2550 Intro to
cybersecurity

110: Passwords

abhi shelat , .
Thanks Christo for slides!

"

\ Touch ID or Enter

S

-
N e o

2. : |
:

Password Security game

Operating R. Stockton Gaines
Systems Editor

Password Security:
A Case History

Robert Morris and Ken Thompson
Bell Laboratories

"~ This paper describes the history of the design of the

password security scheme on a remotely accessed time-
sharing system. The present design was the result of
countering observed attempts to penetrate the system.
The result is a compromise between extreme security
and ease of use.

Key Words and Phrases: operating systems,

passwords, computer security
CR Categories: 2.41, 4.35

Communications November 1979
of Volume 22

the ACM Number 11

"The UNIX system was first implemented with a password
file that contained the actual passwords of all the users,
and for that reason the password file had to be heavily
protected against being either read or written. Although
historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory
for several reasons.”

Checking Passwords

» System must validate passwords provided by
USers

* Thus, passwords must be stored somewhere
e Basic storage: plain text

password.txt

Alice p4sswOrd
Eve | heart doggies
Charlie 93Gd9#jv*Ox3N

bob security

Password Security game Attack

Alice p4sswOrd
Eve | heart

RockYou Hack: From Bad
To Worse

Nik Cubrilovic]

@nikcub / 2:42 am EST * December 15, 2009 Comment

Earlier today news spread that

social application site RockYou

had suffered a data breached that
resulted in the exposure of over 32 Million user
accounts. To compound the severity of the security
breach, it was found that RockYou @ are storing all
user account data in plain text in their database,
exposing all that information to attackers. RockYou
have yet to inform users of the breach, and their blog
IS eerily silent — but the details of the security breach

are going from bad to worse.

Hashed Passwords

* Key Idea: store “hashed” versions of passwords

» Use one-way cryptographic hash functions
 Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

e Cryptographic hash function transform input data into

scrambled output data
e Deterministic: hash(A) = hash(A)
« High entropy:
 MD5(‘security’) = €91e6348157868de9dd8h25c81aebfh9

 MD5(‘'security?’) = 8632c375e9eba096df51844a5a43ae€93
o MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

» Collision resistant
» Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
 Example: 22" tries for md5

Hashed Password Example

2

User: Charlie

hashed_password.txt

charlie 2a9d119df471tf993b662a8ef36f9ea20

greta 23eb06699dal16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

Hashed Password Example
ED i TS

User: Charlie

hashed_passwo’ txt

charlie 2a9d119df471tf993b662a8ef36f9ea20

greta 23eb06699dal16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

Hashed Password Example

MD5(‘p4sswOrd’) =
2a9d119df47ff993b662a8ef3619ea20

User: Charlie

hashed_password.txt

charlie 2a9d119df471t993b662a8ef36f9ea20

greta 23eb06699dal16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb?

Hashed Password Example

MD5(‘p4sswOrd’) =
2a9d119df471tf993b662a8ef36f9ea20
User: Charlie

MD5('2a9d119df47ff993b662a8ef36f9ea20’)
‘ = b35596ed3f0d5134739292faa04f7ca3

hashed_password.txt

charlie 2a9d119df471tf993b662a8ef36f9ea20

greta 23eb06699dal16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

Hashed Password Example

MD5(‘p4sswOrd’) =
2a9d119df471tf993b662a8ef36f9ea20
User: Charlie

MD5('2a9d119df47ff993b662a8ef36f9ea20’)
‘ = b35596ed3f0d5134739292faa04f7ca3

hashed passw . xt

charlie 2a9d119df471tf993b662a8ef36f9ea20

greta 23eb06699dal16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

Password Security game

hachad nacewnrd +vt

charlie 2a9d119df47t993b662a8ef36f9ea20
greta 23eb06699dal16a3ee5003e5f4636e79f

Attacking Password Hashes

* Recall: cryptographic hashes are collision resistant
» Locating A’ such that hash(A) = hash(A') takes a long time (hopefully)

e Are hashed password secure from cracking?
» Attack 2:

Attacking Password Hashes

* Recall: cryptographic hashes are collision resistant
» Locating A’ such that hash(A) = hash(A') takes a long time (hopefully)

e Are hashed password secure from cracking?
» Attack 1: » Attack 2:

The authors have conducted experiments to try to
determine typical users’ habits 1n the choice of passwords
when no constraint is put on their choice. The results
were disappointing, except to the bad guy. In a collection
of 3,289 passwords gathered from many users over a
long period of time,

15 were a single ASCII character;

72 were strings of two ASCII characters;

464 were strings of three ASCII characters;

477 were strings of four alphamerics;

706 were five letters, all upper-case or all lower-case;
605 were six letters, all lower-case.

An additional 492 passwords appeared 1n various avail-
able dictionaries, name lists, and the like. A total of 2,831

or 86 percent of this sample of passwords fell into one of
these classes.

From Rockyou breach

Password Number of Users with Password Number of Users with
Password (Absolute) Password (Absolute)
1 123456 290731 11 Nicole 17168
2 12345 79078 12 Daniel 16409
3 123456789 76790 13 babygirl 16094
4 Password 61958 14 monkey 15294
5 iloveyou 51622 15 Jessica 15162
6 princess 35231 16 Lovely 14950
7 rockyou 22588 17 michael 14898
8 1234567 21726 18 Ashley 14329
9 12345678 20553 19 654321 13984
10 abc123 17542 20 Qwerty 13856

Password Popularity—Top 20

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf

20%

15% —
10% —
5% [
0

- "N IN M == O NN M = O\ N INn

N ™~ N MOA T O O NOO MO N

MNOQ‘NPMQNMONS

- = == NN NMMNM M <

Accumulated Percent of Dictionary Attack Success

Most Common Passwords

Rank 2013 2014

1 123456 123456

2 password password
3 12345678 12345

4 gwerty 12345678
5 abc123 gwerty

6 123456789 123456789
/ 111111 1234

8 1234567 baseball

9 iloveyou dragon

10 adobe123 football

Attack 1

hachad nacewnrd +vt

charlie 2a9d119df47t993b662a8ef36f9ea20
greta 23eb06699dal16a3ee5003e5f4636e79f

Dictionary Attacks

Dictionary Attacks

English i List of

Dictionary possible
password
B e B

Common
Passwords

Dictionary Attacks

English l

List of

o " hashed
ictionary pOSsIDIE password.txt
password
I hashes
@F
"

Common
Passwords

Dictionary Attacks

English \V/\ List of

hashed

Dictionary possible password.txt
password

B) B

Common

Passwords

« Common for 60-70% of hashed passwords to be cracked in <24
hours

Brute force attack estimates

How big Is the alphabet from which pwd are chosen?

How long Is a password?

Size of password domain:

Brute force attack estimates

Size of password domain: 958 6,634,204,312,890, 625

Built by Edward Betts. Comments welcome: edward @4angle.com

Last updated: 07 February 2020.

