
2550 Intro to
cybersecurity

Ran Cohen/abhi shelat

L6: Authorization

Thanks Christo for slides!

or

abhi

Authentication:

Authorization
After Authenticating a subject, what next?

Access Control

• Policy specifying how entities can interact with resources
• i.e., Who can access what?
• Requires authentication and authorization

• Access control primitives

PrincipalUser of a system

Subject Entity that acts on behalf of principals Software program

Object Resource acted upon by subjects

Files
Sockets
Devices
OS APIs

Access Control Check

• Given an access request from a subject, on behalf of a principal, for an
object, return an access control decision based on the policy

Principal Subject

Object

Policy

Allow

Deny

o

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

• Mandatory Access Control (MAC)
• Access of subjects to objects is based on a system-wide policy
• Denies users full control over resources they create

Discretionary Access Control
Access Control Matrices
Access Control Lists
Unix Access Control

Discretionary Access Control

• According to Trusted Computer System Evaluation Criteria (TCSEC)

"A means of restricting access to objects based on the identity and
need-to-know of users and/or groups to which they belong.
Controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (directly or
indirectly) to any other subject."

Access Control Matrices

• Introduced by Lampson in 1971
• Static description of protection state
• Abstract model of concrete systems

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Given subjects si ∈ S, objects oj ∈ O, rights {Read, Write, eXecute},

IT

Access Control List (ACL)

• Each object has an associated list of
subject!operation pairs
• Authorization verified for each request by

checking list of tuples
• Used pervasively in filesystems and networks
• "Users a, b, and c and read file x."
• "Hosts a and b can listen on port x." o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWXO

Access Control List (ACL)

• Each object has an associated list of
subject!operation pairs
• Authorization verified for each request by

checking list of tuples
• Used pervasively in filesystems and networks
• "Users a, b, and c and read file x."
• "Hosts a and b can listen on port x." o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

ACL for o2

Windows ACLs

D:\Music D:\Images D:\Documents

System RWX RWX RWX

Administrators RW RW RW

Users:Bob RWX RW

Users:Alice RW R

Windows ACLs

D:\Music D:\Images D:\Documents

System RWX RWX RWX

Administrators RW RW RW

Users:Bob RWX RW

Users:Alice RW R

ACL Review

The Good
• Very flexible
• Can express any possible access

control matrix
• Any principal can be configured to

have any rights on any object

The Bad

ACL Review

The Good
• Very flexible
• Can express any possible access

control matrix
• Any principal can be configured to

have any rights on any object

The Bad
• Complicated to manage
• Every object can have wildly

different policies
• Infinite permutations of subjects,

objects, and rights

Unix-style Permissions

• Based around the concept of owners and groups
• All objects have an owner and a group
• Permissions assigned to owner, group, and everyone else

• Authorization verified for each request by mapping the subject to
owner, group, or other and checking the associated permissions

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

OwnerOwner

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d ! Directory r ! Read w ! Write x ! eXecute

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d ! Directory r ! Read w ! Write x ! eXecute

Directory

Unix Permissions

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d ! Directory r ! Read w ! Write x ! eXecute

Directory Permission to list the contents of a directory

Setting Permissions

chmod [who]<+/-><permissions> <file1> [file2] …

(omitted) ! user, group, and other
a ! user, group, and other
u ! user
g ! group
o ! other

+ ! add permissions
- ! remove
permissions

r ! Read
w ! Write
x ! eXecute

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
cbw@DESKTOP:~$ chmod ugo-rwx my_dir
cbw@DESKTOP:~$ chmod go-rwx my_program.py
cbw@DESKTOP:~$ chmod u-rw my_program.py
cbw@DESKTOP:~$ chmod +x my_file
cbw@DESKTOP:~$ ls -l
d--------- 0 cbw cbw 512 Jan 29 22:46 my_dir
-rwxrwxrwx 1 cbw cbw 17 Jan 29 22:46 my_file
---x------ 1 cbw faculty 313 Jan 29 22:47 my_program.py

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1 ! execute
• 2 ! write
• 4 ! read

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1 ! execute
• 2 ! write
• 4 ! read

• What if you want to set something as read, write, and execute?

