
2550 Intro to
cybersecurity

abhi shelat

L10: Passwords

Thanks Christo for slides!

Password Security game

Alice Bob

Genpw pw

Mallory

"The UNIX system was first implemented with a password
file that contained the actual passwords of all the users,
and for that reason the password file had to be heavily
protected against being either read or written. Although
historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory
for several reasons.”

Checking Passwords
• System must validate passwords provided by

users
• Thus, passwords must be stored somewhere
• Basic storage: plain text

Alice p4ssw0rd
Eve i heart doggies
Charlie 93Gd9#jv*0x3N
bob security

password.txt

Password Security game Attack

Alice Bob

Genpw pw

Mallory

Alice p4ssw0rd
Eve i heart

password.txt

Hashed Passwords
• Key idea: store “hashed” versions of passwords

• Use one-way cryptographic hash functions
• Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

• Cryptographic hash function transform input data into
scrambled output data
• Deterministic: hash(A) = hash(A)
• High entropy:

• MD5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

• Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
• Example: 221 tries for md5

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: Charlie

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Password Security game

Alice Bob

Genpw pw

Mallory

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f

hashed_password.txt
Hash

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant

• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

• Are hashed password secure from cracking?
• Attack 2:

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant

• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)

• Are hashed password secure from cracking?
• Attack 1: • Attack 2:

From Rockyou breach

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf

Most Common Passwords
Rank 2013 2014

1 123456 123456

2 password password

3 12345678 12345

4 qwerty 12345678

5 abc123 qwerty

6 123456789 123456789

7 111111 1234

8 1234567 baseball

9 iloveyou dragon

10 adobe123 football

Attack 1

Alice Bob

Genpw pw

Mallory

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f

hashed_password.txt
Hash

Dictionary Attacks

English
Dictionary

Common
Passwords

Dictionary Attacks

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

Dictionary Attacks

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

Dictionary Attacks

• Common for 60-70% of hashed passwords to be cracked in <24
hours

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

Brute force attack estimates
How big is the alphabet from which pwd are chosen?

How long is a password?

Size of password domain:

Brute force attack estimates
Size of password domain: 958 6,634,204,312,890,625

Classic Time-memory tradeoff

Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash

Classic Time-memory tradeoff

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Given a hash [h] that you want to invert, you can:

h

Classic Time-memory tradeoff

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

h Pwd Pwd
hash

Hash Pwd Pwd
hash

Hash

https://project-rainbowcrack.com/table.htm

The attack is highly effective

https://www.youtube.com/watch?v=TkMZJ3fTgrM

https://www.youtube.com/watch?v=TkMZJ3fTgrM

Attack 2: offline brute force

Alice Bob

Genpw pw

Mallory

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f

hashed_password.txt
Hash

Pwd breaches

2012: 6.5 million hashes leaked onto Internet 90% cracked in 2 weeks
2016: 177.5 million more hashes leaked 98% cracked in 1 week

How to hamper offline brute force attacks?

Mallory

charlie 2a9d119df47ff993b662a8ef36f9ea20
greta 23eb06699da16a3ee5003e5f4636e79f

hashed_password.txt

Hardening Password Hashes
• Key problem: cryptographic hashes are deterministic

• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
• This enables attackers to build lists of hashes

Hardening Password Hashes
• Key problem: cryptographic hashes are deterministic

• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
• This enables attackers to build lists of hashes

• Solution: make each password hash unique
• Add a random salt to each password before hashing
• hash(salt + password) = password hash
• Each user has a unique, random salt
• Salts can be stores in plain text

Example Salted Hashes

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

Attacking Salted Passwords

hash()
List of

possible
password

hashes

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

cbw a8
sandi 0X

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

cbw a8
sandi 0X

cbw XXXX

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X

hash(‘0X’ + word) cbw XXXXsandi YYYY

Breaking Hashed Passwords
• Stored passwords should always be salted

• Forces the attacker to brute-force each password individually

Breaking Hashed Passwords
• Stored passwords should always be salted

• Forces the attacker to brute-force each password individually

• Problem: it is now possible to compute hashes very quickly
• GPU computing: hundreds of small CPU cores
• nVidia GeForce GTX Titan Z: 5,760 cores
• GPUs can be rented from the cloud very cheaply