3.5" internal drives

Price
per TB

$18.75
$22.25
$22.50
$22.52
$23.33
$23.92
$24.00

$24.06

$24.42

$24.66
$25.00
$25.00

$25.40

$25.67

$25.75
$26.00
more

Price
$149.99
$88.99
$89.99
$135.12
$139.99
$334.88
$71.99

$384.99

$292.99

$73.99
$49.99
$99.99

$253.99

$307.99

$102.99
$103.99

Size
8TB
4TB
4TB
6TB
6TB
14TB
3TB

16TB

12TB

3TB
218
41B

10TB

1278

4TB
4TB

Drive
Seagate BarraCuda ST8000DMO004 8TB 5400 RPM 256MB Cache SATA 6.0Gb/s 3.5" Internal Hard Drive Bare Drive

WD Blue 4TB Desktop Hard Disk Drive - 5400 RPM SATA 6Gb/s 64MB Cache 3.5 Inch - WD40EZRZ

Seagate BarraCuda ST4000DM004 4TB 5400 RPM 256MB Cache SATA 6.0Gb/s 3.5" Hard Drives Bare Drive - OEM

Seagate BarraCuda ST6000DMO003 6TB 5400 RPM 256MB Cache SATA 6.0Gb/s 3.5" Internal Hard Drive Bare Drive

WD Blue 6TB Desktop Hard Disk Drive - 5400 RPM SATA 6Gb/s 256MB Cache 3.5 Inch - WD60EZAZ
Seagate Exos X16 ST14000NMO001G 14TB 7200 RPM 256MB Cache SATA 6.0Gb/s 3.5" Hard Drives, 512E/4KN

WD Blue 3TB Desktop Hard Disk Drive - 5400 RPM SATA 6Gb/s 64MB Cache 3.5 Inch - WD30EZRZ

Seagate Exos 16TB Enterprise HDD X16 SATA 6Gb/s 512e/4Kn 7200 RPM 256MB Cache 3.5" Internal Hard Drive
ST16000NMO01G

Seagate 12TB HDD Exos X14 7200 RPM 512e/4Kn SATA 6Gb/s 256MB Cache 3.5-Inch Enterprise Hard Drive
(ST12000NMO0008)

Seagate BarraCuda ST3000DMO07 3TB 5400 RPM 256MB Cache SATA 6.0Gb/s 3.5" Hard Drives

Seagate BarraCuda ST2000DMO008 2TB 7200 RPM 256MB Cache SATA 6.0Gb/s 3.5" Hard Drive Bare Drive

Seagate IronWolf 4TB NAS Hard Drive 5900 RPM 64MB Cache SATA 6.0Gb/s 3.5" Internal Hard Drive ST4000VNOQ8

Seagate Exos Enterprise Capacity 3.5" HDD 10TB (Helium) 7200 RPM SATA 6Gb/s 256MB Cache Hyperscale 512¢e
Internal Hard Drive ST10000NMO0O016

Seagate Exos Enterprise Capacity ST12000NM0007 12TB 7200 RPM SATA 6Gb/s 256MB Enterprise Hard Drive (Helium
& 3.5 inch)

WD Purple 4TB Surveillance Hard Disk Drive - 5400 RPM Class SATA 6Gb/s 64MB Cache 3.5 Inch WD40PURZ

Seagate SkyHawk 4TB Surveillance Hard Drive 64MB Cache SATA 6.0Gb/s 3.5" Internal Hard Drive ST4000VX007

Classic Time-memory tradeoft

hash

 Pwd [l Pwc I Hash
hash

Classic Time-memory tradeoft

o
hash

hash

=

hash

s B3

hash

hash hash hash hash hash hash hash hash

Given a hash [h] that you want to invert, you can:

Classic Time-memory tradeoft

Pwd

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd

Pwd
hash

o

hash

e &

hash

o

hash

e &

hash

Pwd
hash

Pwd
hash

Pwd
hash

Pwd
hash

SHA1 Rainbow Tables

Table ID

#= shal_ascii-32-95#1-7

31 shal_ascii-32-95#1-8

32 shal_mixalpha-numeric#1-8

#- sha1_mixalpha-numeric#1-9

1< shal1_loweralpha-numeric#1-9

32 shal_loweralpha-numeric#1-10

Charset

ascii-32-95

ascii-32-95

mixalpha-numeric

mixalpha-numeric

loweralpha-numeric

loweralpha-numeric

Plaintext
Length

1to 7

1t0 8

1t0 8

1t09

1t09

1t0 10

Key Space

70,576,641,626,495

6,704,780,954,517,120

221,919,451,578,090

13,759,005,997,841,642

104,461,669,716,084

3,760,620,109,779,060

Success
Rate

99.9 %

96.8 %

99.9 %

96.8 %

99.9 %

96.8 %

Table
Size

52
GB
64
GB

460
GB
576
GB

127
GB
160
GB

690
GB
864
GB

65
GB
80
GB

316
GB
396
GB

Files

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

https://project-rainbowcrack.com/table.htm

Performance

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

Perfect
Non-perfect

RainbowCrack Software Features

¢ High performance hash cracking on PC (> 10,000,000,000,000 plaintext tests per
second) «2 nV|D'A AMI

¢ Optimized implementation of time-memory trade-off algorithm
e GPU acceleration with NVIDIA and AMD GPUs

e GPU acceleration with multiple GPUs

e Supports 64-bit Windows operating system

e Fasy to use

e RainbowCrack 1.7 software
e One Seagate BarraCuda 6TB ST6000DMO003 (SATA) hard drive containing rainbow tables and software
e License in USB dongle

&P tether PP PayPal

The attack Is highly effective

https://www.youtube.com/watch?v=TkMz)3fTerM

https://www.youtube.com/watch?v=TkMZJ3fTgrM

Attack 2: offline brute force

hachad nacewnrd +vt

charlie 2a9d119df47t993b662a8ef36f9ea20
greta 23eb06699dal16a3ee5003e5f4636e79f

Pwd breaches
2] Money

THE CYBERCRIME ECONOMY

More than 6 million

Linkedln passwords
stolen

By David Goldman @CNNMoneyTech June 7, 2012: 9:34 AM ET

Aan fesriomal Netwarh | Lna

~ s Largen edn
» O W @ A A ¢ ¥V T 3w o . 3 ¢ [Drey /reew viadncommomeNrt « D _Nome ¢
T Apple Yohue! CosgleMigs TouTube Whigada News (J47)v Popular v

-
m
be
’ B ptod Tt L e

Li ' lm. Emar P en® ' rgx v pem et

Be great at what you do.

Get started — it's free.

Regaty 3ton auns w48 17N 7 M tes

F it Name
Laat Mo
Cwa

Parvwned © - 0

Limbadn comvacts ma to opportantiar and
Tolat n »y s’

. w3 e Now
“ﬂm ‘: e '-.1\.9' \yee
Dok

- y

Mas OWalley T A

. s

Researchers say a stash of what appear to be LinkedIn passwords were protected by a weak
security scheme.

NEW YORK (CNNMoney) -- Russian hackers released a giant list of
passwords this week, and on Wednesday security researchers identified
their likely source: business social networking site LinkedIn.

2012: 6.5 million hashes leaked onto Internet 90% cracked 1n 2 weeks
2016: 177.5 million more hashes leaked 98% cracked in 1 week

2012 Linkedin Breach nhad 117/
Million Emails ana Passwords
Stolen, Not 6.5M

May 18, 2016 Ennn

Related ‘

_ong time users of

_inkedin users may POSTS

very well need to Web Skimming

change their Attack on Blue
» Bear Affects

passwords once more
Qrhnnl Admin

by Paul Ducklin

One month ago today, we wrote about Adobe’s giant
data breach.

As far as anyone knew, including Adobe, it affected
about 3,000,000 customer records, which made it
sound pretty bad right from the start.

But worse was to come, as recent updates to the story
bumped the number of affected customers to a

whopping 38,000,000.