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1 ! execute
• 2 ! write
• 4 ! read

• What if you want to set something as read, write, and execute?
• 1 + 2 + 4 = 7

cbw@DESKTOP:~$ ls -l
drwxrwxrwx 0 cbw cbw 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 cbw faculty 313 Jan 29 22:47 my_program.py
cbw@DESKTOP:~$ chmod 000 my_dir
cbw@DESKTOP:~$ chmod 100 my_program.py
cbw@DESKTOP:~$ chmod 777 my_file
cbw@DESKTOP:~$ ls -l
d--------- 0 cbw cbw 512 Jan 29 22:46 my_dir
-rwxrwxrwx 1 cbw cbw 17 Jan 29 22:46 my_file
---x------ 1 cbw faculty 313 Jan 29 22:47 my_program.py

Who May Change Permissions?

• Which files is user cbw permitted to chmod?

cbw@DESKTOP:~$ groups
cbw faculty
cbw@DESKTOP:~$ ls -l
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

Who May Change Permissions?

• Which files is user cbw permitted to chmod?
• Only owners can chmod files
• cbw can chmod my_file and my_other_file
• Group membership doesn’t grant chmod ability (cannot chmod program.py)

cbw@DESKTOP:~$ groups
cbw faculty
cbw@DESKTOP:~$ ls -l
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

Setting Ownership

• Unix uses discretionary access control
• New objects are owned by the subject that created them

• How can you modify the owner or group of an object?

chown <owner>:<group> <file1> [file2] …

Who May Change Ownership?

• Which operations are permitted?

cbw@DESKTOP:~$ groups
cbw faculty
cbw@DESKTOP:~$ ls -l
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

chown cbw:faculty my_file Yes, cbw belongs to the faculty group
chown root:root my_other_file No, only root many change file owners!
chown cbw:cbw sensitive_date.csv No, only root many change file owners!
chown cbw:faculty program.py No, only root many change file owners!

Who May Change Ownership?

• Which operations are permitted?

cbw@DESKTOP:~$ groups
cbw faculty
cbw@DESKTOP:~$ ls -l
-rw-rw-rw- 1 cbw cbw 17 Jan 29 22:46 my_file
-rw-rw-rw- 1 cbw faculty 17 Jan 29 22:46 my_other_file
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

chown cbw:faculty my_file Yes, cbw belongs to the faculty group
chown root:root my_other_file No, only root many change file owners!
chown cbw:cbw sensitive_date.csv No, only root many change file owners!
chown cbw:faculty program.py No, only root many change file owners!

Unix Access Control Exercise (1)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2
user1 r-- rwx
user2 r-- rw-
user3 r-- rw-
user4 rwx rw-

Desired Permissions

Unix Access Control Exercise (1)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2
user1 r-- rwx
user2 r-- rw-
user3 r-- rw-
user4 rwx rw-

Desired Permissions

~$ ls -l
-rwxr--r-- 1 user4 user4 0 file1
-rwxrw-rw- 1 user1 user1 0 file2

User Groups
user1 user1

user2 user2

user3 user3

user4 user4

Unix Access Control Exercise (2)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- --x

user2 r-x rwx

user3 r-x r--

user4 rwx r--

Desired Permissions

Unix Access Control Exercise (2)
• What Unix group and permission assignments satisfy this access

control matrix?

file1 file2

user1 r-- --x

user2 r-x rwx

user3 r-x r--

user4 rwx r--

Desired Permissions

~$ ls -l
-rwxr-xr-- 1 user4 group1 0 file1
-rwxr----x 1 user2 group2 0 file2

User Groups
user1 user1

user2 user2, group1

user3 user3, group1, group2

user4 user4, group2

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

• file2: four distinct privilege levels
• Maximum of three levels (user, group, other)

Unix Access Control Exercise (3)
• What Unix group and permission assignments satisfy this access

control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rwx rwx

user 4 rwx ---

• Trick question! This matrix cannot be represented

• file2: four distinct privilege levels
• Maximum of three levels (user, group, other)

• file1: two users have high privileges
• If user3 and user4 are in a group, how to give user2

read and user1 nothing?
• If user1 or user2 are owner, they can grant themselves

write and execute permissions :(

Unix Access Control Review

The Good
• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

The Bad

Unix Access Control Review

The Good
• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

The Bad
• Not all policies can be encoded!
• Contrast to ACL

Unix Access Control Review

The Good
• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

The Bad
• Not all policies can be encoded!
• Contrast to ACL

• Not quite as simple as it seems
• setuid

Problems with Principals
setuid
The Confused Deputy Problem
Capability-based Access Control

From Principals to Subjects

• Thus far, we have focused on principals
• What user created/owns an object?
• What groups does a user belong to?

