length Messages

𝑚1 𝑚2 ⋯ ⋯ 𝑚𝑑𝑚 =

Must be hard to find 𝑚 ≠ 𝑚′
such that 𝐻 𝑚 = 𝐻(𝑚′)

Use a collision-resistant hash function to compress 𝑚 into a short “fingerprint” 𝐻 𝑚
Authenticate 𝐻 𝑚 instead of 𝑚

HMAC:
• Designed in 1996
• Relies only on a hash function (not on PRF)
• Widely used in standards: TLS, IPSec, SSH

14

• Message Authentication Code (MAC)
• Authenticating fixed-length messages
• Authenticating arbitrary-length messages

Outline

• Public-Key Cryptography

• Authenticated Encryption

15

Encryption vs. Authentication?

Recall: CPA-secure encryption from any PRF

Enc𝑘 𝑚; 𝑟 = 𝑟, 𝐹𝑘 𝑟 ⊕𝑚

Enc𝑘 𝑚⊕ 1𝑛; 𝑟 = 𝑟, 𝐹𝑘 𝑟 ⊕𝑚⊕ 1𝑛

An adversary can modify the encrypted
message 𝒎 without anyone even noticing…

16

Encryption vs. Authentication?

We want to achieve both:

Encryption + Message Authentication
= Authenticated Encryption

…but how?

17

First Attempt

𝑘 = 𝑘𝐸 , 𝑘𝑀

𝑐, 𝑡

𝑐 ← Enc𝑘𝐸 𝑚

𝑡 ← Mac𝑘𝑀 𝑚

“Encrypt-and-Authenticate”:

𝑘 = 𝑘𝐸 , 𝑘𝑀
𝑚 ← Dec𝑘𝐸 𝑐

?← Vrfy𝑘𝑀 𝑚, 𝑡

May be completely insecure!
• 𝑡 ← Mac𝑘𝑀 𝑚 may completely reveal 𝑚…

• In general, MACs have no secrecy guarantees

18

Second Attempt

𝑘 = 𝑘𝐸 , 𝑘𝑀

𝑐, 𝑡

𝑐 ← Enc𝑘𝐸 𝑚

𝑡 ← Mac𝑘𝑀 𝑐

“Encrypt-then-Authenticate”:

𝑘 = 𝑘𝐸 , 𝑘𝑀
𝑚 ← Dec𝑘𝐸 𝑐

?← Vrfy𝑘𝑀 𝑐, 𝑡

If the encryption is CPA-secure and the MAC is secure, then:
• The construction is a CPA-secure encryption scheme
• The construction is a secure MAC

Even better: Infeasible to
generate any new valid

ciphertext!

19

PRG

IND-secure
symmetric-key

encryption

CPA-secure
symmetric-key

encryption

PRF

MAC
fixed-length

messages

CRHF

MAC
arbitrary-length

messages

The World of Crypto Primitives

(so far)

CCA-secure
symmetric-key encryption

20

• Authenticated Encryption

• Message Authentication Code (MAC)
• Authenticating fixed-length messages
• Authenticating arbitrary-length messages

Outline

• Public-Key Cryptography

21

Public-Key Cryptography

• If Alice and Bob want to use symmetric-key encryption/MACs
they must agree on the secret key

• How can they do that??

22

Public-Key Cryptography

• If Alice and Bob want to use symmetric-key encryption/MAC
they must agree on the secret key

• How can they do that??

Turing Award 2015

23

Diffie and Hellman discussed 3 problems:
• Key agreement:

➢ Alice and Bob agree on a secret key over an insecure channel
• Public-key encryption:

➢ Everybody can encrypt using a public encryption key
➢ Decryption requires a secret decryption key

• Digital signatures:
➢ Alice can sign a message using a secret signing key
➢ Everybody can verify using a public verification key

Public-Key Cryptography

Secrecy Integrity

Symmetric cryptography
(private-key schemes)

Private-key encryption MAC

Asymmetric cryptography
(public-key schemes)

Public-key encryption Digital signatures

24

• Private-key cryptography is extremely efficient in practice, relies on heuristics

• Public-key cryptography is less efficient, relies on hardness of mathematical problems

• 1976 Diffie and Helman constructed a key-agreement protocol relying on the hardness
of the discrete-log problem

• 1977 Rivest, Shamir, and Adleman constructed public-key encryption & digital signatures
relying on the hardness of factoring

• 1984 ElGamal noticed that the KA protocol of DH
essentially gives public-key encryption

Public-Key Cryptography

Turing Award 2002

25

Correctness: ∀𝑚 and 𝑝𝑘, 𝑠𝑘 ← Gen(1𝑛)

Dec𝑠𝑘 Enc𝑝𝑘 𝑚 = 𝑚

Public-Key Encryption

Syntax: 𝚷 = (𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜)
• Key-generation algorithm Gen on input 1𝑛 outputs a public encryption key 𝑝𝑘 and a

secret decryption key 𝑠𝑘
• Enc takes the public key 𝑝𝑘 and a message 𝑚 and outputs a ciphertext 𝑐
• Dec takes the secret key 𝑠𝑘 and a ciphertext 𝑐, and outputs a plaintext 𝑚

26

Security:
defined via the following experiment

Public-Key Encryption

Syntax: 𝚷 = (𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜)
• Key-generation algorithm Gen on input 1𝑛 outputs a public encryption key 𝑝𝑘 and a

secret decryption key 𝑠𝑘
• Enc takes the public key 𝑝𝑘 and a message 𝑚 and outputs a ciphertext 𝑐
• Dec takes the secret key 𝑠𝑘 and a ciphertext 𝑐, and outputs a plaintext 𝑚

𝒜

𝑝𝑘, 𝑠𝑘 ← Gen 1𝑛

𝑏 ← 0,1
𝑚0, 𝑚1

𝑐∗ ← Enc𝑝𝑘(𝑚𝑏)

𝑝𝑘

𝑏′
ChallengerAdversary

𝑐∗

• A public-key encryption scheme
must be CPA-secure

• A public-key encryption scheme
immediately gives a key-agreement protocol

