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L11: Passwords
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Choosing Passwords
Bad Algorithms 
Better Heuristics 
Password Reuse
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Password Reuse

• People have difficulty remembering >4 passwords 
• Thus, people tend to reuse passwords across services 
• What happens if any one of these services is compromised? 

• Service-specific passwords are a beneficial form of 
compartmentalization 
• Limits the damage when one service is inevitably breaches 

• Use a password manager 
• Some service providers now check for password reuse 
• Forbid users from selecting passwords that have appeared in leaks
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Two Factor Authentication
Biometrics 
SMS 
Authentication Codes 
Smartcards & Hardware Tokens



Types of Secrets
• Actors provide their secret to log-in to a system 
• Three classes of secrets: 

1. Something you know 
• Example: a password 

2. Something you have 
• Examples: a smart card or smart phone 

3. Something you are 
• Examples: fingerprint, voice scan, iris scan

7

I in
K



Biometrics

• ancient Greek: bios ="life", metron ="measure“ 
• Physical features 
• Fingerprints 
• Face recognition 
• Retinal and iris scans 
• Hand geometry 

• Behavioral characteristics 
• Handwriting recognition 
• Voice recognition 
• Typing cadence 
• GaitC I



Fingerprints

• Ubiquitous on modern smartphones, some laptops 
• Secure? 
• May be subpoenaed by law enforcement 
• Relatively easy to compromise 

1. Pick up a latent fingerprint (e.g. off a glass) using tape or glue 
2. Photograph and enhance the fingerprint 
3. Etch the print into gelatin backed by a conductor 
4. Profit ;) 

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/ 

t
e loss of finger



Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?
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Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?
• It depends

• Vulnerable to law enforcement requests
• Using 2D images?
• Not secure
• Trivial to break with a photo of the target’s face

• Using 2D images + 3D depth maps?
• More secure, but not perfect
• Can be broken by crafting a lifelike mask of the target







Voice Recognition

• Secure?
• Very much depends on the implementation

65907
noise in your
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Voice Recognition

• Secure?
• Very much depends on the implementation

• Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure
• Attacker can record and replay your voice

• Others ask you to train a model of your voice
• Train the system by speaking several sentences
• To authenticate, speak several randomly chosen words
• Not vulnerable to trivial replay attacks, but still vulnerable
• Given enough samples of your voice, an attacker can train a synthetic voice AI that sounds just 

like you



Fundamental Issue With Biometrics

• Biometrics are immutable 
• You are the password, and you can’t change 
• Unless you plan on undergoing plastic surgery? 

• Once compromised, there is no reset 
• Passwords and tokens can be changed 

• Example: the Office of Personnel Management (OPM) breach 
• US gov agency responsible for background checks 
• Had fingerprint records of all people with security clearance 
• Breached by China in 2015, all records stolen :(I I



Something You Have

• Two-factor authentication has become more commonplace 
• Possible second factors: 
• SMS passcodes 
• Time-based one time passwords 
• Hardware tokens



SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent 

to your number
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SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent 

to your number

• SMS two factor is deprecated. Why?
• Social engineering the phone company

1. Call and pretend to be the victim
2. Say “I got a new SIM, please activate it”
3. If successful, phone calls and SMS are now sent to your 

SIM in your phone, instead of the victim

• Not hypothetical: successfully used against many 
victims 

IIcuing
swapping



https://www.vice.com/en_us/article/vbqax3/hackers-sim-swapping-steal-phone-numbers-instagram-bitcoin

I



One Time Passwords

• Generate ephemeral passcodes that 
change over time 
• To login, supply normal password and 

the current one time password 
• Relies on a shared secret between 

your mobile device and the service 
provider 
• Shared secret allows both parties to know 

the current one time password

Duo Mobile

Lastpass Authenticator

Google Authenticator

Changes 
every few 
minutes

prfsultime

g



Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC> 
TI = <length of time the password should be valid> 
K = <shared secret key> 
d = <the desired number of digits in the password> 
TC = floor((unixtime(now) − unixtime(T0)) / TI), 
TOTP = HMAC(K, TC) % 10d