• What about subjects?
• When you run a program, what permissions does it have?
• Who is the “owner” of a running program?

Process Owners
cbw@DESKTOP:~$ ls -l
-rwxr-xr-x 1 cbw cbw 313 Jan 29 22:47 my_program.py
cbw@DESKTOP:~$./my_program.py
…

Process Owners
cbw@DESKTOP:~$ ls -l
-rwxr-xr-x 1 cbw cbw 313 Jan 29 22:47 my_program.py
cbw@DESKTOP:~$./my_program.py
…

Who is the
owner of this

process?

Process Owners
cbw@DESKTOP:~$ ls -l
-rwxr-xr-x 1 cbw cbw 313 Jan 29 22:47 my_program.py
cbw@DESKTOP:~$./my_program.py
…

cbw@DESKTOP:~$ ps aux | grep my_program.py
cbw tty1 S 01:06 0:00 python ./my_program.py

Who is the
owner of this

process?

Process Owners
cbw@DESKTOP:~$ ls -l
-rwxr-xr-x 1 cbw cbw 313 Jan 29 22:47 my_program.py
cbw@DESKTOP:~$./my_program.py
…

cbw@DESKTOP:~$ ps aux | grep my_program.py
cbw tty1 S 01:06 0:00 python ./my_program.py

Who is the
owner of this

process?

cbw is the
owner. Why?

Process Owners
cbw@DESKTOP:~$ ls -l /bin/ls*
-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls
-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk
cbw@DESKTOP:~$ ls
…

Process Owners
cbw@DESKTOP:~$ ls -l /bin/ls*
-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls
-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk
cbw@DESKTOP:~$ ls
… Who is the

owner of this
process?

Process Owners
cbw@DESKTOP:~$ ls -l /bin/ls*
-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls
-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk
cbw@DESKTOP:~$ ls
…

cbw@DESKTOP:~$ ps aux | grep ls
cbw tty1 S 01:06 0:00 /bin/ls

Who is the
owner of this

process?

Process Owners
cbw@DESKTOP:~$ ls -l /bin/ls*
-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls
-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk
cbw@DESKTOP:~$ ls
…

cbw@DESKTOP:~$ ps aux | grep ls
cbw tty1 S 01:06 0:00 /bin/ls

Who is the
owner of this

process?
cbw is the

owner. Why?

Process Owners
cbw@DESKTOP:~$ ls -l /bin/ls*
-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/ls
-rwxr-xr-x 1 root root 44688 Nov 23 2016 /bin/lsblk
cbw@DESKTOP:~$ ls
…

cbw@DESKTOP:~$ ps aux | grep ls
cbw tty1 S 01:06 0:00 /bin/ls

Who is the
owner of this

process?
cbw is the

owner. Why?

Subject Ownership

Subject Ownership

• Under normal circumstances, subjects are owned by the principal that
executes them
• File ownership is irrelevant

• Why is this important for security?
• A principal that is able to execute a file owned by root should not be granted

root privileges

Subject Ownership

• Under normal circumstances, subjects are owned by the principal that
executes them
• File ownership is irrelevant

• Why is this important for security?
• A principal that is able to execute a file owned by root should not be granted

root privileges

cbw@DESKTOP:~$ ls -l /bin/bash
-rwxr-xr-x 1 root root 110080 Mar 10 2016 /bin/bash

Corner Cases
cbw@DESKTOP:~$ passwd
Changing password for cbw.
(current) UNIX password:

Corner Cases

• Consider the passwd program
• All users must be able to execute it (to set and change their passwords)
• Must have write access to /etc/shadow (file where password hashes are stored)

