2550 Intro to cybersecurity

L9: Computational security, PRG

abhi shelat/Ran Cohen

Thanks to Gil Segev (HUJI) for sharing slides

- Consider the functions $f(n) = 2n^3 + 1$ and $g(n) = 2^n$
- Which function is "bigger"?

n	$2n^3 + 1$	2 ⁿ
1	3	2
2	17	4
3	55	8
4	129	16
5	251	32

WolframAlpha^{*} computational intelligence.

- Consider the functions $f(n) = 2n^3 + 1$ and $g(n) = 2^n$
- Which function is "bigger"?

n	$2n^3 + 1$	2 ⁿ
1	3	2
2	17	4
3	55	8
4	129	16
5	251	32
6	433	64
7	687	128
8	1025	256
9	1459	512
10	2001	1024

plot 2ⁿ, 2n³+1 from 1 to 10 ∫[™]₂₀ Extended Keyboard 1 Upload Examples 🔀 Random Input interpretation: 2^n plot n = 1 to 10 $2n^3 + 1$ Plot: 2000 1500 1000 500 $\frac{10}{10} - 2n^3 + 1$

WolframAlpha[®] computational intelligence.

- Consider the functions $f(n) = 2n^3 + 1$ and $g(n) = 2^n$
- Which function is "bigger"?

n	$2n^3 + 1$	2 ⁿ
11	2663	2048
12	3457	4096
13	4395	8192
14	5489	16384
20	16001	1,048,576
30	54001	1,073,741,824
35	85751	34,359,738,368

- Consider the functions $f(n) = 2n^3 + 1$ and $g(n) = 2^n$
- Which function is "bigger"?

n	$2n^3 + 1$	2 ⁿ
11	2663	2048
12	3457	4096
13	4395	8192
14	5489	16384
20	16001	1,048,576
30	54001	1,073,741,824
35	85751	34,359,738,368

• A polynomial function (over the integers) is of the form

$$f(n) = \sum_{i=0}^{a} a_i n^i = a_d n^d + a_{d-1} n^{d-1} \dots a_1 n + a_0$$

where d is constant and a_0, \ldots, a_d are integers

- For example: $n^2 + 5$, $2n^{1000000} + n^{1000} + 50n^{10}$
- A function *f* is dominated by a polynomial function if there exists a constant *d* such that for sufficiently large *n*'s *f*(*n*) < *n^d* (formally, there exists *N* such that for all *n* > *N* it holds that *f*(*n*) < *n^d*)
- By abuse of language we sometime call such f also a polynomial, e.g. $n^5 + \log(n)$
- A function f is (dominated by) an exponential function if for sufficiently large n's $f(n) < c^{p(n)}$ for a constant c and a polynomial $p(\cdot)$
- For example: 2^n , $2^{(n^2)}$, 100000^n

- Consider the functions $f(n) = \frac{1}{2n^3+1}$ and $g(n) = \frac{1}{2n^3}$
- Which function is "smaller"?

• A function is negligible if it approaches 0 faster than any inverse polynomial

 $f(n) < \frac{1}{p(n)}$

• **Definition:** A function $f: \mathbb{N} \to \mathbb{R}$ is a negligible function if for any positive polynomial $p(\cdot)$ there exists N such that for all n > N it holds that

- For example: 2^{-n} , $2^{-\sqrt{n}}$ and $2^{-\log^2(n)}$ are negligible functions
- 1/2, $1/\log^2(n)$ and $1/n^5$ are non-negligible functions

Last Lecture

- Symmetric-key encryption
- Perfect secrecy

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

- Limitations of perfect secrecy
 - Considers security for only a single message
 - The key must be as long as the message

Can we guarantee "security" while avoiding these limitations?

This Week: Computational Security

What is "computational" security?