Specially formatted 
SHA1-based signature  

g.gg g



Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC> 
TI = <length of time the password should be valid> 
K = <shared secret key> 
d = <the desired number of digits in the password> 
TC = floor((unixtime(now) − unixtime(T0)) / TI), 
TOTP = HMAC(K, TC) % 10d

Specially formatted 
SHA1-based signature  

Given K, this algorithm can 
be run on your phone and by 

the service provider

0



Secret Sharing for TOTP Gen

PEI



Hardware Two Factor

• Special hardware designed to hold 
cryptographic keys 
• Physically resistant to key extraction 

attacks 
• E.g. scanning tunneling electron 

microscopes 

• Uses: 
• 2nd factor for OS log-on 
• 2nd factor for some online services 
• Storage of PGP and SSH keys 

suffer

a PUE scheme



Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox 
(must be manually enabled)
• Works with Google, Dropbox, Facebook, 

Github, Gitlab, etc.



Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox 
(must be manually enabled)
• Works with Google, Dropbox, Facebook, 

Github, Gitlab, etc.

• Pro tip: always buy 2 security keys
• Associate both with your accounts
• Keep one locked in a safe, in case you lose your 

primary key ;)C



How does U2F work?

Init

Login

Website 
(Relying  
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}{login, ch}
Sign challenge using sk 

s ← Signsk(ch) { s }

Verifypk(ch)

o.o
D
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Vulnerable to simple attack



• Lure:  A spammed email with a 
call to action from a seemingly 
legitimate source encouraging 
the user to visit a hook website.

• Hook:  A website designed to 
mimic legitimate site and collect 
confidential information.

Simple Phishing

E s



Spear Phishing @ IU
• Experiment by T. Jagatic, N. Johnson, M. Jakobsson, F. Menczer.
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Control Phishing Success Rate:

9-23%
with 95% Confidence Interval



Spear Phishing Success Rate:

68-72%
with 95% Confidence Interval



To Male To Female To Any

Spear Phishing Success Rate by Gender



VOIP Phishing

• Lure:  Get victim to call a bogus 
800... number about their 
account.

• Hook:  Have the human on the 
other end extract the victim’s 
information.



From: FlagStar Bank <usflag60536@flagstar.com>
Date: 11 Sep 2007 10:55:21 -0400
To: <samyers@indiana.edu>
Subject: You have one new private message

Dear FlagStar Bank card holder,

You have one new private message.

Please call free 800-870-8124 to listen to your private 
message.

Copyright ©2007 FlagStar Bank

Source: Steven Myers, IU



From: FlagStar Bank <usflag60536@flagstar.com>
Date: 11 Sep 2007 10:55:21 -0400
To: <samyers@indiana.edu>
Subject: You have one new private message

Dear FlagStar Bank card holder,

You have one new private message.

Please call free 800-870-8124 to listen to your private 
message.

Copyright ©2007 FlagStar Bank

Source: Steven Myers, IU
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U2F can help prevent this attack

Init

Login

Website 
(Relying  
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}
Sign challenge using sk 

{ s }

D
gHash

challenge u r l Hsia
ee

s signs hurt Hsia

VerifyCahiers
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U2F can help prevent this attack

Init

Login

Website 
(Relying  
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}
Sign challenge using sk 

{ s }

{login, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, url, tlsid)

added
by
browser



U2F can help prevent tracking

Init

Website 
(Relying  
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk



U2F can help prevent tracking

Init

Website 
(Relying  
Party)

{appid, register}{appid, register}
Make a signing key
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with 
appid, and create 
A token “h”



U2F can help prevent tracking

Init

Website 
(Relying  
Party)

{appid, register}{appid, register}
Make a signing key
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with 
appid, and create 
A token “h”

Login {login, appid, challenge ch}Lookup sk using h 
Sign challenge using sk 

{ s,h }

{login, h, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, url, tlsid)
Check h



Sending request with appId: https://u2f.bin.coffee
{
  "version": "U2F_V2",
  "challenge": "uQnl3M4Rj3FZgs6WjyLaZAfwRh4"
}