• Problem: /etc/shadow is only writable by root user

cbw@DESKTOP:~$ passwd
Changing password for cbw.
(current) UNIX password:

cbw@DESKTOP:~$ ls -l /etc/shadow
-rw-r----- 1 root shadow 922 Jan 8 14:56 /etc/shadow

setuid

cbw@DESKTOP:~$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
cbw@DESKTOP:~$ passwd
Changing password for cbw.
(current) UNIX password:

setuid

cbw@DESKTOP:~$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
cbw@DESKTOP:~$ passwd
Changing password for cbw.
(current) UNIX password:

setuid

• Objects may have the setuid permission
• Program may execute as the file owner, rather than executing principal

cbw@DESKTOP:~$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
cbw@DESKTOP:~$ passwd
Changing password for cbw.
(current) UNIX password:

setuid

• Objects may have the setuid permission
• Program may execute as the file owner, rather than executing principal

cbw@DESKTOP:~$ ps aux | grep passwd
root tty1 S 01:06 0:00 python ./my_program.py

cbw@DESKTOP:~$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
cbw@DESKTOP:~$ passwd
Changing password for cbw.
(current) UNIX password:

setuid

• Objects may have the setuid permission
• Program may execute as the file owner, rather than executing principal

cbw@DESKTOP:~$ ps aux | grep passwd
root tty1 S 01:06 0:00 python ./my_program.py

cbw@DESKTOP:~$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 47032 May 16 2017 /usr/bin/passwd
cbw@DESKTOP:~$ passwd
Changing password for cbw.
(current) UNIX password:

chmod Revisited

• How to add setuid to an object?

chmod u+s <file1> [file2] …
chmod 2### <file1> [file2] …

chmod Revisited

• How to add setuid to an object?

chmod u+s <file1> [file2] …
chmod 2### <file1> [file2] …

• WARNING: NEVER SET A SCRIPT AS SETUID
• Only set setuid on compiled binary programs
• Scripts with setuid lead to Time of Check Time of Use (TOCTOU) vulnerabilities

Another setuid Example

• Consider an example turnin program
/cs2550/turnin <project #> <in_file> <out_file>

1. Copies <in_file> to <out_file>
2. Grades the assignment
3. Writes the grade to /cs2550/<project#>/grades

Another setuid Example

• Consider an example turnin program
/cs2550/turnin <project #> <in_file> <out_file>

1. Copies <in_file> to <out_file>
2. Grades the assignment
3. Writes the grade to /cs2550/<project#>/grades

• Challenge: students cannot have write access to project directories or
grade files
• turnin program must be setuid

alice@login:~$ /cs2550/turnin project1 pwcrack.py /cs2550/project1/
pwcrack.py
Thank you for turning in project 1.
alice@login:~$ ls –l /cs2550/
drwx--x--x 0 cbw faculty 512 Jan 29 22:46 project1
-rwsr-xr-x 1 cbw faculty 17 Jan 29 22:46 turnin
alice@login:~$ ls –l /cs2550/project1/
-r-x------ 0 cbw faculty 512 Jan 29 22:46 pwcrack.py
-rw------- 1 cbw faculty 17 Jan 29 22:46 grades

alice@login:~$ /cs2550/turnin project1 pwcrack.py /cs2550/project1/
pwcrack.py
Thank you for turning in project 1.
alice@login:~$ ls –l /cs2550/
drwx--x--x 0 cbw faculty 512 Jan 29 22:46 project1
-rwsr-xr-x 1 cbw faculty 17 Jan 29 22:46 turnin
alice@login:~$ ls –l /cs2550/project1/
-r-x------ 0 cbw faculty 512 Jan 29 22:46 pwcrack.py
-rw------- 1 cbw faculty 17 Jan 29 22:46 grades

alice@login:~$ /cs2550/turnin project1 pwcrack.py /cs2550/project1/
pwcrack.py
Thank you for turning in project 1.
alice@login:~$ ls –l /cs2550/
drwx--x--x 0 cbw faculty 512 Jan 29 22:46 project1
-rwsr-xr-x 1 cbw faculty 17 Jan 29 22:46 turnin
alice@login:~$ ls –l /cs2550/project1/
-r-x------ 0 cbw faculty 512 Jan 29 22:46 pwcrack.py
-rw------- 1 cbw faculty 17 Jan 29 22:46 grades

Ambient Authority

Ambient Authority

• Ambient authority
• A subject’s permissions are automatically

exercised
• No need to select specific permissions

• Systems that use ACLs or Unix-style
permissions grant ambient authority
• A subject automatically gains all

permissions of the principal
• A setuid subject also gains permissions of

the file owner

• Ambient authority is a security
vulnerability

The Confused Deputy Problem
mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades
Thank you for turning in project 1.
alice@login:~$ ls –l /cs2550/project1/
-rw------- 1 cbw faculty 17 Jan 29 22:46 grades

