
2550 Intro to
cybersecurity

L9: Computational security, PRG

abhi shelat/Ran Cohen

Thanks to Gil Segev (HUJI) for sharing slides

2

Polynomial vs. Exponential

• Consider the functions 𝑓 𝑛 = 2𝑛3 + 1 and 𝑔 𝑛 = 2𝑛

• Which function is “bigger”?

𝑛 2𝑛3 + 1 2𝑛

1 3 2

2 17 4

3 55 8

4 129 16

5 251 32

3

Polynomial vs. Exponential

• Consider the functions 𝑓 𝑛 = 2𝑛3 + 1 and 𝑔 𝑛 = 2𝑛

• Which function is “bigger”?

𝑛 2𝑛3 + 1 2𝑛

1 3 2

2 17 4

3 55 8

4 129 16

5 251 32

6 433 64

7 687 128

8 1025 256

9 1459 512

10 2001 1024

4

Polynomial vs. Exponential

• Consider the functions 𝑓 𝑛 = 2𝑛3 + 1 and 𝑔 𝑛 = 2𝑛

• Which function is “bigger”?

𝑛 2𝑛3 + 1 2𝑛

11 2663 2048

12 3457 4096

13 4395 8192

14 5489 16384

20 16001 1,048,576

30 54001 1,073,741,824

35 85751 34,359,738,368

5

Polynomial vs. Exponential

• Consider the functions 𝑓 𝑛 = 2𝑛3 + 1 and 𝑔 𝑛 = 2𝑛

• Which function is “bigger”?

𝑛 2𝑛3 + 1 2𝑛

11 2663 2048

12 3457 4096

13 4395 8192

14 5489 16384

20 16001 1,048,576

30 54001 1,073,741,824

35 85751 34,359,738,368

6

Polynomial vs. Exponential

• A polynomial function (over the integers) is of the form

𝑓 𝑛 =

𝑖=0

𝑑

𝑎𝑖𝑛
𝑖 = 𝑎𝑑𝑛

𝑑 + 𝑎𝑑−1𝑛
𝑑−1…𝑎1𝑛 + 𝑎0

where 𝑑 is constant and 𝑎0, … , 𝑎𝑑 are integers

• For example: 𝑛2 + 5 , 2𝑛1000000 + 𝑛1000 + 50𝑛10

• A function 𝑓 is dominated by a polynomial function if there exists a constant 𝑑 such
that for sufficiently large 𝑛’s 𝑓 𝑛 < 𝑛𝑑

(formally, there exists 𝑁 such that for all 𝑛 > 𝑁 it holds that 𝑓 𝑛 < 𝑛𝑑)

• By abuse of language we sometime call such 𝑓 also a polynomial, e.g. 𝑛5 + log 𝑛

• A function 𝑓 is (dominated by) an exponential function if for sufficiently large 𝑛’s

𝑓 𝑛 < 𝑐𝑝 𝑛 for a constant 𝑐 and a polynomial 𝑝 ⋅

• For example: 2𝑛 , 2 𝑛2 , 100000𝑛

7

Polynomial vs. Exponential

• Consider the functions 𝑓 𝑛 =
1

2𝑛3+1
and 𝑔 𝑛 =

1

2𝑛

• Which function is “smaller”?

8

Polynomial vs. Exponential

• A function is negligible if it approaches 0 faster than any inverse polynomial

• Definition: A function 𝑓: ℕ → ℝ is a negligible function if for any positive
polynomial 𝑝 ⋅ there exists 𝑁 such that for all 𝑛 > 𝑁 it holds that

𝑓 𝑛 <
1

𝑝 𝑛

• For example: 2−𝑛, 2− 𝑛 and 2− log2(𝑛) are negligible functions

• 1/2, 1/ log2(𝑛) and 1/𝑛5 are non-negligible functions

9

Last Lecture

• Symmetric-key encryption
• Perfect secrecy

Pr 𝑀 = 𝑚 ∣ 𝐶 = 𝑐 = Pr 𝑀 = 𝑚

• Limitations of perfect secrecy
• Considers security for only a single message
• The key must be as long as the message

Can we guarantee “security” while avoiding these limitations?