We took Adobe to task for a lack of clarity in its breach notification.
OUR COMPLAINT

One of our complaints was that Adobe said that it had lost encrypted
passwords, when we thought the company ought to have said that it had lost

44641 VI By ahoo . com- | ~g2B6PhWEH3 6 @5 TV BT try qwertyl23]--
' === =xxxxx@jcom.home.ne.jp~ | ~Eh5TLOMEK :

4466- - |- xx@hotma11 com~ | ahw2b2BEngRTWYvQankw=--| -quiero a...|--

4467~ | ==1~ 1aTa?
username 0 Username

L Com= LSlo772tH4 0 Password data (base64) |

4468~

MTcHPEPc31oxG$CatHBw

RW= =

4469~ | == | RARAX

4470~ --l- AL P AN I RANTIOXG0 = B

4471~ | -~| 0 Emall address xGGCatHBm--l-myspacel--
4471~ | == | -xxx@hotmai L.com- | ~kby1918wDrrioxG6CatHBw==~|~regular|--

110edf2294fb8bf4
110edf2294fb8bf4
110edf2294fb8bf4

8fda7elfOb56593f
8fda7elfOb56593f
8fda7elfOb56593f

2fca9b003de39778
2fca9b003de39778
2fca9b003de39778

e5d8efed9088dbeb
e5d8efed9088db0eb
e5d8efed9088dbeb

ecba98cca55eabc2
ecba98cca55eabc2
ecba98cca55eabc2

e2a311ba®9ab4707
©2a311ba®9ab4707
©2a311ba®9ab4707

e2a311bab®9ab4707
e2a311ba®9ab4707
e2a311ba®9ab4707

numbers 123456
=123456
c'est "123456"

numbers

1-8

8digit

the password 1is
password

@ 12345678

password
rhymes with assworc

qwerty
ytrewq tagurpidi
6 long qwert

sixxone
1%6
sixones

How to hamper offline brute force attacks?

hached nacawnrd vt

229d119df47ff993b662a8ef36f9ea20
23eb06699dal6a3ee5003e5f4636e79f

Hardening Password Hashes

* Key problem: cryptographic hashes are deterministic

» hash(‘p4sswOrd’) = hash(‘p4ssword’)
* This enables attackers to build lists of hashes

Hardening Password Hashes

* Key problem: cryptographic hashes are deterministic

» hash(‘p4sswOrd’) = hash(‘p4ssword’)
* This enables attackers to build lists of hashes

e Solution: make each password hash unique
 Add a random salt to each password before hashing
» hash(salt + password) = password hash
» Each user has a unique, random salt
e Salts can be stores in plain text

Fxample Salted Hashes

hashed_password.txt

cbw 2a9d119df471f993b662a8ef36f9ea20

sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c¢
bob e91e6348157868de9dd8b25c81aebfb?

hashed and_salted password.txt

cbw a8 af19c842f0c781ad726de7abad39b033
sandi OX 67710c2c2797441efb8501f063d42fbb
amislove hz 9d03e1f28d39ab373c59¢c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

Attacking Salted Passwords

Attacking Salted Passwords

Attacking Salted Passwords

Attacking Salted Passwords

I hashed

Ra>SWOT password.txt

hashes

cbw a

List of

8
sandi 0),4 possible
hash(‘a8’ + word) password
hashes w/

salt a8

Attacking Salted Passwords

| hashed _

RaSSWOT password.txt

hashes

cbw a

List of

8
sandi OX possible
hashes w/

salt a8

Attacking Salted Passwords

I hashed

Ra>SWOT password.txt

hashes
cbw a8
sandi 0),4
hash(‘0X’ + word)

List of
possible
password

0

hashes w/
salt OX

Breaking Hashed Passwords

 Stored passwords should always be salted

* Forces the attacker to brute-force each password individually

Breaking Hashed Passwords

 Stored passwords should always be salted

* Forces the attacker to brute-force each password individually

* Problem: 1t 1s now possible to compute hashes very quickly
 GPU computing: hundreds of small CPU cores
* nVidia GeForce GTX Titan Z: 5,760 cores

 GPUs can be rented from the cloud very cheaply
» $0.9 per hour (2018 prices)

Fxamples of Hashing Speed

A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours

* Upper and lowercase letters, numbers, symbols
e (26+26+10+32)6 = 690 billion combinations

Fxamples of Hashing Speed

A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours

* Upper and lowercase letters, numbers, symbols
e (26+26+10+32)6 = 690 billion combinations

A modern GPU can do the same thing in 16 minutes

Fxamples of Hashing Speed

A modern x86 server can hash all possible 6 character

long passwords in 3.5 hours

* Upper and lowercase letters, numbers, symbols
e (26+26+10+32)6 = 690 billion combinations

A modern GPU can do the same thing in 16 minutes

» Most users use (slightly permuted) dictionary words, no

symbols

* Predictability makes cracking much faster
e Lowercase + numbers > (26+10)6 = 2B combinations

Hardening Salted Passwords

e Problem: typical hashing algorithms are too fast
* Enables GPUs to brute-force passwords

» Old solution: hash the password multiple times
 Known as key stretching

 Example: crypt used 25 rounds of DES

. Nlew solution: use hash functions that are designed to be
slow

 Examples: bcrypt, PBKDF2, scrypt

* These algorithms include a work factor that increases the time complexity of the
calculation

* scrypt also requires a large amount of memory to compute, further complicating
brute-force attacks

Slow hash movement

How is the process of
creating a community
managed?

What are the requirements
for starting a community,
and what are the benefits?

What does being part A
of @ community mean?

define it?

Slow Food
Community

(an a community
use the Slow Food
logo?

What is the difference
between a community
and a conviviom?

6%

What is a Slow Food com- ® Can a legal entity
munity and what elements N SlOW FOO d become a Slow Food

Does creating
a community involve
a financial
commitment?

Are community
members also
Slow Food members?

Who will inform
the local leaders
of the opening of new
communities in the area
where they operate?

WHAT IS A SLOW FOOD COMMUNITY
AND HOW DOES IT WORK?
DISCOVER IT IN 15 EASY STEPS

Does the creation of
communities mean
that the convivia
will be closed?

With the creation of
communities, does membership
in the association become less

important?

What happens if the
community already exists
before joining Slow Food?

community?

Can a convivium
prevent the creation
of a community?

What is the role of the
convivia in the opening of

NEW communities? FIND UUT MURE UN
WWW.SLOWFOO0D.COM

lterated hash function {x times)

®) Hashed pwd

bcrypt Example

* Python example; install the berypt package

[cbw@localhost ~] python Work factor
>>> bcrypt

>>> password = "my super secret password”

>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))

>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))

>>> pw_from_user = (“Enter your password:”)
>>> |f bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
“It matches! You may enter the system”

“No match. You may not proceed”

Best practices so far:

Dealing With Breaches

Dealing With Breaches

e Suppose you build an extremely secure password storage system
« All passwords are salted and hashed by a high-work factor function

* |t 15 still possible for a dedicated attacker to steal and crack

passwords

e GIven enough time and money, anything is possible
* E.g. The NSA

e Question: Is there a principled way to detect password breaches?