The Confused Deputy Problem
mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades
Thank you for turning in project 1.
alice@login:~$ ls –l /cs2550/project1/
-rw------- 1 cbw faculty 17 Jan 29 22:46 grades

The Confused Deputy Problem

• The turnin program is a confused deputy
• It is the deputy of two principals: mallory and cbw
• mallory cannot directly access /cs2550/project1/grades
• However, cbw can access /cs2550/project1/grades

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades
Thank you for turning in project 1.
alice@login:~$ ls –l /cs2550/project1/
-rw------- 1 cbw faculty 17 Jan 29 22:46 grades

The Confused Deputy Problem

• The turnin program is a confused deputy
• It is the deputy of two principals: mallory and cbw
• mallory cannot directly access /cs2550/project1/grades
• However, cbw can access /cs2550/project1/grades

• Key problem: the subject cannot tell which principal it is serving when
it performs a write

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /cs2550/project1/grades
Thank you for turning in project 1.
alice@login:~$ ls –l /cs2550/project1/
-rw------- 1 cbw faculty 17 Jan 29 22:46 grades

Preventing Confused Deputies

• ACL and Unix-style systems are fundamentally
vulnerable to confused deputies
• Cannot prevent misuse of ambient authority

• Solution: move to capability-based access
control system

Capabilities
ACLs

• Encode columns of an access
control matrix

Capabilities

o1 o2 o3

s1 RW RX
s2 R RWX RW

s3 RWX

ACL for o2

T

Capabilities
ACLs

• Encode columns of an access
control matrix

Capabilities
• Encode rows of an access control

matrix

o1 o2 o3

s1 RW RX
s2 R RWX RW

s3 RWX

ACL for o2

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Capabilities
for s1

Capability-based Access Control

• Principals and subjects have capabilities which:
• Give them access to objects
• Files, keys, devices, etc.
• Are transferable and unforgeable tokens of authority
• Can be passed from principal to subject, and subject to subject
• Similar to file descriptors

• Why do capabilities solve the confused deputy problem?
• When attempting to access an object, a capability must be selected
• Selecting a capability inherently also selects a master

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades
ERROR: Permission denied to /cs2550/project1/grades

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades
ERROR: Permission denied to /cs2550/project1/grades

Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades
ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Confused Deputy Revisited

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades
ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Confused Deputy Revisited

• Principal must pass capabilities to objects at invocation time
• mallory has permission to access best_grade.txt
• mallory does not have permission to access /cs2550/project1/grades

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades
ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Confused Deputy Revisited

• Principal must pass capabilities to objects at invocation time
• mallory has permission to access best_grade.txt
• mallory does not have permission to access /cs2550/project1/grades

• No ambient authority in a capability-based access control system
• Principal cannot pass a capability it doesn’t have

mallory@login:~$ /cs2550/turnin project1 best_grade.txt /
cs2550/project1/grades
ERROR: Permission denied to /cs2550/project1/grades

Allow
Principal … /home/mallory/* /cs2550/project1/grades …
mallory … RWX --- …

Deny

Capabilities vs. ACLs

• Consider two security mechanisms for bank accounts

1. Identity-based
• Each account has multiple authorized owners
• To authenticate, show a valid ID at the bank
• Once authenticated, you may access all authorized accounts

2. Token-based
• When opening an account, you are given a unique hardware key
• To access an account, you must possess the corresponding key
• Keys may be passed from person to person

Capabilities vs. ACLs

• Consider two security mechanisms for bank accounts

1. Identity-based
• Each account has multiple authorized owners
• To authenticate, show a valid ID at the bank
• Once authenticated, you may access all authorized accounts

2. Token-based
• When opening an account, you are given a unique hardware key
• To access an account, you must possess the corresponding key
• Keys may be passed from person to person

• ACL system
• Ambient authority to

access all authorized
accounts

Capabilities vs. ACLs

• Consider two security mechanisms for bank accounts

1. Identity-based
• Each account has multiple authorized owners
• To authenticate, show a valid ID at the bank
• Once authenticated, you may access all authorized accounts

2. Token-based
• When opening an account, you are given a unique hardware key
• To access an account, you must possess the corresponding key
• Keys may be passed from person to person