10

This Week: Computational Security

Two realistic relaxations compared to last week:
1. Security is preserved only against computationally bounded adversaries
2. Allow such adversaries to succeed with some small probability

E.g., 2000 years using
current technology

Small enough such that will
essentially never happen

What is “computational” security?
• The information is all there: Enc𝑘(𝑚) may completely determine 𝑘 and 𝑚
• It should be computationally infeasible to retrieve any useful information

11

The Concrete Approach

“A scheme is 𝑡, 𝜖 -secure if every adversary running for time at
most 𝑡 succeeds in breaking the scheme with probability at most 𝜖”

Sample parameters
• 𝑡 = 260

(order of the number of seconds since the big bang)
• 𝜖 = 2−30

(expected to occur once every 100 years)
• 𝜖 = 2−60

(expected to occur once every 100 billion years)

• Very important in practice, may be tailored to specific technology
• In general, hard to analyze
• Not always clear what’s can we say if the adversary runs for time 2𝑡 or 𝑡/2

12

The Asymptotic Approach

“A scheme is secure if every probabilistic polynomial-time (PPT) adversary
succeeds in breaking the scheme with only negligible probability”

Definition:
An algorithm 𝐴 runs in probabilistic polynomial-time if there exists a polynomial 𝑝(⋅)
such that, for any input 𝑥 ∈ 0,1 ∗ and random tape 𝑟 ∈ 0,1 ∗, the computation of
𝐴 𝑥; 𝑟 terminates within 𝑝 𝑥 steps.

The security parameter
• Gen takes as input the security parameter 1𝑛 and outputs 𝑘 ∈ 𝒦𝑛

• Keys produced by Gen(1𝑛) should provide security against adversaries whose
running time is polynomial in 𝑛 (increasing 𝑛 provides better security)

• 𝒦 = 𝑛∈ℕ𝒦𝑛, ℳڂ = 𝑛∈ℕℳ𝑛, 𝒞ڂ = 𝑛∈ℕ𝒞𝑛ڂ

13

Why These Choices?

• “Efficient”: Probabilistic polynomial time (PPT)
• “Negligible”: Smaller than any inverse polynomial

Intuitively well-behaved under composition:
• poly 𝑛 × poly 𝑛 = poly 𝑛

Polynomially many invocations of a PPT algorithm is still a PPT algorithm
• poly 𝑛 × negligible 𝑛 = negligible 𝑛

Polynomially many invocations of a PPT algorithm that succeeds with a
negligible probability is an algorithm that succeeds with a negligible
probability overall

14

Outline

• Security notion: Indistinguishable encryptions
• Basic primitive: Pseudorandom generator (PRG)
• PRG-based one-time pad
• Stream ciphers

15

Indistinguishable Encryptions

The most basic notion of security for symmetric-key encryption
• Encryptions of any two messages should be indistinguishable
• Adversary still observes only a single ciphertext

Seems weaker compared to perfect secrecy
• Perfectly-secure encryption reveals no information
• Intuitively, what security does indistinguishable encryptions provide?

Enc𝑘 𝑚0 ≈ Enc𝑘 𝑚1

16

Indistinguishable Encryptions

Given Π = (Gen, Enc, Dec) and an adversary 𝒜, consider the experiment INDΠ,𝒜 𝑛 :

𝒜 1𝑛

𝑘 ← Gen 1𝑛

𝑏 ← 0,1

𝑚0, 𝑚1

𝑐∗ ← Enc𝑘(𝑚𝑏)𝑐∗

𝑏′

* 𝑚0, 𝑚1 ∈ ℳ𝑛

INDΠ,𝒜(𝑛) = ቊ
1, if 𝑏′ = 𝑏
0, otherwise

Definition:
Π has indistinguishable encryptions if for every
PPT adversary 𝒜 there exists a negligible function
𝜈 ⋅ such that

Pr INDΠ,𝒜 𝑛 = 1 ≤
1

2
+ 𝜈(𝑛)

where the probability is taken over the random
coins used by 𝒜 and by the experiment

ChallengerAdversary

17

Semantic Security
• Semantic security [Goldwasser-Micali ‘82]:

“Whatever” can be computed efficiently given the ciphertext,
can essentially be computed efficiently without the ciphertext

Theorem:
Π is semantically secure if and only if it has indistinguishable encryptions

Why do we need both notions?
• Semantic security explains “what security means”
• Indistinguishability of encryptions is “easier to work with”

Turing Award ‘12

18

Outline

• Security notion: Indistinguishable encryptions
• Basic primitive: Pseudorandom generator (PRG)
• PRG-based one-time pad
• Stream ciphers

19

Pseudorandom Generators (PRGs)

𝒟

Goal: Expand a short random seed into a long “random-looking” value
• 𝐺: 0,1 ∗ → 0,1 ∗

• “Random looking” = “indistinguishable” from the uniform distribution

0,1 ℓ 𝑛

0,1 𝑛

𝑠

𝑟

0,1 ℓ 𝑛

𝐺(𝑠)

?