Honeywords

» Key idea: store multiple salted/hashed passwords for each user
* As usual, users create a single password and use It to login
e User is unaware that additional honeywords are stored with their account

Honeywords

» Key idea: store multiple salted/hashed passwords for each user
* As usual, users create a single password and use It to login
e User is unaware that additional honeywords are stored with their account

 Implement a honeyserver that stores the index of the correct password for each user
 Honeyserver is logically and physically separate from the password database
« Silently checks that users are logging in with true passwords, not honeywords

Honeywords

» Key idea: store multiple salted/hashed passwords for each user
* As usual, users create a single password and use It to login
e User is unaware that additional honeywords are stored with their account

 Implement a honeyserver that stores the index of the correct password for each user
 Honeyserver is logically and physically separate from the password database
« Silently checks that users are logging in with true passwords, not honeywords

 What happens after a data breach?
« Attacker dumps the user/password database...
» But the attacker doesn’t know which passwords are honeywords
o Attacker cracks all passwords and uses them to login to accounts
« If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Honeywords example

Database

Honeyserver

e s) L pw e e o

y4DvF7 fl bHDJ8I 52 Puu2s7/
sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk
Alice 9i OF3g5H /s 03d5W ¢V 1sRbJ5

R W DN

Honeywords example

Bob

Database

Honeyserver

e s) L pw e e o

y4DvF7 fl bHDJ8I 52 Puu2s7/
sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk
Alice 9i OF3g5H /s 03d5W ¢V 1sRbJ5

R W DN

Honeywords example
»

Bob

SHA512(“fl” | “p4sswWoOrd”) = bHDJS8I

Database

Honeyserver

3\

- Y=
User [salt1 [H(PW 1) [Salt2 [H(PW2) [Salt3 |[H(PW 3) = User Index |
Bob aB y4DvF7 fi bHDJ8I |52 Puu2s7 Bob 2
sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk sandi 3

f
Alice 9 OF3g5H /s 03d5jW ¢V 1sRbJ5 Alice 1

Honeywords example
»

Bob

SHA512(“fl” | “p4sswWoOrd”) = bHDJS8I

Database

Honeyserver

m |
Bob aB y4DVF7 fi 52 Puu2s7

sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk > sandi 3
Alice 9 OF3g5H /s 03d5jW ¢V 1sRbJ5 Alice 1

Honeywords example
&

2

Bob

SHA512(“fl” | “p4sswWoOrd”) = bHDJS8I

Database

Honeyserver

-
e s) L pw e e o guser lindox_
2

y4DvF7 fl bHDJ8I 52 Puu2s7 Bob
sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk sandi 3
Alice 9 OF3g5H /s 03d5jW ¢V 1sRbJ5 Alice 1

(=)
-

Honeywords example
&

2

Bob

SHA512(“fl” | “p4ssWOrd”) = bHDJ8I

Database

e s) L pw e e o

sandi

Alice

Ox
9j

y4DvF7/
plDS4F
OF3g5H

fl
K2

/s

bHDJ8I
R/p3Y8
03d5jW

52
8w
cV

Puu2s7/
S8x4Gk
1sRbJ5

Cracked Passwords

User PW 1 PW 2 PW 3

Bob 123456 p4ssWOrd Turtles!
lsandi puppies iloveyou blizzard

Alice coff33 3spr3ss0 gwerty

Honeyserver
50
—User IE::!II
Bob 2

sandi

Alice

3
1

Honeywords example
0 E

Bob

SHA512(“fl” | “p4ssword”) > bHDJS8I PW 2
Bob 123456 Turtles!
qsandi puppies iloveyou blizzard
Alice coff33 qwerty

Database

Honeyserver
S0 A

-
B N T T T T gUser index
y4DvF7 fl bHDJ8I 52 Puu2s7 Bob 2
sandi Ox pIDS4F K2 R/p3Y8 8W |S8x4Gk

Alice 9] OF3g5H /s 03d5jW | cV 1sRbJ5

Multiple layers of storage

Password Storage Summary

Never store passwords in plain text
. Always salt and hash passwords before storing them

Use hash functions with a high work factor
. Implement honeywords to detect breaches

* These rules apply to any system that needs to authenticate users
» Operating systems, websites, etc.

Password Recovery/Reset

» Problem: hashed passwords cannot be recovered (hopefully)
“Hi... | forgot my password. Can
Q vou email me a copy? Kthxbye”

o This is why systems typically implement password reset

— Use out-of-band info to authenticate the user
— Overwrite hash(old_pw) with hash(new pw)

o Be careful: its possible to crack password reset

Cracking Password Reset

» Typical implementations use Knowledge Based Authentication (KBA)
 What was your mother’s maiden name?
» What was your prior street address?
 Where did you go to elementary school

Cracking Password Reset

» Typical implementations use Knowledge Based Authentication (KBA)

 What was your mother’s maiden name?
» What was your prior street address?
 Where did you go to elementary school

* Problems?

Cracking Password Reset

» Typical implementations use Knowledge Based Authentication (KBA)
 What was your mother’s maiden name?
» What was your prior street address?
 Where did you go to elementary school

* Problems?
« This information 1s widely available to anyone
* Publicly accessible social network profiles
* Background-check services like Spokeo

Cracking Password Reset

» Typical implementations use Knowledge Based Authentication (KBA)

 What was your mother’s maiden name?
» What was your prior street address?
 Where did you go to elementary school

* Problems?

« This information 1s widely available to anyone
* Publicly accessible social network profiles
* Background-check services like Spokeo

» Experts recommend that services not use KBA
 When asked, users should generate random answers to these questions

Choosing Passwords

Bad Algorithms
Better Heuristics

Password Reuse

Mental Algorithms

 Years of security advice have trained people to generate “secure”
passwords

Mental Algorithms

 Years of security advice have trained people to generate “secure”
passwords

1. Pick a word
2. Capitalize the first or last letter
3. Add a number (and maybe a symbol) to the beginning or end

Mental Algorithms

 Years of security advice have trained people to generate “secure”
passwords

1. Pick a word
2. Capitalize the first or last letter
3. Add a number (and maybe a symbol) to the beginning or end

1. Pick a word

2. Replace some of the letters with symbols (a 2> @,s—> $, etc.)
3. Maybe capitalize the first or last letter

Human Generated Passwords

Password I

Computer3@ 15f
cl4ssrO0Om 15f
7Dogsled* 151
Tiw1989&6 54 Weak Easy Users initials and birthday, obvi

B4nkOf4m3ric4! 83 Medium Easy Includes service name, obvious

Human Generated Passwords

i s !

Computer3@ 60 15f
cl4ssrO0Om 47 151
7Dogsled” 54 15
Tiw1989&6 54 Weak Easy Users initials and birthday, obvi

B4nkOf4m3ric4! 83 Medium Easy Includes service name, obvious

Human Generated Passwords

Computer3@ Weak Easy Dictionary word, obvious transf
cl4ssrO0Om 47 Weak Easy Dictionary word, obvious transf
7Dogsled™ 54 Weak Easy Dictionary word, obvious transf
Tiw1989&6 54 Weak Easy Users initials and birthday, obvi

B4nkOf4m3ric4! 83 Medium Easy Includes service name, obvious

Human Generated Passwords

Computer3@

cl4ssrO0Om 47
7Dogsled* 54
Tjw1989&6 54
B4nkOf4m3ric4! 83

« Modern attackers are sophisticated

Weak

Weak

Weak

Weak

Medium

 No need for brute force cracking!
« Use dictionaries containing common words and passwords from prior leaks
e Apply common “mental” permutations

Easy

Easy

Easy

Easy

Easy

Dictionary word, obvious transf
Dictionary word, obvious transf
Dictionary word, obvious transf
Users initials and birthday, obvi

Includes service name, obvious

Password classes

1 character class and 8 characters minimum

4 character class and 8 characters minimum

Programs

John the ripper

hashcat

pCtg

spasic12 .
COMp8 Password Requirements

ewordie « comp n and basic n: use at least n
characters

50% -+

40% -

Bclass12 .
e kword n: combine at least k words

3 °

.y P using at least n characters

=

O

3 o dclass n: use at least d character
5 .