• ACL system
• Ambient authority to

access all authorized
accounts

• Capability
system

• No ambient
authority

Capabilities IRL

• From a security perspective, capability systems are more secure than
ACL and Unix-style systems
• … and yet, most major operating systems use the latter
• Why?
• Easier for users
• ACLs are good for user-level sharing, intuitive
• Capabilities are good for process-level sharing, not untuitive
• Easier for developers
• Processes are tightly coupled in capability systems
• Must carefully manage passing capabilities around
• In contrast, ambient authority makes programming easy, but insecure

Small Steps Towards Capabilities

• Some limited examples of capability systems exist
• Android/iOS app permissions
• POSIX capabilities
• SELinux

Android/iOS Capabilities

• Android and iOS support (relatively)
fine grained capabilities for apps
• User must grant permissions to apps at

install time
• May only access sensitive APIs with user

consent

• Apps can “borrow” capabilities from
each other by exporting intents
• Example: an app without camera access

can ask the camera app to return a
photo

Android/IOS just-in-time capability

Per-event capability

POSIX Capabilities

• Traditional Unix systems had two types of processes
• Privileged, i.e. root processes
• Bypass all security and access control checks
• Unprivileged, i.e. everything else
• Subject to access controls

• Modern Unix/Linux systems offer some finer grained capabilities
• Specified processes may be granted a subset of root privileges
• CAP_CHOWN: make arbitrary changes to file owners and groups
• CAP_KILL: kill arbitrary processes
• CAP_SYS_TIME: change the system clock

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

O

o

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Keeping Secrets?
• Suppose we have secret data that only certain users should access

• Is DAC enough to prevent leaks?

charlie@DESKTOP:~$ groups
charlie topsecret
charlie@DESKTOP:~$ ls –la /top-secret-intel/
drwxr-xr-x 0 root root 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
-rw-r----- 1 root topsecret 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ groups mallory
mallory secret
charlie@DESKTOP:~$ ls –la /home/mallory
drwxrwxrwx 0 mallory mallory 512 Jan 8 14:55 .
drwxr-xr-x 0 root root 512 Oct 11 19:58 ..
charlie@DESKTOP:~$ cp /top-secret-intel/northkorea.pdf /home/mallory
charlie@DESKTOP:~$ ls –l /home/mallory
-rw-r----- 1 charlie charlie 896 Jan 29 22:47 northkorea.pdf
charlie@DESKTOP:~$ chmod ugo+rw /home/mallory/northkorea.pdf

Failure of DAC

• DAC cannot prevent the leaking of secrets

Secret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

User A

User B

Failure of DAC

• DAC cannot prevent the leaking of secrets

Secret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

User A

User B

Read

Write

Failure of DAC

• DAC cannot prevent the leaking of secrets

Secret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

User A

User B

Read

Write

Malicious
Trojan

Execute

Mandatory Access Control

Mandatory Access Control Goals
• Restrict the access of subjects to objects based

on a system-wide policy

BLP confidentiality

A armor

Biba integrity

Bell-Lapadula (1973)

System Model:

Security Policy:

“No read , no write ”

MACHINE abstract

which States of the
machine are valid

BLP System Model
Clearances:

Classifications:

label line TOP secret secret confident

applied to subjects uncut's

objects have classifications

BLP System State

Trusted Subjects

Subjects
(have clearances)

Objects
(have classifications)

ACL
O1 O2 O3

S1
S2

S3
S4

Current
Access

Operations

22

I

t

just as before

Elements of the Bell-LaPadula Model

Top Secret

Secret

Confidential

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Top Secret

Secret

Confidential

Unclassified

Subjects
Lm(s) : maximum level
Lc(s) : current level

Objects
L(o) : levelDiscretionary Access

Control Matrix
Defined by the administrator

a

b

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

• Assume Lm(s) = Lc(s) is always true

No readsof
Nowritedown

retidity

Jiu

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

• Assume Lm(s) = Lc(s) is always true

• ̣-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ̣-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ̣-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

I
I
I

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ̣-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

Simplified Bell-LaPadula Example

Confidential

Top Secret

Secret

Confidential

Unclassified

Writeable

Readable

Read and Write

• Assume Lm(s) = Lc(s) is always true

• ̣-property
• s can read o iff L(s) >= L(o) (no read up)
• s can write o iff L(s) <= L(o) (no write down)

BLP Idea
A computer system is in a state, and undergoes state transitions
whenever an operation occurs..

System is secure if all transitions satisfy 3 properties:

Simple:

Star:

Discretionary:

TRANQUILITY Subjects never reduce their clearance

BLP Idea
A computer system is in a state, and undergoes state transitions
whenever an operation occurs..