• $0.9 per hour (2018 prices)

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes
• Most users use (slightly permuted) dictionary words, no

symbols
• Predictability makes cracking much faster
• Lowercase + numbers ! (26+10)6 = 2B combinations

Hardening Salted Passwords
• Problem: typical hashing algorithms are too fast

• Enables GPUs to brute-force passwords

• Old solution: hash the password multiple times
• Known as key stretching
• Example: crypt used 25 rounds of DES

• New solution: use hash functions that are designed to be
slow
• Examples: bcrypt, PBKDF2, scrypt
• These algorithms include a work factor that increases the time complexity of the

calculation
• scrypt also requires a large amount of memory to compute, further complicating

brute-force attacks

Slow hash movement

Pw
Salt

Iterated hash function {x times}

Hashed pwd

bcrypt Example
• Python example; install the bcrypt package

41

[cbw@localhost ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

Best practices so far:

Dealing With Breaches

Dealing With Breaches

• Suppose you build an extremely secure password storage system
• All passwords are salted and hashed by a high-work factor function

• It is still possible for a dedicated attacker to steal and crack
passwords
• Given enough time and money, anything is possible
• E.g. The NSA

• Question: is there a principled way to detect password breaches?

Honeywords
• Key idea: store multiple salted/hashed passwords for each user

• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account

Honeywords
• Key idea: store multiple salted/hashed passwords for each user

• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account

• Implement a honeyserver that stores the index of the correct password for each user
• Honeyserver is logically and physically separate from the password database
• Silently checks that users are logging in with true passwords, not honeywords

Honeywords
• Key idea: store multiple salted/hashed passwords for each user

• As usual, users create a single password and use it to login
• User is unaware that additional honeywords are stored with their account

• Implement a honeyserver that stores the index of the correct password for each user
• Honeyserver is logically and physically separate from the password database
• Silently checks that users are logging in with true passwords, not honeywords

• What happens after a data breach?
• Attacker dumps the user/password database…
• But the attacker doesn’t know which passwords are honeywords
• Attacker cracks all passwords and uses them to login to accounts
• If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

User PW 1 PW 2 PW 3

Bob 123456 p4ssW0rd Turtles!

sandi puppies iloveyou blizzard

Alice coff33 3spr3ss0 qwerty

Cracked Passwords

Honeywords example

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)

Bob aB y4DvF7 fI bHDJ8l 52 Puu2s7
sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

Alice 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index

Bob 2
sandi 3

Alice 1

Database
Honeyserver

SHA512(“fI” | “p4ssW0rd”) ! bHDJ8l
Bob

User PW 1 PW 2 PW 3

Bob 123456 p4ssW0rd Turtles!

sandi puppies iloveyou blizzard

Alice coff33 3spr3ss0 qwerty

!

Cracked Passwords

Multiple layers of storage

Password Storage Summary
1. Never store passwords in plain text
2. Always salt and hash passwords before storing them
3. Use hash functions with a high work factor
4. Implement honeywords to detect breaches

• These rules apply to any system that needs to authenticate users
• Operating systems, websites, etc.

Password Recovery/Reset
• Problem: hashed passwords cannot be recovered (hopefully)

“Hi… I forgot my password. Can
you email me a copy? Kthxbye”

• This is why systems typically implement password reset
– Use out-of-band info to authenticate the user
– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: its possible to crack password reset

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

• Experts recommend that services not use KBA
• When asked, users should generate random answers to these questions

Choosing Passwords
Bad Algorithms
Better Heuristics
Password Reuse

Mental Algorithms

• Years of security advice have trained people to generate “secure”
passwords

Mental Algorithms

• Years of security advice have trained people to generate “secure”
passwords

1. Pick a word
2. Capitalize the first or last letter
3. Add a number (and maybe a symbol) to the beginning or end

Mental Algorithms

• Years of security advice have trained people to generate “secure”
passwords

1. Pick a word
2. Capitalize the first or last letter
3. Add a number (and maybe a symbol) to the beginning or end

1. Pick a word
2. Replace some of the letters with symbols (a ! @, s ! $, etc.)
3. Maybe capitalize the first or last letter