& 20% - types (upper, lower, digit, symbol)

oo 0a5IC20 with at least n characters

gBclass16

10% -

0% =

10° 10° 10° 10"

Guess Number Plot from Shay et al.

https://www.blaseur.com/papers/tissec_1026.pdf

N e U ra l N etS Fast, Lean, and Accurate: Modeling Password

Guessability Using Neural Networks

Melicher et al, Usenix’2016

context: ba a.: 0, b 1 2: 001 A: 0.0001
: —gp | C:0,d: 0 b: '001 a: 0.0009
w—/ END: 0 | - Post- B: 0.0001
c: .20 . _
Input d4- 80 processing b: 0.0009
a:1,b:0 - ——- C: (.02
c:0.d:0 | =P END: 0 c: 018
END: 0 -
Context Neural cEj) :' c()) .';)5
characters a:0,b: 0 Network END: 0
c:0,d:0 | =i
END: 0 Uppercase
modeling
a:0,b:0
c:0,d:0 | =P b ~ /
END: 0
- Output

Figure 1: An example of using a neural network to predict
the next character of a password fragment. The network 1s
being used to predict a ‘d’ given the context ‘ba’. This network
uses four characters of context. The probabilities of each next
character are the output of the network. Post processing on the
network can infer probabilities of uppercase characters.

3class12: Neural Networks Guess Better

© 75%-

D 5/0

7p)

7))

=

@500/0

wpd

| -

D

-

© 25%

] JIR

Hashcat

10" 10* 107 10'°10"310'610°10%210%
(Guesses

Password feedback

https://cups.cs.cmu.edu/meter/

https://cups.cs.cmu.edu/meter/

Better Heuristics

- Notice thatin 8 = L = log, N, length matters

more than symbol types

« Choose longer passwords (16+ characters)
« Don’t worry about uppercase, digits, or symbols

Better Heuristics

- Notice thatin 8 = L = log, N, length matters

more than symbol types
« Choose longer passwords (16+ characters)
« Don’t worry about uppercase, digits, or symbols

e Use mnemonics
o Choose a sentence or phrase
e Reduce it to the first letter of each word
e Insert random uppercase, digits, and symbols

Better Heuristics

- Notice thatin 8 = L = log, N, length matters

more than symbol types
« Choose longer passwords (16+ characters)
« Don’t worry about uppercase, digits, or symbols

e Use mnemonics

o Choose a sentence or phrase
e Reduce it to the first letter of each word
e Insert random uppercase, digits, and symbols

| double dare you, say “what” one more time

Better Heuristics

- Notice thatin 8 = L = log, N, length matters

more than symbol types
« Choose longer passwords (16+ characters)
« Don’t worry about uppercase, digits, or symbols

e Use mnemonics

o Choose a sentence or phrase
e Reduce it to the first letter of each word
e Insert random uppercase, digits, and symbols

| double dare you, say “what” one more time

12Dy,s”"w”"omt

LU0 nDooopoaaon

UNCOP’MON
BASE WORD

ORDER
(NON -GIBBERSH) UNKNOWN

TF@U b4dor &3

CAPS. GOMP’\ON NOMERF\L
0 SUBSTnTUTONS 0
100
YOU (AN ADD A FEW MORE BTs To RNCR)AT'
COUNT TOR THE FACT THAT THIS OQac

~ 28 BITS OF ENTROPY
HiEuininiuin|n
OouonooOon n

0 mimln
oo -

2%= 3 DAYs AT

1000 GUESSES/sEC

(PLAUSIBLE ATTACK ON A WEAK REMOTE

WEB SERVICE. YES, CRACKING A STOLEN
MWHHWRBWMmmmmi
AVERAGE USER SHOULD WoRRY ABOUT.)

DIFRCOLTY TO GUESS:

WAS T TROMBONE? NO,
TROVBADOR, AND ONE OF
THE Os WRS A ZERQD®?

\
AND THERE WAS
SOME SYMIROL...

\!

DIFFICOLTY TO REMEMBER:
HARD

;LLIW J1 Ljﬂﬁ“:ﬁjﬁff“
Himininle “Tf—fﬂ Cgugan
l
\ J |
FOUR RANDOM

COMMON WORDS

] O]

JUUCO0]

/

'“_Lj

~ 44 BITS OF ENTROPY

LOUaOupauoo

OO aoaano

2" =550 YEARS AT
1000 GUESSES/SEC

DIFAICOLTY 10 GUESS:
HARD

OIFFICOLTY TO REMEMBER:
YOUVE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EARSY FOR COMPUTERS TO GUESS.

Password Reuse

e People have difficulty remembering >4 passwords

« Thus, people tend to reuse passwords across services
« What happens if any one of these services is compromised?

e Service-specific passwords are a beneficial form of
compartmentalization

o Limits the damage when one service is inevitably breaches

e Use a password manager

e Some service providers now check for password reuse
» Forbid users from selecting passwords that have appeared in leaks

LaStpaSS soe| O\ Search your vault n fan@iastpass.com »

SiteS A Q 3= Sort By: Folder (a-2) +

Favorites v

& airbnb alg_a},on.com' _ 0

AlrgnB Amazon sest Buy 7 B B Dropbox

& Drophox

G EVERNOTE faceboolk Vv pOCk@t Cwitter

Evernote Facebook Pocket Twitter

Banking and FHinance v

Bank of America <2

Fidelity »mint

Bank of America Fldelity Mint

@ Have | Been Pwned (Troy Hunt) [AU] = https://haveibeenpwned.com
M2 Y ® 3 T Tushot [Jcookng A @ & [(1 = v 8 2 O) B IE WNtomepage o M B |8 ¥ @ 3 | slack

Home Notify me Domain search Who's been pwned Passwords API About Donate B IP

»--have i been pwned?

Check if you have an account that has been compromised in a data breach

264 4,859,717,682 61,081 59,268,789

pwned websites pwned accounts pastes paste accounts

Two Factor Authentication

Biometrics
SMS
Authentication Codes

Smartcards & Hardware Tokens

Types of Secrets

o Actors provide their secret to log-in to a system

e Three classes of secrets:

1. Something you know
« Example: a password

2. Something you have
« Examples: a smart card or smart phone

3. Something you are
« Examples: fingerprint, voice scan, iris scan

Biometrics

« ancient Greek: bios ="life", metron ="measure”

e Physical features
e Fingerprints
e Face recognition
e Retinal and iris scans
« Hand geometry

e Behavioral characteristics
« Handwriting recognition
e Voice recognition

e Typing cadence
e Gait

Fingerprints

« Ubiquitous on modern smartphones, some laptops

e Secure?
« May be subpoenaed by law enforcement

e Relatively easy to compromise
1. Pick up a latent fingerprint (e.g. off a glass) using tape or glue
2. Photograph and enhance the fingerprint
3. Etch the print into gelatin backed by a conductor
4

Profit ;)

nttps://www.theregister.co.uk/2002/Q o/gummi _beg gdereg Ngerprin NSO

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

Facial Recognition

e Popularized by FacelD on the iPhone X

e Secure?

Facial Recognition

e Popularized by FacelD on the iPhone X

e Secure?
e |t depends

Facial Recognition

e Popularized by FacelD on the iPhone X

e Secure?
e |t depends

e Vulnerable to law enforcement requests

e Using 2D images?
e Not secure
 Trivial to break with a photo of the target’s face

Facial Recognition

e Popularized by FacelD on the iPhone X

e Secure?
e |t depends

e Vulnerable to law enforcement requests

e Using 2D images?
e Not secure
 Trivial to break with a photo of the target’s face

e Using 2D images + 3D depth maps?
e More secure, but not perfect
« Can be broken by crafting a lifelike mask of the target

- Specially processed area

2D images
Silicone nose
3D printed frame

Voice Recognition

e Secure?
e Very much depends on the implementation

Voice Recognition

e Secure?
e Very much depends on the implementation

e Some systems ask you to record a static phrase

« E.g. say “unlock” to unlock

o This is wildly insecure
o Attacker can record and replay your voice

Voice Recognition

e Secure?
e Very much depends on the implementation

e Some systems ask you to record a static phrase

e E.g.say “unlock” to unlock

o This is wildly insecure
o Attacker can record and replay your voice

"Ok Google" Trusted Voice

Trusted voice is less secure than
a pattern, PIN, or password.
Someone with a similar voice or a
recording of your voice could
unlock your device