- The information is all there: $Enc_k(m)$ may completely determine k and m
- It should be computationally infeasible to retrieve any useful information

Two realistic relaxations compared to last week:

- 1. Security is preserved only against computationally bounded adversaries
- 2. Allow such adversaries to succeed with some small probability

E.g., 2000 years using

current technology

The Concrete Approach

"A scheme is (t, ϵ) -secure if every adversary running for time at most t succeeds in breaking the scheme with probability at most ϵ "

Sample parameters

• $t = 2^{60}$

(order of the number of seconds since the big bang)

• $\epsilon = 2^{-30}$

(expected to occur once every 100 years)

• $\epsilon = 2^{-60}$

(expected to occur once every 100 billion years)

- Very important in practice, may be tailored to specific technology
- In general, hard to analyze
- Not always clear what's can we say if the adversary runs for time 2t or t/2

The Asymptotic Approach

"A scheme is secure if every probabilistic polynomial-time (PPT) adversary succeeds in breaking the scheme with only negligible probability"

Definition:

An algorithm A runs in **probabilistic polynomial-time** if there exists a polynomial $p(\cdot)$ such that, for any input $x \in \{0,1\}^*$ and random tape $r \in \{0,1\}^*$, the computation of A(x;r) terminates within p(|x|) steps.

The security parameter

- Gen takes as input the security parameter 1^n and outputs $k \in \mathcal{K}_n$
- Keys produced by Gen(1ⁿ) should provide security against adversaries whose running time is polynomial in n (increasing n provides better security)
- $\mathcal{K} = \bigcup_{n \in \mathbb{N}} \mathcal{K}_n$, $\mathcal{M} = \bigcup_{n \in \mathbb{N}} \mathcal{M}_n$, $\mathcal{C} = \bigcup_{n \in \mathbb{N}} \mathcal{C}_n$

Why These Choices?

- "Efficient": Probabilistic polynomial time (PPT)
- "Negligible": Smaller than any inverse polynomial

Intuitively well-behaved under composition:

- poly(n) × poly(n) = poly(n)
 Polynomially many invocations of a PPT algorithm is still a PPT algorithm
- poly(n) × negligible(n) = negligible(n)
 Polynomially many invocations of a PPT algorithm that succeeds with a negligible probability is an algorithm that succeeds with a negligible probability overall

Outline

- Security notion: Indistinguishable encryptions
- Basic primitive: Pseudorandom generator (PRG)
- PRG-based one-time pad
- Stream ciphers

Indistinguishable Encryptions

The most basic notion of security for symmetric-key encryption

- Encryptions of any two messages should be indistinguishable
- Adversary still observes only a single ciphertext

 $\operatorname{Enc}_k(m_0) \approx \operatorname{Enc}_k(m_1)$

Seems weaker compared to perfect secrecy

- Perfectly-secure encryption reveals **no** information
- Intuitively, what security does indistinguishable encryptions provide?

Indistinguishable Encryptions

Given $\Pi = (\text{Gen, Enc, Dec})$ and an adversary \mathcal{A} , consider the experiment $\text{IND}_{\Pi,\mathcal{A}}(n)$:

Definition:

I has **indistinguishable encryptions** if for every PPT adversary \mathcal{A} there exists a negligible function $\nu(\cdot)$ such that

$$\Pr\left[\mathrm{IND}_{\Pi,\mathcal{A}}(n) = 1\right] \leq \frac{1}{2} + \nu(n)$$

where the probability is taken over the random coins used by \mathcal{A} and by the experiment

Semantic Security

 Semantic security [Goldwasser-Micali '82]: "Whatever" can be computed efficiently given the ciphertext, can essentially be computed efficiently without the ciphertext

Theorem:

I is **semantically secure** if and only if it has **indistinguishable encryptions**

Why do we need both notions?