Human Generated Passwords
Password Entropy (bits) Strength Crackability Problem

Computer3@ 60 Weak Easy Dictionary word, obvious transformations

cl4ssr00m 47 Weak Easy Dictionary word, obvious transformations

7Dogsled* 54 Weak Easy Dictionary word, obvious transformations

Tjw1989&6 54 Weak Easy Users initials and birthday, obvious transformations

B4nk0f4m3r1c4! 83 Medium Easy Includes service name, obvious transformations

Human Generated Passwords
Password Entropy (bits) Strength Crackability Problem

Computer3@ 60 Weak Easy Dictionary word, obvious transformations

cl4ssr00m 47 Weak Easy Dictionary word, obvious transformations

7Dogsled* 54 Weak Easy Dictionary word, obvious transformations

Tjw1989&6 54 Weak Easy Users initials and birthday, obvious transformations

B4nk0f4m3r1c4! 83 Medium Easy Includes service name, obvious transformations

Human Generated Passwords
Password Entropy (bits) Strength Crackability Problem

Computer3@ 60 Weak Easy Dictionary word, obvious transformations

cl4ssr00m 47 Weak Easy Dictionary word, obvious transformations

7Dogsled* 54 Weak Easy Dictionary word, obvious transformations

Tjw1989&6 54 Weak Easy Users initials and birthday, obvious transformations

B4nk0f4m3r1c4! 83 Medium Easy Includes service name, obvious transformations

Human Generated Passwords
Password Entropy (bits) Strength Crackability Problem

Computer3@ 60 Weak Easy Dictionary word, obvious transformations

cl4ssr00m 47 Weak Easy Dictionary word, obvious transformations

7Dogsled* 54 Weak Easy Dictionary word, obvious transformations

Tjw1989&6 54 Weak Easy Users initials and birthday, obvious transformations

B4nk0f4m3r1c4! 83 Medium Easy Includes service name, obvious transformations

• Modern attackers are sophisticated
• No need for brute force cracking!
• Use dictionaries containing common words and passwords from prior leaks
• Apply common “mental” permutations

Password classes
1 character class and 8 characters minimum

4 character class and 8 characters minimum

Programs
John the ripper

hashcat

pcfg

*XHVVLQJ�0HWKRGV
Ɣ -RKQ�WKH�5LSSHU

Ɣ +DVKFDW

Ɣ 0DUNRY�0RGHOV

�

S D V V

W

���

H

Password Requirements
• comp n and basic n: use at least n

characters

• k word n: combine at least k words
using at least n characters

• d class n: use at least d character
types (upper, lower, digit, symbol)
with at least n characters

Plot from Shay et al.
https://www.blaseur.com/papers/tissec_1026.pdf

Neural Nets

178 25th USENIX Security Symposium USENIX Association

the next element in a string based on the preceding el-
ements [49, 84]. For example, in generating the string
password, a neural network might be given passwor and
output that d has a high probability of occurring next.

Although password creation and text generation are
conceptually similar, little research has attempted to use
insights from text generation to model passwords. A
decade ago, neural networks were proposed as a method
for classifying passwords into two very broad categories
(weak or strong) [30], but that work did not seek to
model the order in which passwords would be guessed
or other aspects of a guessing attack. To our knowledge,
the only proposal to use neural networks in a password-
guessing attack was a recent blog post [71]. In sharp
contrast to our extensive testing of different parameters
to make neural networks effective in practice, that work
made few refinements to the application of neural net-
works, leading the author to doubt that the approach has
“any practical relevance.” Additionally, that work sought
only to model a few likely password guesses, as opposed
to our use of Monte Carlo methods to simulate an arbi-
trary number of guesses.

Conceptually, neural networks have advantages over
other methods. In contrast to PCFGs and Markov mod-
els, the sequences generated by neural networks can be
inexact, novel sequences [49], which led to our intu-
ition that neural networks might be appropriate for pass-
word guessing. Prior approaches to probabilistic pass-
word guessing (e.g., Markov models [26]) were suffi-
ciently memory-intensive to be impractical on only the
client-side. However, neural networks can model natu-
ral language in far less space than Markov models [68].
Neural networks have also been shown to transfer knowl-
edge about one task to related tasks [97]. This is cru-
cial for targeting novel password-composition policies,
for which training data is sparse at best.