CANCEL OK

Voice Recognition

e Secure? "Ok Google" Trusted Voice
e Very much depends on the implementation O S Ay U
. a pattern, PIN, or password.
e Some systems ask you to record a static phrase Someone with a similar voice or a
"« " recording of your voice could
e E.g. say unlock” to unlock unlock your device

 This is wildly insecure ol o
o Attacker can record and replay your voice

o Others ask you to train a model of your voice

e Train the system by speaking several sentences
e To authenticate, speak several randomly chosen words

e Not vulnerable to trivial replay attacks, but still vulnerable

e Given enough samples of your voice, an attacker can train a synthetic voice Al that sounds just
like you

Fundamental Issue With Biometrics

e« Biometrics are immutable

e You are the password, and you can’t change
« Unless you plan on undergoing plastic surgery?

e Once compromised, there is no reset
e Passwords and tokens can be changed

« Example: the Office of Personnel Management (OPM) breach
e US gov agency responsible for background checks
« Had fingerprint records of all people with security clearance
« Breached by China in 2015, all records stolen :(

Something You Have

o Two-factor authentication has become more commonplace

e Possible second factors:

 SMS passcodes
« Time-based one time passwords
« Hardware tokens

SMS Two Factor

e Relies on your phone number as the second factor

e Key assumption: only your phone should receive SMS sent
to your number

¥ 504-72

SMS Two Factor

e Relies on your phone number as the second factor

e Key assumption: only your phone should receive SMS sent
to your number

o SMS two factor is deprecated. Why?

¥ 504-72

SMS Two Factor

e Relies on your phone number as the second factor

e Key assumption: only your phone should receive SMS sent =
504-72
to your number Your Apple 1D verification

o SMS two factor is deprecated. Why?

e Social engineering the phone company

1. Call and pretend to be the victim
2. Say “l got a new SIM, please activate it”

3. If successful, phone calls and SMS are now sent to your
SIM in your phone, instead of the victim

e Not hypothetical: successfully used against many
victims

Y. %1035

ACME INC

One Time Passwords

Changes
» Generate ephemeral passcodes that every few ©AUTHY
change over time i tec
e To login, supply normal password and
the current one time password 0333932

e Relies on a shared secret between
vour mobile device and the service
provider

« Shared secret allows both parties to know
the current one time password

Duo Mobile

Lastpass Authenticator

Google Authenticator

Time-based One-time Password Algorithm

TO = <the beginning of time, typically Thursday, 1 January 1970 UTC>
Tl = <length of time the password should be valid>

K = <shared secret key>

d = <the desired number of digits in the password>
TC = floor((unixtime(now) - unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted

SHA1-based signature

Time-based One-time Password Algorithm

TO = <the beginning of time, typically Thursday, 1 January 1970 UTC>
Tl = <length of time the password should be valid>

K = <shared secret key>

d = <the desired number of digits in the password>
TC = floor((unixtime(now) - unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Given K, this algorithm can

Specially formatted be run on your phone and by

the service provider

SHA1-based signature

Secret Sharing for TOTP

Enable Two-Step Sign in

An authenticator app generates the code automatically on your smartphone. Free apps are
available for all smartphone platforms including iOS, Android, Blackberry and Windows. Look for an
app that supports time-based one-time passwords (TOTP) such as Google Authenticator or Duo
Mobile.

To set up your mobile app, add a new service and scan the QR code.

If you can't scan the code, enter this secret key manually: fvxo » - m

USE SMS INSTEAD CANCEL

Hardware Two Factor

« Special hardware designed to hold
cryptographic keys
« Physically resistant to key extraction

attacks
e E.g. scanning tunneling electron
microscopes
e Uses:
« 2nd factor for OS log-on

o 2nd factor for some online services
» Storage of PGP and SSH keys

Universal 2nd Factor (U2F)

e Supported by Chrome, Opera, and Firefox
(must be manually enabled)

o Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

Google

2-Step Verification

Use your device to sign in to your Google Ac

Insert your Security Key

If your Security Key has a button, tap it.

If It doesn't. remove and re-insert It

¥ Remember this computer for 30 days

count.

Universal 2nd Factor (U2F)

e Supported by Chrome, Opera, and Firefox
(must be manually enabled)

o Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

e Pro tip: always buy 2 security keys
« Associate both with your accounts

« Keep one locked in a safe, in case you lose your
primary key ;)

2-St

—_
- & | ™ - - al 4 o~ "~
Se your aevice

Google

ep Verification

to sign in to your

Insert your Security Key

If your Security Key has a button, tap Iit.

Google Acco

If It doesn't. remove and re-insert It

¥ Remember this computer for 30 days

Unt.

Authentication Protocols

Unix, PAM, and crypt
Network Information Service (NIS, aka Yellow Pages)

Needham-Schroeder and Kerberos

Status Check

o At this point, we have discussed:

« How to securely store passwords
o Techniques used by attackers to crack passwords
e Biometrics and 2nd factors

Status Check

o At this point, we have discussed:

« How to securely store passwords
o Techniques used by attackers to crack passwords
e Biometrics and 2nd factors

e Next topic: building authentication systems

o Given a user and password, how does the system authenticate the user?
« How can we perform efficient, secure authentication in a distributed system?

Authentication in Unix/Linux

o Users authenticate with the system by interacting with login

e Prompts for username and password
e Credentials checked against locally stored credentials

e By default, password policies specified in a centralized, modular way

« On Linux, using Pluggable Authentication Modules (PAM)
o Authorizes users, as well as environment, shell, prints MOTD, etc.

Example PAM Configuration

cat /etc/pam.d/system—auth

%PAM-1.0

auth required pam_unix.so try_first_psc :
auth optional pam_permit.so Use SHA512 as the hash function
auth required pam_env.so » Use /etc/shadow for storage

account required pam_unix.so
account optional pam_permit.so
account required pam_time.so

password required pam_unix.so try first pass nullok shab5l2 shadow
password optional pam_permit.so

session required pam_Llimits.so
session required pam_uniX.sSo
session optional pam_permit.so

Unix Passwords

o Traditional method: crypt
e 25 iterations of DES on a zeroed vector

« First eight bytes of password used as key (additional bytes are ignored)
o 12-bitsalt

« Modern version of crypt are more extensible

o Support for additional hash functions like MD5, SHA256, and SHA512
e Key lengthening: defaults to 5000 iterations, up to 108 - 1
o Full password used

e Up to 16 bytes of salt

Password Files

o Password hashes used to be in /etc/passwd
 World readable, contained usernames, password hashes, config information
« Many programs read config info from the file...
o But very few (only one?) need the password hashes

Password Files

o Password hashes used to be in /etc/passwd
 World readable, contained usernames, password hashes, config information
« Many programs read config info from the file...
o But very few (only one?) need the password hashes

o Turns out, world-readable hashes are Bad Idea

e Hashes now located in /etc/shadow
o Also includes account metadata like expiration
e Only visible to root

Password Storage on Linux
/etc/passwd

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/shadow

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7i1SV49nsbAa/5g5g:9479:0:10000::::
amislove:1I13RxU5F1$:8172:0:10000::::

85

Password Storage on Linux
/etc/passwd

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
n Mislove:/home/amislove/:/bin/sh

$<algo>$<salt>$<hash>

Algo: 1 = MD5, 5 = SHA256, 6 = SHA512
/etc/shadow

ername:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7i1SV49nsbAa/5g5g:9479:0:10000::::
amislove:1I13RxU5F1$:8172:0:10000::::

Distributed Authentication

e Early on, people recognized the need for authentication in distributed
environments