System is secure if all transitions satisfy 3 properties:

Simple: S can read O if S has higher clearance
Star: S can write O if S has lower clearance.

Discretionary: Every access allowed by ACL.I

Users are trusted

Subjects are not trusted. (Malware)
I

App armor

Slide from Novell/defcon 2015

M

1
if

ji

Apparmor

Iot

e e

apparmor parser r

Apparmor

Not Enough
TopSecret.pdf
rwx User A
--- User B

NotSecret.pdf
rwx User A
rwx User B

Not Enough: Covert channels

Security Lattice
Compartments:

Ordering between (Level, Compartment)

Lattice

O o

FT Te

Need-to-Know policy

Integrity Protection in Practice

• Mandatory Integrity Control in Windows
• Since Vista
• Four integrity levels: Low, Medium, High,

System
• Each process assigned a level
• Processes started by normal users are Medium
• Elevated processes have High
• Some processes intentionally run as Low
• Internet Explorer in protected mode
• Ring policy
• Reading and writing do not change integrity level

Integrity Protection in Practice

• Mandatory Integrity Control in Windows
• Since Vista
• Four integrity levels: Low, Medium, High,

System
• Each process assigned a level
• Processes started by normal users are Medium
• Elevated processes have High
• Some processes intentionally run as Low
• Internet Explorer in protected mode
• Ring policy
• Reading and writing do not change integrity level

Confidentiality? What else?
IntegrityAuthorization

whata what a subjet

subject
or can write

see

Biba Integrity Policy

Biba Integrity Model

• Proposed in 1975
• Like Bell-LaPadula, security model with provable properties based on a

state transition model
• Each subject has an integrity level
• Each object has an integrity level
• Integrity levels are totally ordered (high ! low)

• Integrity levels in Biba are not the same as security levels in Bell-LaPadula
• Some high integrity data does not need confidentiality
• Examples: stock prices, official statements from the president

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)C

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o)) (subject tainting)
• s can write o iff i(s) >= i(o) (no write up)

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o)) (subject tainting)
• s can write o iff i(s) >= i(o) (no write up)

3. Object low-water mark
• s can read o iif i(s) <= i(o) (no read down)
• s can always write o; afterward o(s) = min(i(s), i(o)) (object tainting)

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o)) (subject tainting)
• s can write o iff i(s) >= i(o) (no write up)

3. Object low-water mark
• s can read o iif i(s) <= i(o) (no read down)
• s can always write o; afterward o(s) = min(i(s), i(o)) (object tainting)

4. Low-water mark integrity audit
• s can always read o; afterward i(s) = min(i(s), i(o)) (subject tainting)
• s can always write o; afterward o(s) = min(i(s), i(o)) (object tainting)

Possible Mandatory Policies in Biba
1. Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

2. Subject low-water mark
• s can always read o; afterward i(s) = min(i(s), i(o)) (subject tainting)
• s can write o iff i(s) >= i(o) (no write up)

3. Object low-water mark
• s can read o iif i(s) <= i(o) (no read down)
• s can always write o; afterward o(s) = min(i(s), i(o)) (object tainting)

4. Low-water mark integrity audit
• s can always read o; afterward i(s) = min(i(s), i(o)) (subject tainting)
• s can always write o; afterward o(s) = min(i(s), i(o)) (object tainting)

5. Ring
• s can read any object o
• s can write o iff i(s) >= i(o) (no write up)

9

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity I
Ty

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Biba Strict Integrity Example

High Integrity

Medium Integrity

Low Integrity

Unverified

Writeable

Readable

Read and Write

• Strict integrity
• s can read o iif i(s) <= i(o) (no read down)
• s can write o iff i(s) >= i(o) (no write up)

Medium Integrity

Practical Example of Biba Integrity

• Military chain of command
• Generals may issue orders to majors and privates
• Majors may issue orders to privates, but not generals
• Privates may only take orders

I I

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

BPL BibaO O
offers integrity
read up write down

7 controlling writes

I

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity

BPL Biba

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity
• “Read up, write down”

BPL Biba

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity
• “Read up, write down”
• Focuses on controlling writes

BPL Biba

Comparison

• Offers confidentiality
• “Read down, write up”
• Focuses on controlling reads
• Theoretically, no requirement

that subjects be trusted
• Even malicious programs can’t leak

secrets they don’t know

• Offers integrity
• “Read up, write down”
• Focuses on controlling writes
• Subjects must be trusted
• A malicious program can write bad

information

BPL Biba

c

Covert and Side Channels

Caveats of Bell-LaPadula

Caveats of Bell-LaPadula

•̣-property prevents overt leakage of information
• Does not address covert channels

Caveats of Bell-LaPadula

•̣-property prevents overt leakage of information
• Does not address covert channels

• What does this mean?