Got response:
{
  "clientData": "eyJjaGFsbGVuZ2UiOiJ1UW5sM000UmozRlpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4iOiJodHRwczovL3UyZi5iaW4uY29mZmVlIiwidHlwIjoibmF2aWdhdG9yLmlkLmZpbmlzaEVucm9sbG1lbnQifQ",
  "errorCode": 0,
  "registrationData": “BQRSuRLPv0p5udQ55vVhucf3N50q6…”,
  "version": "U2F_V2"
}

Key Handle: 0r0Z0p0F0E0-0d0W0c0Q0b0X0i020C0w0-0E0v0h0t0T0T0P0_0-090_0a050P0e030u0b0z0l0K0Q0r0O0f0u030_0P020B0J0M0x0D050J0_0d0P0Q0e0j060T0U0H0z0m0L0m0t0r0Z0A0u0o0h0-0b070s0w0e0V0X0w0j0g
Certificate: 3082021c3082…
Attestation Cert
Subject: Yubico U2F EE Serial 14803321578
Issuer: Yubico U2F Root CA Serial 457200631
Validity (in millis): 1136332800000
Attestation Signature
R: 00b11e3efe5ae5ac7ca0e0d4fe2c5b5cf18a2531c0f4f70b11c30b72b5f946a9a3
S: 0f37ab2d4f93ebcdaed0a51b4b17fb93403db9873f0e9cce36f17b1502734bb2
[PASS] Signature buffer has no unnecessary bytes.: 71 == 71
[PASS] navigator.id.finishEnrollment == navigator.id.finishEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLaZAfwRh4
[PASS] https://u2f.bin.coffee == https://u2f.bin.coffee
[PASS] Verified certificate attestation signature
[PASS] Imported credential public key
Failures: 0 TODOs: 0



Authentication Protocols
Unix, PAM, and crypt 
Network Information Service (NIS, aka Yellow Pages) 
Needham-Schroeder and Kerberos



Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors



Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

• Next topic: building authentication systems
• Given a user and password, how does the system authenticate the user?
• How can we perform efficient, secure authentication in a distributed system?



Authentication in Unix/Linux

• Users authenticate with the system by interacting with login 
• Prompts for username and password 
• Credentials checked against locally stored credentials 

• By default, password policies specified in a centralized, modular way 
• On Linux, using Pluggable Authentication Modules (PAM) 
• Authorizes users, as well as environment, shell, prints MOTD, etc.



Example PAM Configuration
# cat /etc/pam.d/system-auth 
#%PAM-1.0 

auth required pam_unix.so try_first_pass nullok 
auth optional pam_permit.so 
auth required pam_env.so 

account required pam_unix.so 
account optional pam_permit.so 
account required pam_time.so 

password required pam_unix.so try_first_pass nullok sha512 shadow 
password optional pam_permit.so 

session required pam_limits.so 
session required pam_unix.so 
session optional pam_permit.so

• Use SHA512 as the hash function 
• Use /etc/shadow for storage



Unix Passwords

• Traditional method: crypt 
• 25 iterations of DES on a zeroed vector 
• First eight bytes of password used as key (additional bytes are ignored) 
• 12-bit salt 

• Modern version of crypt are more extensible 
• Support for additional hash functions like MD5, SHA256, and SHA512 
• Key lengthening: defaults to 5000 iterations, up to 108 – 1 
• Full password used 
• Up to 16 bytes of salt



Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes



Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

• Turns out, world-readable hashes are Bad Idea

• Hashes now located in /etc/shadow
• Also includes account metadata like expiration
• Only visible to root



Password Storage on Linux

47

username:password:last:may:must:warn:expire:disable:reserved 

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000:::: 
amislove:$1$l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell 

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash 
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd



Password Storage on Linux

47

username:password:last:may:must:warn:expire:disable:reserved 

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000:::: 
amislove:$1$l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell 

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash 
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash> 
Algo: 1 = MD5, 5 = SHA256, 6 = SHA512



Distributed Authentication

• Early on, people recognized the need for authentication in distributed 
environments 
• Example: university lab with many workstations 
• Example: file server that accepts remote connections 

