2550 Intro to
cybersecurity

L11: MACs, Public-Key Cryptography

abhi shelat/Ran Cohen

Thanks to Gil Segev (HUJI) for sharing slides

Outline

* Message Authentication Code (MAC)
* Authenticating fixed-length messages
* Authenticating arbitrary-length messages

* Authenticated Encryption

* Public-Key Cryptography

Message Authentication

Alice and Bob wish to communicate
* Eve completely controls the channel
* Would like to assure the receiver of a message that it has not been modified

“pay Charlie “pay Charlie

S10” $10,000”
Encryption vs. authentication _—
. tion = data secrec Orthogonal aspects: In general,
neryp B Y one does not guarantee the other

e Authentication = data integrity

Message Authentication Code (MAC)

Syntax: Il = (Gen, Mac, Vrfy)
* Key-generation algorithm Gen on input 1™ outputs a key k
* Tag-generation algorithm Mac takes a key k and a message m € {0,1}*
and outputs atagt € {0,1}"
* \Verification algorithm Vrfy takes a key k, a message m, a tag t, and outputs a bit b

m (m, t)

Correctness: Vk, m
Vrfy, (m, Mac, (m)) =1

The Security of MACs

* A can adaptively ask for tags of messages of its choice
* A tries to forge a valid tag on a new message

k < Gen(1")
m
>
Definition: CA (Mac, (m),>
A MAC scheme I1 is secure if for every PPT =
adversary A there exists a negligible function v(+) .
such that (m’, ¢)L
Pr[MacForgey 4 (n) = 1] < v(n) Adversary Challenger

Q = Set of all queries asked by A

(1 if Vrfy, (m*,t*) =1
MacForgen 4,(n) =4 and m* € Q
* Does not prevent “replay attacks”! 0, otherwise

A Fixed-Length MAC

Let F: {0,1}"* x {0,1}" — {0,1}" be a PRF

Key generation: Sample k « {0,1}"

* Tag generation: On input k € {0,1}" and m € {0,1}" output t = F;,(m)
 Verification: On input k € {0,1}"*, m € {0,1}*, and t € {0,1}",

output 1if t = F;,(m) and 0 otherwise

(m,t = F,(m))

A Fixed-Length MAC

Let F: {0,1}"* x {0,1}" — {0,1}" be a PRF

* Key generation: Sample k < {0,1}"
* Tag generation: On input k € {0,1}" and m € {0,1}" output t = F;,(m)
 Verification: On input k € {0,1}", m € {0,1}",and t € {0,1}",

output 1 if t = F;,(m) and 0 otherwise

Theorem:
If F' is a PRF then the above MAC scheme is secure

Authenticating Arbitrary-Length Messages

m = ml mz oo oo md

Given I1 = (Gen, Mac, Vrfy) for fixed-length messages,
define I1 = (Gen, Mac, Vrfy) for arbitrary-length messages as follows:

Attempt 1: authenticate each block on its own

e Gen = Gen

o Mack((ml, ...md)) = (ty, ..., t4) where t; = Mac, (m;)

. Vrfyk((ml, wmg), (ty, -, tg)) = 1 © Vrfy, (m;, t;) = 1

f e {1, ...
Completely insecure... orevery i €{1,...,d}

o Ift = (tq,ty)isavalidtag form = (m,,m,)
thent™ = t, is a valid tag for m™ = m,

Authenticating Arbitrary-Length Messages

m = ml mz oo oo md

Given I1 = (Gen, Mac, Vrfy) for fixed-length messages,
define I1 = (Gen, Mac, Vrfy) for arbitrary-length messages as follows:

Attempt 2: authenticate the length d as well

e Gen = Gen

 Macg((myq, ...my)) = (&4, ..., tg) where t; = Mac, (d, m;)

. Vrfyk((ml, .my), (tq, ...,td)) =1 Vrfyk((d, m;), ti) =1

Still completely insecure... forevery i € {1, .., d}

o Ift = (tq,ty)isavalidtagform = (m,,m,)
then t* = (t,, t,) is a valid tag for m* = (m,, m,)

Authenticating Arbitrary-Length Messages

m = ml mz oo oo md

Given I1 = (Gen, Mac, Vrfy) for fixed-length messages,
define I1 = (Gen, Mac, Vrfy) for arbitrary-length messages as follows:

Attempt 3: authenticate the index of each block as well

* Gen = Gen

. Mack((ml, ...md)) = (ty, ..., t4) where t; = Mac, (d, i, m;)

. Vrfyk((ml, .my), (tq, ...,td)) =1 Vrfyk((d, i, mi),ti) =1

Still completely insecure... forevery i € {1, .., d}

o Ift = (ty,t,)isavalidtagform = (m,, m,)
and t' = (t;,t}) is a valid tag for m" = (m}, m5)
then t* = (¢, t5) is a valid tag for m* = (i, m5)

Authenticating Arbitrary-Length Messages

m = ml mz oo oo md

Given I1 = (Gen, Mac, Vrfy) for fixed-length messages,
define I1 = (Gen, Mac, Vrfy) for arbitrary-length messages as follows:

Solution 1: sample a random r for each message m

e Gen = Gen

* Mac,(m) = (r,tq, ..., tg) where t; = Macy(r,d,i,m;) and r < {0, 1}"

. Vrfyk((ml, .my), (1, tq, ...,td)) =1 mk((r, d,i,m;), tl-) =1
foreveryi € {1, ...,d}