- Semantic security explains "what security means"
- Indistinguishability of encryptions is "easier to work with"

Turing Award '12

Outline

- Security notion: Indistinguishable encryptions
- Basic primitive: Pseudorandom generator (PRG)
- PRG-based one-time pad
- Stream ciphers

Goal: Expand a short random seed into a long "random-looking" value

- $G: \{0,1\}^* \to \{0,1\}^*$
- "Random looking" = "indistinguishable" from the uniform distribution

Consider an expansion of n bits, i.e., $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ The image of G is negligible in $\{0,1\}^{2n}$ $\frac{|\{0,1\}^n|}{|\{0,1\}^{2n}|} = \frac{2^n}{2^{2n}} = 2^{-n}$ $\{0,1\}^n$ G(s)

Definition (PRG):

Let $G: \{0,1\}^* \to \{0,1\}^*$ be a poly-time computable function and let $\ell(\cdot)$ be a polynomial such that for any input $s \in \{0,1\}^n$ we have $G(s) \in \{0,1\}^{\ell(n)}$. Then, G is a **pseudorandom generator** if the following two conditions hold:

- Expansion: $\ell(n) > n$
- Pseudorandomness: For every PPT "distinguisher" D there exists a negligible function ν(·) such that

$$\Pr_{s \leftarrow \{0,1\}^n} \left[\mathcal{D}(G(s)) = 1 \right] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} \left[\mathcal{D}(r) = 1 \right] \right| \le \nu(n)$$

• The notation $x \leftarrow \{0,1\}^m$ denotes that x is sampled from the uniform distribution over $\{0,1\}^m$ (each value is obtained with probability $1/2^m$)

Definition (PRG):

Let $G: \{0,1\}^* \to \{0,1\}^*$ be a poly-time computable function and let $\ell(\cdot)$ be a polynomial such that for any input $s \in \{0,1\}^n$ we have $G(s) \in \{0,1\}^{\ell(n)}$. Then, G is a **pseudorandom generator** if the following two conditions hold:

- Expansion: $\ell(n) > n$
- Pseudorandomness: For every PPT "distinguisher" D there exists a negligible function ν(·) such that

$$\Pr_{s \leftarrow \{0,1\}^n} \left[\mathcal{D}(G(s)) = 1 \right] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} \left[\mathcal{D}(r) = 1 \right] \right| \le \nu(n)$$

"G(s) is as good as random"

http://dilbert.com/strip/2001-10-25

Do PRGs Exist?

If so, then how difficult is it to construct a PRG?

Let's gain some intuition: Can you propose PRG candidates?

Recall the two properties:

- Expansion: |G(s)| > |s|
- **Pseudorandomness:** For every PPT \mathcal{D} there exists a negligible $\nu(\cdot)$ such that

$$\Pr_{s \leftarrow \{0,1\}^n} \left[\mathcal{D}(G(s)) = 1 \right] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} \left[\mathcal{D}(r) = 1 \right] \right| \le \nu(n)$$

Let's Try

• Consider the following candidates that expand a seed $s = s_1 \cdots s_n \in \{0,1\}^n$ by a single bit:

$$G(s) = s_1 \cdots s_n 0$$

Is it distinguishable from a truly random string $r_1 \cdots r_n r_{n+1}$?

 $G(s) = s_1 \cdots s_n s_1$

Is it distinguishable from a truly random string $r_1 \cdots r_n r_{n+1}$?

 $G(s) = s_1 \cdots s_n z$ where $z = s_1 \oplus \cdots \oplus s_n$

Is it distinguishable from a truly random string $r_1 \cdots r_n r_{n+1}$?

- The existence of any PRG implies $P \neq NP$
- Constructions are known based on various computational assumptions

YES

YES

YES

A Useful Fact

All efficiently testable statistical properties of the uniform distribution are preserved by the output of any PRG.

For example: If *G* is a PRG then there exists a negligible function $v(\cdot)$ such that $\Pr_{s \leftarrow \{0,1\}^n} [\text{fraction of } 1's \text{ in } G(s) < 1/4] \le v(n)$

"G(s) is as good as random"

Outline

- Security notion: Indistinguishable encryptions
- Basic primitive: Pseudorandom generator (PRG)
- PRG-based one-time pad
- Stream ciphers

One-Time Pad Using a PRG

 $\ell(n) = 2n:$ $|\mathcal{K}_n| = 2^n \ll 2^{2n} = |\mathcal{M}_n|$

- Let G be a PRG with expansion $\ell(n)$
- $\mathcal{K}_n = \{0,1\}^n$ but $\mathcal{M}_n = \mathcal{C}_n = \{0,1\}^{\ell(n)}$
- Gen (1^n) samples $k \leftarrow \{0,1\}^n$
- $\operatorname{Enc}_k(m) = m \bigoplus G(k) \& \operatorname{Dec}_k(c) = c \bigoplus G(k)$