3 System Design

We experimented with a broad range of options in a large
design space and eventually arrived at a system design
that 1) leverages neural networks for password guessing,
and 2) provides a client-side guess estimation method.

3.1 Measuring Password Strength
Similarly to Markov models, neural networks in our sys-
tem are trained to generate the next character of a pass-
word given the preceding characters of a password. Fig-
ure 1 illustrates our construction. Like in Markov mod-
els [34, 65], we rely on a special password-ending sym-
bol to model the probability of ending a password af-
ter a sequence of characters. For example, to calculate
the probability of the entire password ‘bad’, we would

,QSXW

D������
E������
F�����
G�����
(1'���

D�����E���
F�����G���
(1'���

D�����E���
F�����G���
(1'���

D�����E���
F�����G���
(1'���

FRQWH[W��ED

D�����E���
F�����G���
(1'���

1HXUDO�
1HWZRUN

&RQWH[W�
FKDUDFWHUV

$��������
D��������
%��������
E��������
&������
F������
'������
G������
(1'���

8SSHUFDVH�
PRGHOLQJ

2XWSXW

3RVW��
SURFHVVLQJ

Figure 1: An example of using a neural network to predict
the next character of a password fragment. The network is
being used to predict a ‘d’ given the context ‘ba’. This network
uses four characters of context. The probabilities of each next
character are the output of the network. Post processing on the
network can infer probabilities of uppercase characters.

start with an empty password, and query the network
for the probability of seeing a ‘b’, then seeing an ‘a’ af-
ter ‘b’, and then of seeing a ‘d’ after ‘ba’, then of see-
ing a complete password after ‘bad’. To generate pass-
words from a neural network model, we enumerate all
possible passwords whose probability is above a given
threshold using a modified beam-search [64], a hybrid
of depth-first and breadth-first search. If necessary, we
can suppress the generation of non-desirable passwords
(e.g., those against the target password policy) by filter-
ing those passwords. Then, we sort passwords by their
probability. We use beam-search because breadth-first’s
memory requirements do not scale, and because it al-
lows us to take better advantage of GPU parallel pro-
cessing power than depth-first search. Fundamentally,
this method of guess enumeration is similar to that used
in Markov models, and it could benefit from the same op-
timizations, such as approximate sorting [37]. A major
advantage over Markov models is that the neural network
model can be efficiently implemented on the GPU.

Calculating Guess Numbers In evaluating password
strength by modeling a guessing attack, we calculate a
password’s guess number, or how many guesses it would
take an attacker to arrive at that password if guessing
passwords in descending order of likelihood. The tradi-
tional method of calculating guess numbers by enumera-
tion is computationally intensive. For example, enumer-
ating more than 1010 passwords would take roughly 16
days in our unoptimized implementation on an NVidia
GeForce GTX 980 Ti. However, in addition to guess
number enumeration, we can also estimate guess num-
bers accurately and efficiently using Monte Carlo simu-
lations, as proposed by Dell’Amico and Filippone [34].

3.2 Our Approach
There are many design decisions necessary to train neu-
ral networks. The design space forces us to decide on

4

Fast, Lean, and Accurate: Modeling Password
Guessability Using Neural Networks

Melicher et al, Usenix’2016

�FODVV����1HXUDO�1HWZRUNV�*XHVV�%HWWHU

��

Password feedback

https://cups.cs.cmu.edu/meter/

https://cups.cs.cmu.edu/meter/

Better Heuristics

• Notice that in , length matters
more than symbol types

𝑆 = 𝐿 ∗ 𝑙𝑜𝑔2𝑁

• Choose longer passwords (16+ characters)
• Don’t worry about uppercase, digits, or symbols

Better Heuristics

• Notice that in , length matters
more than symbol types

𝑆 = 𝐿 ∗ 𝑙𝑜𝑔2𝑁

• Choose longer passwords (16+ characters)
• Don’t worry about uppercase, digits, or symbols

• Use mnemonics
• Choose a sentence or phrase
• Reduce it to the first letter of each word
• Insert random uppercase, digits, and symbols

Better Heuristics

• Notice that in , length matters
more than symbol types

𝑆 = 𝐿 ∗ 𝑙𝑜𝑔2𝑁

• Choose longer passwords (16+ characters)
• Don’t worry about uppercase, digits, or symbols