• Synchronizing and managing password files on each machine is not 
scalable 
• Ideally, you want a centralized repository that stores policy and credentials



The Yellow Pages

• Network Information Service (NIS), a.k.a. the Yellow Pages 
• Developed by Sun to distribute network configurations 
• Central directory for users, hostnames, email aliases, etc. 
• Exposed through yp* family of command line tools 

• For instance, depending on /etc/nsswitch.conf, hostname lookups can 
be resolved by using 
• /etc/hosts 
• DNS 
• NIS 

• Superseded by NIS+, LDAP, 



NIS Password Hashes

[cbw@workstation ~] ypcat passwd 
afbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune:/bin/bash 
philowe:T.yUMej3XSNAM:13503:65104::/home/philowe:/bin/bash 
bratus:2omkwsYXWiLDo:6312:65117::/home/bratus:/bin/tcsh 
adkap:ZfHdSwSz9WhKU:9034:65118::/home/adkap:/bin/zsh 
amitpoon:i3LjTqgU9gYSc:8198:65117::/home/amitpoon:/bin/tcsh 
kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash 
david87:vA06wxjJEUgBE:13055:65101::/home/david87:/bin/bash 
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash 
ppkk315:s6CTSAkqqr/nU:14061:65101::/home/ppkk315:/bin/bash 
haynesma:JYWaQUARSqDQE:14287:65105::/home/haynesma:/bin/bash 
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh 
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh 
sushma:G6XNe18GpeQj.:13682:65104::/home/sushma:/bin/bash 
guerin1:n0Da2TmO9MDBI:14512:65105::/home/guerin1:/bin/bash

• Crypt based password hashes 
• Can easily be cracked 
• Many networks still rely on insecure NIS



Distributed Authentication Revisited

• Goal: a user would like to use some 
resource on the network
• File server, printer, database, mail 

server, etc. cbw

Database
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Distributed Authentication Revisited

• Goal: a user would like to use some 
resource on the network
• File server, printer, database, mail 

server, etc.

• Problem: access to resources requires 
authentication
• Auth Server contains all credential 

information
• You do not want to replicate the 

credentials on all services

cbw

Database

Auth Server



Attacker Goals and Threat Model

• Goal: steal credentials and gain access 
to protected resources 

• Local attacker – may spy on traffic 

• Active attacker – may send messages 

• In some cases, may be able to steal 
information from users

cbw

Database

Auth Server



Attacker Goals and Threat Model

• Goal: steal credentials and gain access 
to protected resources 

• Local attacker – may spy on traffic 

• Active attacker – may send messages 

• In some cases, may be able to steal 
information from users

cbw

Database

Auth Server

I wanna access the 
Database too ;)



(Bad) Distributed Auth Example

• Idea: client forwards user/password to 
service, service queries Auth Server
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(Bad) Distributed Auth Example

• Idea: client forwards user/password to 
service, service queries Auth Server

cbw

Database

Auth Server

cbw:p4ssw0rd

Please verify 
cbw:p4ssw0rd
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(Bad) Distributed Auth Example

• Idea: client forwards user/password to 
service, service queries Auth Server

• Problems:
• Passwords being sent in the clear
• Attacker can observe them!
• Clearly we need encryption

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

cbw:p4ssw0rd



(Bad) Distributed Auth Example

• Idea: client forwards user/password to 
service, service queries Auth Server

• Problems:
• Passwords being sent in the clear
• Attacker can observe them!
• Clearly we need encryption
• Database learns about passwords
• Additional point of compromise
• Ideally, only the user and the Auth 

Server should know their password

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!



Needham-Schroeder Protocol

1)  

2)  

3)  

4)  

5)

! → ":!, #, $%

" → !:{$%,  &!#,  #,  {&!#,  !}&#"
}

&!"
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! → #:{$' − 1}
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• Let Alice A and Bob B be two parties that trust server S 

• KAS and KBS are shared secrets between [A, S] and [B, S] 

• KAB is a negotiated session key between [A, B] 

• Ni and Nj are random nonces generated by A and B
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Needham-Schroeder Protocol

1)  

2)  

3)  

4)  

5)

! → ":!, #, $%

" → !:{$%,  &!#,  #,  {&!#,  !}&#"
}

&!"