20

Pseudorandom Generators (PRGs)

Consider an expansion of 1 bit, i.e., 𝐺: 0,1 𝑛 → 0,1 𝑛+1

Half of 0,1 𝑛+1 is not in the image of 𝐺
0,1 𝑛

0,1 𝑛+1 =
1

2

0,1 𝑛+1

0,1 𝑛

𝑠 𝐺(𝑠)

Consider an expansion of n bits, i.e., 𝐺: 0,1 𝑛 → 0,1 2𝑛

The image of 𝐺 is negligible in 0,1 2𝑛

0,1 𝑛

0,1 2𝑛 =
2𝑛

22𝑛
= 2−𝑛 0,1 𝑛

𝑠

0,1 2𝑛

𝐺(𝑠)

21

Pseudorandom Generators (PRGs)

• The notation 𝑥 ← 0,1 𝑚 denotes that 𝑥 is sampled from the uniform distribution
over 0,1 𝑚 (each value is obtained with probability 1/2𝑚)

Definition (PRG):
Let 𝐺: 0,1 ∗ → 0,1 ∗ be a poly-time computable function and let ℓ ⋅ be a polynomial

such that for any input 𝑠 ∈ 0,1 𝑛 we have 𝐺 𝑠 ∈ 0,1 ℓ 𝑛 . Then, 𝐺 is a
pseudorandom generator if the following two conditions hold:
• Expansion: ℓ 𝑛 > 𝑛
• Pseudorandomness: For every PPT “distinguisher” 𝒟 there exists a negligible

function 𝜈 ⋅ such that

Pr
𝒔← 𝟎,𝟏 𝒏

𝒟 𝑮 𝒔 = 1 − Pr
𝒓← 𝟎,𝟏 ℓ(𝒏)

𝒟 𝒓 = 1 ≤ 𝜈 𝑛

22

Pseudorandom Generators (PRGs)
Definition (PRG):
Let 𝐺: 0,1 ∗ → 0,1 ∗ be a poly-time computable function and let ℓ ⋅ be a polynomial

such that for any input 𝑠 ∈ 0,1 𝑛 we have 𝐺 𝑠 ∈ 0,1 ℓ 𝑛 . Then, 𝐺 is a
pseudorandom generator if the following two conditions hold:
• Expansion: ℓ 𝑛 > 𝑛
• Pseudorandomness: For every PPT “distinguisher” 𝒟 there exists a negligible

function 𝜈 ⋅ such that

Pr
𝑠← 0,1 𝑛

𝒟 𝐺 𝑠 = 1 − Pr
𝑟← 0,1 ℓ(𝑛)

𝒟 𝑟 = 1 ≤ 𝜈 𝑛

0,1 ℓ 𝑛𝐺 0,1 𝑛“𝐺(𝑠) is as good as random”

23http://dilbert.com/strip/2001-10-25

24

Do PRGs Exist?

If so, then how difficult is it to construct a PRG?

Let’s gain some intuition: Can you propose PRG candidates?

Recall the two properties:
• Expansion: 𝐺 𝑠 > 𝑠
• Pseudorandomness: For every PPT 𝒟 there exists a negligible 𝜈 ⋅ such that

Pr
𝑠← 0,1 𝑛

𝒟 𝐺 𝑠 = 1 − Pr
𝑟← 0,1 ℓ(𝑛)

𝒟 𝑟 = 1 ≤ 𝜈 𝑛

25

Let’s Try

𝐺 𝑠 = 𝑠1⋯𝑠𝑛0

𝐺(𝑠) = 𝑠1⋯𝑠𝑛𝑠1

𝐺(𝑠) = 𝑠1⋯𝑠𝑛𝑧

where 𝑧 = 𝑠1 ⊕⋯⊕ 𝑠𝑛

Is it distinguishable from a truly
random string 𝑟1⋯𝑟𝑛𝑟𝑛+1? YES

Is it distinguishable from a truly
random string 𝑟1⋯𝑟𝑛𝑟𝑛+1? YES

Is it distinguishable from a truly
random string 𝑟1⋯𝑟𝑛𝑟𝑛+1? YES

• Consider the following candidates that expand a seed 𝑠 = 𝑠1⋯𝑠𝑛 ∈ 0,1 𝑛 by
a single bit:

• The existence of any PRG implies 𝑃 ≠ 𝑁𝑃
• Constructions are known based on various computational assumptions

26

A Useful Fact

0,1 ℓ 𝑛𝐺 0,1 𝑛“𝐺(𝑠) is as good as random”

All efficiently testable statistical properties of the uniform distribution are
preserved by the output of any PRG.