• Use mnemonics
• Choose a sentence or phrase
• Reduce it to the first letter of each word
• Insert random uppercase, digits, and symbols

I double dare you, say “what” one more time

Better Heuristics

• Notice that in , length matters
more than symbol types

𝑆 = 𝐿 ∗ 𝑙𝑜𝑔2𝑁

• Choose longer passwords (16+ characters)
• Don’t worry about uppercase, digits, or symbols

• Use mnemonics
• Choose a sentence or phrase
• Reduce it to the first letter of each word
• Insert random uppercase, digits, and symbols

I double dare you, say “what” one more time
i2Dy,s”w”omt

Password Reuse

• People have difficulty remembering >4 passwords
• Thus, people tend to reuse passwords across services
• What happens if any one of these services is compromised?

• Service-specific passwords are a beneficial form of
compartmentalization
• Limits the damage when one service is inevitably breaches

• Use a password manager
• Some service providers now check for password reuse

• Forbid users from selecting passwords that have appeared in leaks

Two Factor Authentication
Biometrics
SMS
Authentication Codes
Smartcards & Hardware Tokens

Types of Secrets
• Actors provide their secret to log-in to a system
• Three classes of secrets:

1. Something you know
• Example: a password

2. Something you have
• Examples: a smart card or smart phone

3. Something you are
• Examples: fingerprint, voice scan, iris scan

65

Biometrics

• ancient Greek: bios ="life", metron ="measure“
• Physical features

• Fingerprints
• Face recognition
• Retinal and iris scans
• Hand geometry

• Behavioral characteristics
• Handwriting recognition
• Voice recognition
• Typing cadence
• Gait

Fingerprints

• Ubiquitous on modern smartphones, some laptops
• Secure?

• May be subpoenaed by law enforcement
• Relatively easy to compromise

1. Pick up a latent fingerprint (e.g. off a glass) using tape or glue
2. Photograph and enhance the fingerprint
3. Etch the print into gelatin backed by a conductor
4. Profit ;)

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?

• It depends

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?

• It depends

• Vulnerable to law enforcement requests
• Using 2D images?

• Not secure
• Trivial to break with a photo of the target’s face

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?

• It depends

• Vulnerable to law enforcement requests
• Using 2D images?

• Not secure
• Trivial to break with a photo of the target’s face

• Using 2D images + 3D depth maps?
• More secure, but not perfect
• Can be broken by crafting a lifelike mask of the target

Voice Recognition

• Secure?
• Very much depends on the implementation

Voice Recognition

• Secure?
• Very much depends on the implementation

• Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure

• Attacker can record and replay your voice

Voice Recognition

• Secure?
• Very much depends on the implementation

• Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure

• Attacker can record and replay your voice

Voice Recognition

• Secure?
• Very much depends on the implementation

• Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure

• Attacker can record and replay your voice

• Others ask you to train a model of your voice
• Train the system by speaking several sentences
• To authenticate, speak several randomly chosen words
• Not vulnerable to trivial replay attacks, but still vulnerable

• Given enough samples of your voice, an attacker can train a synthetic voice AI that sounds just
like you

Fundamental Issue With Biometrics

• Biometrics are immutable
• You are the password, and you can’t change
• Unless you plan on undergoing plastic surgery?

• Once compromised, there is no reset
• Passwords and tokens can be changed

• Example: the Office of Personnel Management (OPM) breach
• US gov agency responsible for background checks
• Had fingerprint records of all people with security clearance
• Breached by China in 2015, all records stolen :(

Something You Have

• Two-factor authentication has become more commonplace
• Possible second factors:

• SMS passcodes
• Time-based one time passwords
• Hardware tokens

SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent

to your number

SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent

to your number

• SMS two factor is deprecated. Why?

SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent

to your number

• SMS two factor is deprecated. Why?
• Social engineering the phone company

1. Call and pretend to be the victim
2. Say “I got a new SIM, please activate it”
3. If successful, phone calls and SMS are now sent to your

SIM in your phone, instead of the victim

• Not hypothetical: successfully used against many
victims

One Time Passwords

• Generate ephemeral passcodes that
change over time

• To login, supply normal password and
the current one time password

• Relies on a shared secret between
your mobile device and the service
provider
• Shared secret allows both parties to know

the current one time password

Duo Mobile

Lastpass Authenticator

Google Authenticator

Changes
every few
minutes

Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC>
TI = <length of time the password should be valid>
K = <shared secret key>
d = <the desired number of digits in the password>
TC = floor((unixtime(now) − unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted
SHA1-based signature

Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC>
TI = <length of time the password should be valid>
K = <shared secret key>
d = <the desired number of digits in the password>
TC = floor((unixtime(now) − unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted
SHA1-based signature

Given K, this algorithm can
be run on your phone and by

the service provider

Secret Sharing for TOTP

Hardware Two Factor

• Special hardware designed to hold
cryptographic keys

• Physically resistant to key extraction
attacks
• E.g. scanning tunneling electron

microscopes

• Uses:
• 2nd factor for OS log-on
• 2nd factor for some online services
• Storage of PGP and SSH keys

Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox
(must be manually enabled)

• Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox
(must be manually enabled)

• Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

• Pro tip: always buy 2 security keys
• Associate both with your accounts
• Keep one locked in a safe, in case you lose your

primary key ;)

Authentication Protocols
Unix, PAM, and crypt
Network Information Service (NIS, aka Yellow Pages)
Needham-Schroeder and Kerberos

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

• Next topic: building authentication systems
• Given a user and password, how does the system authenticate the user?
• How can we perform efficient, secure authentication in a distributed system?

Authentication in Unix/Linux

• Users authenticate with the system by interacting with login
• Prompts for username and password
• Credentials checked against locally stored credentials

• By default, password policies specified in a centralized, modular way
• On Linux, using Pluggable Authentication Modules (PAM)
• Authorizes users, as well as environment, shell, prints MOTD, etc.

Example PAM Configuration
cat /etc/pam.d/system-auth
#%PAM-1.0

auth required pam_unix.so try_first_pass nullok
auth optional pam_permit.so
auth required pam_env.so

account required pam_unix.so
account optional pam_permit.so
account required pam_time.so

password required pam_unix.so try_first_pass nullok sha512 shadow
password optional pam_permit.so

session required pam_limits.so
session required pam_unix.so
session optional pam_permit.so

• Use SHA512 as the hash function
• Use /etc/shadow for storage

Unix Passwords

• Traditional method: crypt
• 25 iterations of DES on a zeroed vector
• First eight bytes of password used as key (additional bytes are ignored)
• 12-bit salt

• Modern version of crypt are more extensible
• Support for additional hash functions like MD5, SHA256, and SHA512
• Key lengthening: defaults to 5000 iterations, up to 108 – 1
• Full password used
• Up to 16 bytes of salt

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

• Turns out, world-readable hashes are Bad Idea

• Hashes now located in /etc/shadow
• Also includes account metadata like expiration
• Only visible to root

Password Storage on Linux

85

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

Password Storage on Linux

85

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash>
Algo: 1 = MD5, 5 = SHA256, 6 = SHA512

Distributed Authentication

• Early on, people recognized the need for authentication in distributed
environments
• Example: university lab with many workstations
• Example: file server that accepts remote connections

• Synchronizing and managing password files on each machine is not
scalable
• Ideally, you want a centralized repository that stores policy and credentials

The Yellow Pages

• Network Information Service (NIS), a.k.a. the Yellow Pages
• Developed by Sun to distribute network configurations
• Central directory for users, hostnames, email aliases, etc.
• Exposed through yp* family of command line tools

• For instance, depending on /etc/nsswitch.conf, hostname lookups can
be resolved by using
• /etc/hosts
• DNS
• NIS

• Superseded by NIS+, LDAP,

NIS Password Hashes

[cbw@workstation ~] ypcat passwd
afbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune:/bin/bash
philowe:T.yUMej3XSNAM:13503:65104::/home/philowe:/bin/bash
bratus:2omkwsYXWiLDo:6312:65117::/home/bratus:/bin/tcsh
adkap:ZfHdSwSz9WhKU:9034:65118::/home/adkap:/bin/zsh
amitpoon:i3LjTqgU9gYSc:8198:65117::/home/amitpoon:/bin/tcsh
kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash
david87:vA06wxjJEUgBE:13055:65101::/home/david87:/bin/bash
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash
ppkk315:s6CTSAkqqr/nU:14061:65101::/home/ppkk315:/bin/bash
haynesma:JYWaQUARSqDQE:14287:65105::/home/haynesma:/bin/bash
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh
sushma:G6XNe18GpeQj.:13682:65104::/home/sushma:/bin/bash
guerin1:n0Da2TmO9MDBI:14512:65105::/home/guerin1:/bin/bash