Covert Channels

• Access control is defined over “legitimate” channels
• Read/write an object
• Send/receive a packet from the network
• Read/write shared memory

• However, isolation in real systems is imperfect
• Actions have observable side-effects

Covert Channels

• Access control is defined over “legitimate” channels
• Read/write an object
• Send/receive a packet from the network
• Read/write shared memory

• However, isolation in real systems is imperfect
• Actions have observable side-effects

• External observations can create covert channels
• Communication via unintentional channels
• Examples:
• Existence of file(s) or locks on file(s)
• Measure the timing of events
• CPU cache (e.g. Meltdown and Spectre)

I

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

I

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

russia_intel.docxCreate File

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

Create File

Error

Simple Example

Unclassified

Top Secret

Secret

Confidential

Unclassified

Writeable

Read and Write

Bell-LaPadula MAC

russia_intel.docx

Create File

Error

Hmm, a classified file
named russia_intel.docx

must already exist…

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Received Message

Binary Encoded Message
010010…

010010

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Received Message

Binary Encoded Message
010010…

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Create FileReceived Message

Binary Encoded Message
010010…

0

as

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Create File

Secret

Create FileReceived Message

Binary Encoded Message
010010…

0 1

0 01

0

to

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Create File

Secret

Create FileReceived Message

Binary Encoded Message
010010…

0 1

0
0

Stow low
bandwidth

I

bet 9913

Exploiting a Covert Channel

Unclassified

Top Secret

Secret

Confidential

Unclassified

Bell-LaPadula MAC

Secret

Received Message

Binary Encoded Message
010010…

0 1 0

Leveraging Covert Channels

• Covert channels are typically noisy
• Based on precise timing of events
• May result in encoding errors, i.e. errors in data transmission
• Communication is probabilistic

• Information theory and coding theory can be applied to make covert
channels more robust
• Naïve approach: duplicate the data n times
• Better approach: uses Forward Error Correction (FEC) coding
• Zany approach: use Erasure Coding

I

Bell-LaPadula and Covert Channels

• Covert channels are not blocked by the ̣-property
• It is very hard, perhaps impossible, to block all covert channels
• May appear in program code
• Or operating system code
• Or in the hardware itself (e.g. CPU covert channels)

Bell-LaPadula and Covert Channels

• Covert channels are not blocked by the ̣-property
• It is very hard, perhaps impossible, to block all covert channels
• May appear in program code
• Or operating system code
• Or in the hardware itself (e.g. CPU covert channels)

• Potential mitigations:
• Limit the bandwidth of covert channels by enforcing rate limits
• Warning: may negatively impact system performance

• Intentionally make channels noisier by using randomness to introduce “chaff”
• Warning: slows down attacks, but may not stop them

• Use anomaly detection to identify subjects using a covert channel
• Warning: may result in false positives
• Warning: no guarantee this will detect all covert channels

Side Channel Attacks

• Side channels result from inadvertent information leakage
• Timing – e.g., password recovery by timing keystrokes
• Power – e.g., crypto key recovery by power fluctuations
• RF emissions – e.g., video signal recovery from video cable EM leakage

• Virtually any shared resource can be used

Side Channel Attack Example

• Victim is decrypting RSA data
• Key is not known to the attacker
• Encryption process is not directly accessible to the attacker

• Attacker is logged on to the same machine as the victim
• Secret key can be deciphered by observing the CPU voltage
• Short peaks = no multiplication (0 bit), long peaks = multiplication (1 bit)

I 1 I
O

Real Side Channel Attacks

• CPU voltage attacks against RSA
• Keystroke timing attacks against SSH
• Timing and CPU cache attacks against AES
• RF radiation attacks against computer monitors!
• Attacker can observe what is on your screen

• CPU cache attacks against process isolation
• Meltdown and Spectre
• Also leverage a covert channel ;)