For example:
If 𝐺 is a PRG then there exists a negligible function 𝜈 ⋅ such that

Pr
𝑠← 0,1 𝑛

fraction of 1′s in 𝐺 𝑠 < 1/4 ≤ 𝜈(𝑛)

27

Outline

• Security notion: Indistinguishable encryptions
• Basic primitive: Pseudorandom generator (PRG)
• PRG-based one-time pad
• Stream ciphers

28

One-Time Pad Using a PRG

• Let 𝐺 be a PRG with expansion ℓ(𝑛)
• 𝒦𝑛 = 0,1 𝑛 but ℳ𝑛 = 𝒞𝑛 = 0,1 ℓ(𝑛)

• Gen 1𝑛 samples 𝑘 ← 0,1 𝑛

• Enc𝑘 𝑚 = 𝑚⊕𝐺(𝑘) & Dec𝑘 𝑐 = 𝑐 ⊕ 𝐺(𝑘)

ℓ 𝑛 = 2𝑛:
𝒦𝑛 = 2𝑛 ≪ 22𝑛 = ℳ𝑛

𝑚

⊕
𝐺(𝑘)

𝑘

29

One-Time Pad Using a PRG

• Let 𝐺 be a PRG with expansion ℓ(𝑛)
• 𝒦𝑛 = 0,1 𝑛 but ℳ𝑛 = 𝒞𝑛 = 0,1 ℓ(𝑛)

• Gen 1𝑛 samples 𝑘 ← 0,1 𝑛

• Enc𝑘 𝑚 = 𝑚⊕𝐺(𝑘) & Dec𝑘 𝑐 = 𝑐 ⊕ 𝐺(𝑘)

ℓ 𝑛 = 2𝑛:
𝒦𝑛 = 2𝑛 ≪ 22𝑛 = ℳ𝑛

Theorem:
If 𝐺 is a PRG, then the scheme has indistinguishable encryptions.

Paradigm: Proof by reduction
• Given an adversary 𝒜 for the encryption scheme, construct a distinguisher 𝒟 for

the PRG
• 𝒟 internally emulates 𝒜
• 𝒟’s efficiency and advantage are polynomially related to 𝒜’s

30

One-Time Pad Using a PRG

• Let 𝐺 be a PRG with expansion ℓ(𝑛)
• 𝒦𝑛 = 0,1 𝑛 but ℳ𝑛 = 𝒞𝑛 = 0,1 ℓ(𝑛)

• Gen 1𝑛 samples 𝑘 ← 0,1 𝑛

• Enc𝑘 𝑚 = 𝑚⊕𝐺(𝑘) & Dec𝑘 𝑐 = 𝑐 ⊕ 𝐺(𝑘)

ℓ 𝑛 = 2𝑛:
𝒦𝑛 = 2𝑛 ≪ 22𝑛 = ℳ𝑛

Theorem:
If 𝐺 is a PRG, then the scheme has indistinguishable encryptions.

Significant progress but still only “one-time” security…

Enc𝑘 𝑚1 ⊕Enc𝑘 𝑚2 = 𝑚1 ⊕𝐺 𝑘 ⊕𝑚2 ⊕𝐺 𝑘 = 𝑚1 ⊕𝑚2

31

Key-Reuse attack

• MS Word/Excel 2002 used the same key when saving changes to the same document
• Illustration from https://cryptosmith.com/2008/05/31/stream-reuse/

=

=

=

https://cryptosmith.com/2008/05/31/stream-reuse/

32

Outline

• Security notion: Indistinguishable encryptions
• Basic primitive: Pseudorandom generator (PRG)
• PRG-based one-time pad
• Stream ciphers

33

RC4
• Designed in 1987 by Ron Rivest (Rivest Cipher)
• Extremely fast, extremely simple, ideal for software
• Variable length key 40-2048 bits
• Generates blocks of 256 bytes (2048 bits)
• Very popular, used in many standards SSL/TLS, WEP, WPA
• Jan 2013: in a survey of 16 billions TLS connection ~50% protected using RC4
• Many known weaknesses:

• 2001 Mantin-Shamir: Pr 2𝑛𝑑 𝑏𝑦𝑡𝑒 = 0 = 2/256
• 2002 Mironov: 1st byte has biased away from 0
• 2011 Maitra et al.: bias in blocks 3-255
• Quick solution – throw away first 512 bytes
• 2013 AlFardan et al.: analyzed output from 245 independent 128-bit RC4 keys

found many new biases
plaintext recovery attack against TLS

34

LFSR
• Linear feedback shift register
• Very useful for hardware-based design
• the initial state of the register is the seed
• In every round the cells are shifted to the right (the last cell is the output),

the first cell becomes the XOR of certain locations

⨁
Used for:
• DVD encryption (CSS)
• GSM encryption (A5/1 and A5/2)
• Bluetooth (E0)

All broken

35

Salsa20
• Designed in 2005 by Dan Bernstein
• Part of the eSTREAM project
• Seed is 128/256 bits
• Uses additional nonce of 64 bits
• Can be used to encrypt up to 270 bits
• In 2008 Bernstein designed ChaCha based on similar principles as Salsa, but

with better diffusion
• 2014: Google replaced RC4 with ChaCha20 for TLS