! → #:{&!#,  !}&#"

# → !:{$'}&!#

! → #:{$' − 1}
&!#

• Let Alice A and Bob B be two parties that trust server S 

• KAS and KBS are shared secrets between [A, S] and [B, S] 

• KAB is a negotiated session key between [A, B] 

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

KBS is not sent in the clear, authenticates B
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Needham-Schroeder Example

1) ! → ":!, #, $%
2) " → !:{$%,  &!#,  #,  {&!#,  !}&#"

}
&!"

cbw

Database

Auth Server

{ , Kcbw-db, db, {Kcbw-db, cbw}Kdb}Kcbw$%

cbw

cbw

db

db
cbw-db



Needham-Schroeder Example

1) ! → ":!, #, $%
2) " → !:{$%,  &!#,  #,  {&!#,  !}&#"

}
&!"

3) ! → #:{&!#,  !}&#" cbw

Database

Auth Server
cbw

cbw

db

db
cbw-db

cbw-db
{Kcbw-db, cbw}Kdb



Needham-Schroeder Example

1) ! → ":!, #, $%
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}
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3) ! → #:{&!#,  !}&#"

4) # → !:{$'}&!#

cbw

Database

Auth Server

{ }Kcbw-db$'

cbw

cbw

db

db
cbw-db
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Needham-Schroeder Example

1) ! → ":!, #, $%
2) " → !:{$%,  &!#,  #,  {&!#,  !}&#"

}
&!"

3) ! → #:{&!#,  !}&#"

4) # → !:{$'}&!#

5) ! → #:{$' − 1}
&!#

cbw

Database

Auth Server
cbw

cbw

db

db
cbw-db

cbw-db
{ }Kcbw-db$' − 1



Attacking Needham-Schroeder

cbw

Database

Auth Server

cbwcbw

db

db

evil cbw-db



Attacking Needham-Schroeder

• Spoof the client request 
• Fail! Client key is needed to decrypt

cbw

Database

Auth Server

cbw, db, $%
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Replay Attack

1)  

2)  

3)  

4)  

5)

! → ":!, #, $%

" → !:{$%,  &!#,  #,  {&!#,  !}&#"
}
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! → #:{&!#,  !}&#"
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1)  
2)  

3)

( → #:{&!#,  !}&#"

# → (:{$'}&!#

( → #:{$' − 1}
&!#

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB

• So the attacker can also steal KAS

• However, what happens after A changes KAS

• Attacker can still conduct the replay attack! Only is KAB necessary! 



Fixed Needham-Schroeder Protocol

1)  

2)  

3)  

4)  

5)

! → ":!, #, $%

" → !:{$%,  &!#,  #,  {&!#,  !,  )}&#"
}

&!"

! → #:{&!#,  !,  )}&#"

# → !:{$'}&!#

! → #:{$' − 1}
&!#

• Let Alice A and Bob B be two parties that trust server S 

• KAS and KBS are shared secrets between [A, S] and [B, S] 

• KAB is a negotiated session key between [A, B] 

• Ni and Nj are random nonces generated by A and B 

• T is a timestamp chosen by S

B only accepts requests 
with fresh timestamps



Kerberos

• Created as part of MIT Project Athena 
•  Based on Needham-Schroeder 
• Provides mutual authentication over untrusted networks 
•  Tickets as assertions of authenticity, authorization 
•  Forms basis of Active Directory authentication 
• Principals 
•  Client 
•  Server 
•  Key distribution center (KDC) 
• Authentication server (AS) 
• Ticket granting server (TGS)
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Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

•  Time synchronization
• Inaccurate clocks lead to protocol failures (due to timestamps)
• Solution?
• Use NTP ;)



Sources
1. Many slides courtesy of Wil Robertson: https://wkr.io 

2. Honeywords, Ari Juels and Ron Rivest: http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf 

• For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent work 
of Blas Ur: http://www.blaseur.com/pubs.htm