• Crypt based password hashes
• Can easily be cracked
• Many networks still rely on insecure NIS

Distributed Authentication Revisited

• Goal: a user would like to use some
resource on the network
• File server, printer, database, mail

server, etc. cbw

Database

Auth Server

Distributed Authentication Revisited

• Goal: a user would like to use some
resource on the network
• File server, printer, database, mail

server, etc. cbw

Database

Auth Server

Distributed Authentication Revisited

• Goal: a user would like to use some
resource on the network
• File server, printer, database, mail

server, etc.

• Problem: access to resources requires
authentication
• Auth Server contains all credential

information
• You do not want to replicate the

credentials on all services

cbw

Database

Auth Server

Attacker Goals and Threat Model

• Goal: steal credentials and gain access
to protected resources

• Local attacker – may spy on traffic

• Active attacker – may send messages

• In some cases, may be able to steal
information from users

cbw

Database

Auth Server

Attacker Goals and Threat Model

• Goal: steal credentials and gain access
to protected resources

• Local attacker – may spy on traffic

• Active attacker – may send messages

• In some cases, may be able to steal
information from users

cbw

Database

Auth Server

I wanna access the
Database too ;)

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

cbw:p4ssw0rd

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

cbw:p4ssw0rd

Please verify
cbw:p4ssw0rd

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

• Problems: cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

• Problems:
• Passwords being sent in the clear
• Attacker can observe them!
• Clearly we need encryption

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

cbw:p4ssw0rd

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

• Problems:
• Passwords being sent in the clear
• Attacker can observe them!
• Clearly we need encryption

• Database learns about passwords
• Additional point of compromise
• Ideally, only the user and the Auth

Server should know their password

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

KBS is not sent in the clear, authenticates B

Needham-Schroeder Example

1) 𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

cbw

Database

Auth Server
cbw

cbw

db

db

Needham-Schroeder Example

1) 𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

cbw

Database

Auth Server

cbw, db, 𝑁𝑖

cbw

cbw

db

db

Needham-Schroeder Example

1) 𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖
2) 𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

}
𝐾𝐴𝑆

cbw

Database

Auth Server

{ , Kcbw-db, db, {Kcbw-db, cbw}Kdb}Kcbw𝑁𝑖

cbw

cbw

db

db
cbw-db

Needham-Schroeder Example

1) 𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖
2) 𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

}
𝐾𝐴𝑆

3) 𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆 cbw

Database

Auth Server
cbw

cbw

db

db
cbw-db

cbw-db
{Kcbw-db, cbw}Kdb

Needham-Schroeder Example

1) 𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖
2) 𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

}
𝐾𝐴𝑆

3) 𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

4) 𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

cbw

Database

Auth Server

{ }Kcbw-db𝑁𝑗

cbw

cbw

db

db
cbw-db

cbw-db

Needham-Schroeder Example

1) 𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖
2) 𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

}
𝐾𝐴𝑆

3) 𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

4) 𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

5) 𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

cbw

Database

Auth Server
cbw

cbw

db

db
cbw-db

cbw-db
{ }Kcbw-db𝑁𝑗 − 1

Attacking Needham-Schroeder

cbw

Database

Auth Server

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

cbw

Database

Auth Server

cbw, db, 𝑁𝑖

{ , Kcbw-db, db, {Kcbw-db, cbw}Kdb}Kcbw𝑁𝑖

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

cbw

Database

Auth Server

cbw, db, 𝑁𝑖

{ , Kcbw-db, db, {Kcbw-db, cbw}Kdb}Kcbw𝑁𝑖

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

cbw

Database

Auth Server

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

cbw

Database

Auth Server

cbw, db, 𝑁𝑖

{ , Kevil, db, {Kevil, cbw}Kdb}Kcbw𝑁𝑖

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

cbw, db, 𝑁𝑖

{ , Kevil, db, {Kevil, cbw}Kdb}Kcbw𝑁𝑖

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

{Kevil, cbw}Kdb

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

{ }Kcbw-db𝑁𝑗{Kcbw-db, cbw}Kdb

cbwcbw

db

db

evil cbw-db

Replay Attack

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

Typical, Benign Protocol

Replay Attack

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

1)
2)