One-Time Pad Using a PRG

 $\ell(n) = 2n:$ $|\mathcal{K}_n| = 2^n \ll 2^{2n} = |\mathcal{M}_n|$

- Let G be a PRG with expansion $\ell(n)$
- $\mathcal{K}_n = \{0,1\}^n$ but $\mathcal{M}_n = \mathcal{C}_n = \{0,1\}^{\ell(n)}$
- Gen (1^n) samples $k \leftarrow \{0,1\}^n$
- $\operatorname{Enc}_k(m) = m \bigoplus G(k) \& \operatorname{Dec}_k(c) = c \bigoplus G(k)$

Theorem:

If G is a PRG, then the scheme has indistinguishable encryptions.

Paradigm: Proof by reduction

- Given an adversary A for the encryption scheme, construct a distinguisher D for the PRG
- \mathcal{D} internally emulates \mathcal{A}
- \mathcal{D} 's efficiency and advantage are polynomially related to \mathcal{A} 's

One-Time Pad Using a PRG

 $\ell(n)=2n$:

 $|\mathcal{K}_n| = 2^n \ll 2^{2n} = |\mathcal{M}_n|$

- Let G be a PRG with expansion $\ell(n)$
- $\mathcal{K}_n = \{0,1\}^n$ but $\mathcal{M}_n = \mathcal{C}_n = \{0,1\}^{\ell(n)}$
- Gen (1^n) samples $k \leftarrow \{0,1\}^n$
- $\operatorname{Enc}_k(m) = m \bigoplus G(k) \& \operatorname{Dec}_k(c) = c \bigoplus G(k)$

Theorem:

If G is a PRG, then the scheme has indistinguishable encryptions.

Significant progress but still only "one-time" security...

 $\operatorname{Enc}_k(m_1) \oplus \operatorname{Enc}_k(m_2) = m_1 \oplus G(k) \oplus m_2 \oplus G(k) = m_1 \oplus m_2$

Key-Reuse attack

- MS Word/Excel 2002 used the same key when saving changes to the same document
- Illustration from https://cryptosmith.com/2008/05/31/stream-reuse/

Outline

- Security notion: Indistinguishable encryptions
- Basic primitive: Pseudorandom generator (PRG)
- PRG-based one-time pad
- Stream ciphers

RC4

- Designed in 1987 by Ron Rivest (Rivest Cipher)
- Extremely fast, extremely simple, ideal for software
- Variable length key 40-2048 bits
- Generates blocks of 256 bytes (2048 bits)
- Very popular, used in many standards SSL/TLS, WEP, WPA
- Jan 2013: in a survey of 16 billions TLS connection ~50% protected using RC4
- Many known weaknesses:
 - 2001 Mantin-Shamir: $Pr[2^{nd} byte = 0] = 2/256$
 - 2002 Mironov: 1st byte has biased away from 0
 - 2011 Maitra et al.: bias in blocks 3-255
 - Quick solution throw away first 512 bytes
 - 2013 AlFardan et al.: analyzed output from 2⁴⁵ independent 128-bit RC4 keys • found many new biases plaintext recovery attack against TLS

LFSR

- Linear feedback shift register
- Very useful for hardware-based design
- the initial state of the register is the seed
- In every round the cells are shifted to the right (the last cell is the output), the first cell becomes the XOR of certain locations

All broken

- DVD encryption (CSS)
- GSM encryption (A5/1 and A5/2)
- Bluetooth (EO)

Salsa20

- Designed in 2005 by Dan Bernstein
- Part of the eSTREAM project
- Seed is 128/256 bits
- Uses additional nonce of 64 bits
- Can be used to encrypt up to 2⁷⁰ bits
- In 2008 Bernstein designed ChaCha based on similar principles as Salsa, but with better diffusion
- 2014: Google replaced RC4 with ChaCha20 for TLS