« Example: university lab with many workstations
« Example: file server that accepts remote connections

» Synchronizing and managing password files on each machine is not
scalable

o |deally, you want a centralized repository that stores policy and credentials

The Yellow Pages

« Network Information Service (NIS), a.k.a. the Yellow Pages

» Developed by Sun to distribute network configurations
e Central directory for users, hostnames, email aliases, etc.
e Exposed through yp™ family of command line tools

e For instance, depending on /etc/nsswitch.conf, hostname lookups can
be resolved by using
« /etc/hosts
e DNS
e NIS

o Superseded by NIS+, LDAP,

e Crypt based password hashes
NIS Password Hashes Rl st e

« Many networks still rely on insecure NIS

[cbw@workstation ~] ypcat passwd
aftbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune:/bin/bash
philowe:T.yUMej3XSNAM:13503:65104::/home/philowe:/bin/bash
bratus:2omkwsYXWiLDo:6312:65117::/home/bratus:/bin/tcsh
adkap:ZfHdSwSz9WhKU:9034:65118: : /home/adkap:/bin/zsh
amitpoon:13LjTgqgU9g¥YSc:8198:65117::/home/amitpoon:/bin/tcsh

kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash
david87:vA@6wxjJEUgBE:13055:65101:: /home/david87:/bin/bash
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash
Ppkk315:s6CTSAkgagr/nU:14061:65101:: /home/ppkk315:/bin/bash
haynesma:JYWaQUARSqDQE:14287:65105::/home/haynesma:/bin/bash
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh
sushma:G6XNel8GpeQj.:13682:65104::/home/sushma:/bin/bash
guerinl:n0Da2TmO9MDBI:14512:65105::/home/querinl:/bin/bash

Distributed Authentication Revisited

. Auth Server
e Goal: a user would like to use some
resource on the network
o File server, printer, database, mail
server, etc. chw
Q Database

Distributed Authentication Revisited

. Auth Server
e Goal: a user would like to use some

resource on the network

o File server, printer, database, mail
server, etc.

cbw

Distributed Authentication Revisited

Auth Server

e Goal: a user would like to use some
resource on the network

o File server, printer, database, mail
server, etc.

cbw

e Problem: access to resources requires
authentication

e Auth Server contains all credential
iInformation

e You do not want to replicate the
credentials on all services

Attacker Goals and Threat Model

Auth Server

Goal: steal credentials and gain access
to protected resources

Local attacker - may spy on traffic

cbw

Active attacker - may send messages

In some cases, may be able to steal
Information from users

Attacker Goals and Threat Model

Auth Server

Goal: steal credentials and gain access
to protected resources

Local attacker - may spy on traffic
Active attacker - may send messages

In some cases, may be able to steal
Information from users

| wanna access the

Database too ;)

(Bad) Distributed Auth Example

: Auth Server
e |dea: client forwards user/password to

service, service queries Auth Server

cbw

2

(Bad) Distributed Auth Example

: Auth Server
e |dea: client forwards user/password to

service, service queries Auth Server @

cbw

Database

cbw:p4sswOrd

&

(Bad) Distributed Auth Example

Auth Server

e |dea: client forwards user/password to
service, service queries Auth Server

cbw:p4sswOrd

Please verify
cbw:p4sswOrd

(Bad) Distributed Auth Example

Auth Server

e |dea: client forwards user/password to
service, service queries Auth Server

cbw

(Bad) Distributed Auth Example Looks good!

Auth Server

e |dea: client forwards user/password to
service, service queries Auth Server

e Problems:
cbw

(Bad) Distributed Auth Example Looks good!

: Auth Server
e |dea: client forwards user/password to

service, service queries Auth Server
e Problems:

cbw
« Passwords being sent in the clear
o Attacker can observe them! Q
: Database
e Clearly we need encryption

cbw:p4sswOrd

cbw:p4sswOrd

(Bad) Distributed Auth Example Looks good!

: Auth Server
e |dea: client forwards user/password to

service, service queries Auth Server

e Problems: bw
« Passwords being sent in the clear
o Attacker can observe them! Q
: Database
e Clearly we need encryption

o Database learns about passwords
« Additional point of compromise

cbw:p4sswOrd

e |deally, only the user and the Auth
Server should know their password

Needham-Schroeder Protocol

o Let Alice A and Bob B be two parties that trust server S
» Kxcand Kz are shared secrets between [A, S] and [B, S]

e Kxgis a negotiated session key between |A, B]

 N; and N; are random nonces generated by A and B

1) A—-> S:A,B, N,

2) S — A:{Niﬂ KAB’ B, {KAB’ A}KBS}K
AS

3) A— B:{K, 5 A}
4) B—>A:{Nj}K
5) A—>B:{Nj—1}KA

Kps

B

Needham-Schroeder Protocol

o Let Alice A and Bob B be two parties that trust server S
» Kxcand Kz are shared secrets between [A, S] and [B, S]

e Kxgis a negotiated session key between |A, B]

 N; and N; are random nonces generated by A and B

1) A—-> S:A,B, N,
2) S— A:{N;, Kyp, B, {Kyp A} }
BS KAS

3) A= B:{K,j, A}KBS

Challenge nonce forces A to acknowledge they have K,z

Needham-Schroeder Protocol

o Let Alice A and Bob B be two parties that trust server S
» Kxcand Kz are shared secrets between [A, S] and [B, S]

« Kxgis a negotiated session key between |A, B]

 N; and N; are random nonces generated by A and B

1) A —> S: A, B, Ni Kas IS not sent in the clear, authenticates S and A

2) S > A:{N,, K p B, {K,p A}

Kes K,

3) A= B:{K,p, A}KBS

Challenge nonce forces A to acknowledge they have K,z

Needham-Schroeder Protocol

o Let Alice A and Bob B be two parties that trust server S
» Kxcand Kz are shared secrets between [A, S] and [B, S]

« Kxgis a negotiated session key between |A, B]

 N; and N; are random nonces generated by A and B

1) A —> S: A, B, Ni Kas IS not sent in the clear, authenticates S and A

2) S > A:{N,, K p B, {K,p A}

Kes K,

3) A= B:{K,p, A}KBS

Kz< Is not sent in the clear, authenticates B

Challenge nonce forces A to acknowledge they have K,z

Needham-Schroeder Example

1) A— S5:A,B, N,

Auth Server
cbw

cbw

- Q

Needham-Schroeder Example

1) A— S5:A,B, N,

Auth Server

Needham-Schroeder Example

Ny, Kebw-dbs dB, {Kchw-dbs COW g dcpw
1) A_)S:AgB,Nl { bw-db bw-db KdbJKch

2) S — A: {Ni’ KAB’ B, {KAB’ A}KBS}K Auth Serverb
AS 7 COW

Jdb

Database

Needham-Schroeder Example

1) A— S5:A,B, N,
2) S— A:{N, K,p, B, {K,p A}

Auth Server

@ 2
cbw ﬁb
ﬁbw
Database
cbw-db

{chw—db’ CbW}de

KBS}KAS

3) A — B:{K,j, A}KBS

Needham-Schroeder Example

1) A— S5:A,B, N,

2) S— A:{N, K, B, {K,p A}KBS}K
AS

3) A — B:{K,j, A}KBS

Auth Server

Needham-Schroeder Example

1) A— S5:A,B, N,

2) S — A:{Ni’ KAB’ B? {KAB’ A}KBS}K AuthServerﬁb
AS cbw

3) A— B:{K,p A},)
B cbw

4 B— AN} ﬁbWQ

5) A—>B:{Nj—1}K ﬁbw—db
AB

Attacking Needham-Schroeder

Auth Server

Attacking Needham-Schroeder

N, Kepw-dbs AB, {Kepw-dbs COW i Y

« Spoof the client request
« Fail! Client key is needed to decrypt

cbw Auth Server

Jeow Q

bw
e

Database

Attacking Needham-Schroeder

N, Kepw-dbs AB, {Kepw-dbs COW i Y

« Spoof the client request
« Fail! Client key is needed to decrypt

cbw Auth Server

 Spoof the Auth Server response ﬁ
o Fail! Need to know the client key cbw Q

Attacking Needham-Schroeder

« Spoof the client request
« Fail! Client key is needed to decrypt

 Spoof the Auth Server response v Auth Server
» Fail! Need to know the client key ﬁbw Q
» Spoof the client-server interaction
« Fail! Need to know the database key