3)

𝑀 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝑀:{𝑁𝑗}𝐾𝐴𝐵

𝑀 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

Typical, Benign Protocol Replay Attack

Replay Attack

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

1)
2)

3)

𝑀 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝑀:{𝑁𝑗}𝐾𝐴𝐵

𝑀 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB

• So the attacker can also steal KAS

Replay Attack

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

1)
2)

3)

𝑀 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝑀:{𝑁𝑗}𝐾𝐴𝐵

𝑀 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB

• So the attacker can also steal KAS

• However, what happens after A changes KAS

Replay Attack

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

1)
2)

3)

𝑀 → 𝐵:{𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

𝐵 → 𝑀:{𝑁𝑗}𝐾𝐴𝐵

𝑀 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB

• So the attacker can also steal KAS

• However, what happens after A changes KAS

• Attacker can still conduct the replay attack! Only is KAB necessary!

Fixed Needham-Schroeder Protocol

1)

2)

3)

4)

5)

𝐴 → 𝑆:𝐴, 𝐵, 𝑁𝑖

𝑆 → 𝐴:{𝑁𝑖, 𝐾𝐴𝐵, 𝐵, {𝐾𝐴𝐵, 𝐴, 𝑇}𝐾𝐵𝑆
}

𝐾𝐴𝑆

𝐴 → 𝐵:{𝐾𝐴𝐵, 𝐴, 𝑇}𝐾𝐵𝑆

𝐵 → 𝐴:{𝑁𝑗}𝐾𝐴𝐵

𝐴 → 𝐵:{𝑁𝑗 − 1}
𝐾𝐴𝐵

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

• T is a timestamp chosen by S

B only accepts requests
with fresh timestamps

Kerberos

• Created as part of MIT Project Athena
• Based on Needham-Schroeder

• Provides mutual authentication over untrusted networks
• Tickets as assertions of authenticity, authorization
• Forms basis of Active Directory authentication

• Principals
• Client
• Server
• Key distribution center (KDC)
• Authentication server (AS)
• Ticket granting server (TGS)

Kerberos Example

cbw

Database

Auth Server
cbw

cbw

tgt

db

Ticket Granting
Server

tgt

db

Kerberos Example

cbw

Database

Auth Server

cbw

cbw

cbw

tgt

db

Ticket Granting
Server

tgt

db

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT𝑐𝑏𝑤

cbw

cbw

tgt

db

cbw-tgs

Ticket Granting
Server

tgt

db

TGT

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT𝑐𝑏𝑤

cbw

cbw

tgt

db

cbw-tgs

TGT, db, {cbw, T}Kcbw-tgs

Ticket Granting
Server

tgt

db

TGT

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT𝑐𝑏𝑤

cbw

cbw

tgt

db

cbw-tgs

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT𝑐𝑏𝑤

cbw

cbw

tgt

db

cbw-tgs

cbw-db

{Kcbw-db}Kdb, {cbw, T}Kcbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Kerberos Example

cbw

Database

Auth Server

{T - 1}Kcbw-db

{ , Kcbw-tgs}Kcbw , TGT𝑐𝑏𝑤

cbw

cbw

tgt

db

cbw-tgs

cbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Kerberos Example

cbw

Database

Auth Server

{T - 1}Kcbw-db

{ , Kcbw-tgs}Kcbw , TGT𝑐𝑏𝑤

cbw

cbw

tgt

db

cbw-tgs

cbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

• Time synchronization
• Inaccurate clocks lead to protocol failures (due to timestamps)
• Solution?

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

• Time synchronization
• Inaccurate clocks lead to protocol failures (due to timestamps)
• Solution?
• Use NTP ;)

Sources
1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Honeywords, Ari Juels and Ron Rivest: http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf

• For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent work
of Blas Ur: http://www.blaseur.com/pubs.htm

https://wkr.io/
http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf
http://www.blaseur.com/pubs.htm