Drawback: Long tags

11

Authenticating Arbitrary-Length Messages

m = ml mz oo oo md

Solution 2 (CBC-MAC): Mac,(m) = t; where ° o o In practice: AES as a PRF
* to=0"%andt; = Fp(t;y @ my)fori=1,...d (block length is 128 bits)
* Fj can be any PRF

 d must be fixed ahead of time

Authenticating Arbitrary-Length Messages

m = ml mz oo oo md

Use a collision-resistant hash function to compress m into a short “fingerprint” H(m)
Authenticate H(m) instead of m

° o
@)
Solution 3 (“Hash-and-Authenticate”): Must be hard to find m # m
e Gen = Gel such that H(m) = H(m")
en = Gen e

» Mac,(m) = Mac, (H(m))
o Vrfy,(m,t) =1 < Vrfy, (H(m),t) = 1

HMAC:

* Designed in 1996

* Relies only on a hash function (not on PRF)
* Widely used in standards: TLS, IPSec, SSH 13

Outline

* Message Authentication Code (MAC)
* Authenticating fixed-length messages
* Authenticating arbitrary-length messages

* Authenticated Encryption

* Public-Key Cryptography

14

Encryption vs. Authentication?

Recall: CPA-secure encryption from any PRF

Enciy(m;r) = (r, Fr (1) €

5

Ean (m C

D 1 1r) = (1, F, () €

D m)

N Ja
D M

An adversary can modify the encrypted
message m without anyone even noticing...

U/

1)

Encryption vs. Authentication?

We want to achieve both:

Encryption + Message Authentication
= Authenticated Encryption

...but how?

16

First Attempt

“Encrypt-and-Authenticate”:

May be completely insecure!
* t « Macy,, (m) may completely reveal m...

* |n general, MACs have no secrecy guarantees

17

Second Attempt

“Encrypt-then-Authenticate”:

(c,t)

Even better: Infeasible to
generate any new valid
ciphertext!

If the encryption is CPA-secure and the MAC is secure, then:
* The construction is a CPA-secure encryption scheme
* The construction is a secure MAC

18

The World of Crypto Primitives

(so far)
CRHF PRF > PRG
/\CPA_Secure IND-secure
MAC symmetric-key > symmetric-key
/fixed-length encryption encryption
messages
MAC
arbitrary-length
messages ——~~~ CCA-secure

symmetric-key encryption 19

Outline

* Message Authentication Code (MAC)
* Authenticating fixed-length messages
* Authenticating arbitrary-length messages

* Authenticated Encryption

* Public-Key Cryptography

20

Public-Key Cryptography

* If Alice and Bob want to use symmetric-key encryption/MACs
they must agree on the secret key
 How can they do that??

21

Public-Key Cryptography

* If Alice and Bob want to use symmetric-key encryption/MAC

they must agree on the secret key

 How can they do that??

644 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. IT-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography

Invited Paper

WHITFIELD DIFFIE ANb MARTIN E. HELLMAN, MEMBER, IEEE

Abstract—Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocessing
have given rise to a need for new types of cryptographic systems,
which minimize the need for securve key distribution channels and
supply the equivalent of a written signature. This paper suggests
ways to solve these currently open problems. It also discusses how
the theories of communication and computation are beginning to
provide the tools to solve cryptographic problems of long stand-
ing.

The best known cryptographic problem is that of pri-
vacy: preventing the unauthorized extraction of informa-
tion from communications over an insecure channel. In
order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation

Turing Award 2015

22

Public-Key Cryptography

Diffie and Hellman discussed 3 problems:
* Key agreement:
» Alice and Bob agree on a secret key over an insecure channel
* Public-key encryption:
» Everybody can encrypt using a public encryption key
» Decryption requires a secret decryption key
* Digital signatures:
» Alice can sign a message using a secret signing key
» Everybody can verify using a public verification key

I R T

Symmetric cryptography
(private-key schemes)

Private-key encryption MAC

Asymmetric cryptography

5 e sa e Public-key encryption Digital signatures

23

Public-Key Cryptography
Private-key cryptography is extremely efficient in practice, relies on heuristics

Public-key cryptography is less efficient, relies on hardness of mathematical problems

1976 Diffie and Helman constructed a key-agreement protocol relying on the hardness
of the discrete-log problem

1977 Rivest, Shamir, and Adleman constructed public-key encryption & digital signatures
relying on the hardness of factoring

1984 ElGamal noticed that the KA protocol of DH
essentially gives public-key encryption

Turing Award 2002

24

Public-Key Encryption

Syntax: I1 = (Gen, Enc, Dec)

* Key-generation algorithm Gen on input 1™ outputs a public encryption key pk and a
secret decryption key sk

* Enc takes the public key pk and a message m and outputs a ciphertext ¢

* Dec takes the secret key sk and a ciphertext ¢, and outputs a plaintext m

Correctness: Vm and (pk, sk) < Gen(1™)
Decgy, (Encpk (m)) =m

25

Public-Key Encryption

Syntax: I1 = (Gen, Enc, Dec)
* Key-generation algorithm Gen on input 1™ outputs a public encryption key pk and a
secret decryption key sk

* Enc takes the public key pk and a message m and outputs a ciphertext ¢
* Dec takes the secret key sk and a ciphertext ¢, and outputs a plaintext m

Security: Pk
defined via the following experiment < (pk, sk) < Gen(1")
Mo, My
C/q > b« {0,1}
4 c c* < Ency(my)

* A public-key encryption scheme

bl
must be CPA-secure >
* A public-key encryption scheme Adversary Challenger

immediately gives a key-agreement protocol 26