Attacking Needham-Schroeder

« Spoof the client request
« Fail! Client key is needed to decrypt

Auth Server

e Spoof the Auth Server response
o Fail! Need to know the client key

» Spoof the client-server interaction
« Fail! Need to know the database key

{N,-, Kevil’ db, {Kevil’ CbW}de}chW

Attacking Needham-Schroeder

« Spoof the client request

« Fail! Client key is needed to decrypt
Auth Server

e Spoof the Auth Server response
o Fail! Need to know the client key

» Spoof the client-server interaction
« Fail! Need to know the database key

e Replay the client-server interaction
o Fail! Need to know the session key

{N,-, Kevil’ db, {Kevil’ CbW}de}chW

Attacking Needham-Schroeder

« Spoof the client request
« Fail! Client key is needed to decrypt

e Spoof the Auth Server response v

» Fail! Need to know the client key ﬁbw Q
» Spoof the client-server interaction

« Fail! Need to know the database key

Auth Server

e Replay the client-server interaction
o Fail! Need to know the session key

foin @

{Kewl’ CbW}de

Attacking Needham-Schroeder

« Spoof the client request

« Fail! Client key is needed to decrypt

 Spoof the Auth Server response Auth Server

o Fail! Need to know the client key

ﬁbw
ﬁb

e Replay the client-server interaction Database

o Fail! Need to know the session key .ﬂ
il {84 ﬁbw db

|

» Spoof the client-server interaction
« Fail! Need to know the database key

Attacking Needham-Schroeder

« Spoof the client request
« Fail! Client key is needed to decrypt

e Spoof the Auth Server response v

» Fail! Need to know the client key ﬁbw Q
» Spoof the client-server interaction

« Fail! Need to know the database key

Auth Server

e Replay the client-server interaction
o Fail! Need to know the session key

Replay Attack

Typical, Benign Protocol

1) A— S:A, B, N,

2) § — A:{Ni’ KAB’ B, {KAB’ A}KBS}K
AS

3) A— B:{K,p A}
4 B— A:{N;}
5) A—>B:{Nj—1}KA

KBS

B

Replay Attack

Typical, Benign Protocol Replay Attack
1) A—> S8:A, B, N, M~ B:(Kyp Aly
2 5= 48K TR AL, 1, 2 o,
BS K,q a5
3) A~ B:{Kyp A}y) MmN
4) B - A: {NJ}KAB

5 A— B:{N,; -1}

KAB

Replay Attack

Typical, Benign Protocol

)A—>SABN

AS

3) A > B: {KAB, Al

KBS
4 B — A: {N]}K
AB
50 A — B:{N,; — 1}K
AB

« Attacker must hack A to steal K,z

« So the attacker can also steal K¢

Replay Attack

M= B:{Kup A}

B—>M:{NJ}KA

B

M — B:{N;—1}

AB

Replay Attack

Typical, Benign Protocol

)A—>SABN

AS

3) A > B: {KAB, Al

KBS
4 B — A: {N]}K
AB
50 A — B:{N,; — 1}K
AB

« Attacker must hack A to steal K,z

« So the attacker can also steal K¢

« However, what happens after A changes K,

Replay Attack

M= B:{Kup A}

B—>M:{NJ}KA

B

M — B:{N;—1}

AB

Replay Attack

Typical, Benign Protocol Replay Attack
1) A—> S:A,B,N, M = B:{K,p A},
5 40K f K A],), 2w,
BS K, ”
3 A= B:{Kyp A}y) Mo -,
4 B — A: {NJ}KAB
5) A—> B:{N, - 1}KAB

« Attacker must hack A to steal K,z

« So the attacker can also steal K¢

« However, what happens after A changes K,

« Attacker can still conduct the replay attack! Only is K,z necessary!

Fixed Needham-Schroeder Protocol

o Let Alice A and Bob B be two parties that trust server S
« Kxcand Kic are shared secrets between |A, S] and [B, S}

e Kxgis a negotiated session key between [A, B
 N; and N; are random nonces generated by A and B

e Tis atimestamp chosen by S

1) A— S:A, B, N,
2) 8 = A:{N,, K,p, B, {KAB’ A, T}K J
BS K,

3) A— B:{K,p A, T}KBS

B only accepts requests

4 B — A: {Nj}KAB with fresh timestamps

Kerberos

e Created as part of MIT Project Athena
e Based on Needham-Schroeder

e Provides mutual authentication over untrusted networks
o Tickets as assertions of authenticity, authorization
« Forms basis of Active Directory authentication

e Principals
e Client
e Server

o Key distribution center (KDC)
« Authentication server (AS)
e Ticket granting server (TGS)

Kerberos Example

Auth Server

Ticket Granting

Server
cbw
[

- Q

Kerberos Example

Auth Server

&

Ticket Grantlng

Server
cbw

Database

Lebiw, Kepw-tgsIkepyy s TOT

Kerberos Example

Auth Server
cbw

Ticket Granting

Server
S

Lebiw, Kepw-tgsIkepyy s TOT

Kerberos Example

Auth Server

A

Ticket Granting
Server

Database

50"

TGT, db, {cbw, Thep, e

{wa’ chw-tgs}Kwa’ TGT

Kerberos Example

Auth Server

A

{chw—db}KCbW-th , UK ebw-db ik,

Ticket Granting
Server

cbw-db Database

50"

Lebiw, Kepw-tgsIkepyy s TOT

Kerberos Example

Auth Server
cbw

Kebw- Kebw-
Ticket Granting { cbw db}chw-tgs’ { cbw db}de

Server

Lebiw, Kepw-tgsIkepyy s TOT

Kerberos Example

Auth Server
cbw

Ticket Granting
Server

Lebiw, Kepw-tgsIkepyy s TOT

'
cbw

Kerberos Example

Auth Serve

Ticket Granting
Server

Attacking Kerberos

« Don’t put all your eggs in one basket
 The Kerberos Key Distribution Server (KDS) is a central point of failure
« DoS the KDS and the network ceases to function
« Compromise the KDS leads to network-wide compromise

Attacking Kerberos

« Don’t put all your eggs in one basket
 The Kerberos Key Distribution Server (KDS) is a central point of failure
« DoS the KDS and the network ceases to function
« Compromise the KDS leads to network-wide compromise

e Time synchronization
e Inaccurate clocks lead to protocol failures (due to timestamps)
e Solution?

Attacking Kerberos

« Don’t put all your eggs in one basket
 The Kerberos Key Distribution Server (KDS) is a central point of failure
« DoS the KDS and the network ceases to function
« Compromise the KDS leads to network-wide compromise

e Time synchronization
e Inaccurate clocks lead to protocol failures (due to timestamps)
« Solution?
« Use NTP ;)

Sources

1. Many slides courtesy of Wil Robertson: https://wkr.io
2. Honeywords, Ari Juels and Ron Rivest: http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf

« For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent work

of Blas Ur: http://www.blaseur.com/pubs.htm

https://wkr.io/
http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf
http://www.blaseur.com/pubs.htm

