
2550 Intro to
cybersecurity

abhi shelat

L11: Passwords

Thanks Christo for slides!

Choosing Passwords
Bad Algorithms
Better Heuristics
Password Reuse

character classes 3 12

Password Reuse

• People have difficulty remembering >4 passwords
• Thus, people tend to reuse passwords across services
• What happens if any one of these services is compromised?

• Service-specific passwords are a beneficial form of
compartmentalization
• Limits the damage when one service is inevitably breaches

• Use a password manager
• Some service providers now check for password reuse
• Forbid users from selecting passwords that have appeared in leaks

I
2

Lockwise

O

Two Factor Authentication
Biometrics
SMS
Authentication Codes
Smartcards & Hardware Tokens

Types of Secrets
• Actors provide their secret to log-in to a system
• Three classes of secrets:

1. Something you know
• Example: a password

2. Something you have
• Examples: a smart card or smart phone

3. Something you are
• Examples: fingerprint, voice scan, iris scan

7

I in
K

Biometrics

• ancient Greek: bios ="life", metron ="measure“
• Physical features
• Fingerprints
• Face recognition
• Retinal and iris scans
• Hand geometry

• Behavioral characteristics
• Handwriting recognition
• Voice recognition
• Typing cadence
• GaitC I

Fingerprints

• Ubiquitous on modern smartphones, some laptops
• Secure?
• May be subpoenaed by law enforcement
• Relatively easy to compromise

1. Pick up a latent fingerprint (e.g. off a glass) using tape or glue
2. Photograph and enhance the fingerprint
3. Etch the print into gelatin backed by a conductor
4. Profit ;)

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

t
e loss of finger

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?
• It depends

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?
• It depends

• Vulnerable to law enforcement requests
• Using 2D images?
• Not secure
• Trivial to break with a photo of the target’s face

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?
• It depends

• Vulnerable to law enforcement requests
• Using 2D images?
• Not secure
• Trivial to break with a photo of the target’s face

• Using 2D images + 3D depth maps?
• More secure, but not perfect
• Can be broken by crafting a lifelike mask of the target

Voice Recognition

• Secure?
• Very much depends on the implementation

65907
noise in your
cellphone call

Voice Recognition

• Secure?
• Very much depends on the implementation

• Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure
• Attacker can record and replay your voice

Voice Recognition

• Secure?
• Very much depends on the implementation

• Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure
• Attacker can record and replay your voice

Voice Recognition

• Secure?
• Very much depends on the implementation

• Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure
• Attacker can record and replay your voice

• Others ask you to train a model of your voice
• Train the system by speaking several sentences
• To authenticate, speak several randomly chosen words
• Not vulnerable to trivial replay attacks, but still vulnerable
• Given enough samples of your voice, an attacker can train a synthetic voice AI that sounds just

like you

Fundamental Issue With Biometrics

• Biometrics are immutable
• You are the password, and you can’t change
• Unless you plan on undergoing plastic surgery?

• Once compromised, there is no reset
• Passwords and tokens can be changed

• Example: the Office of Personnel Management (OPM) breach
• US gov agency responsible for background checks
• Had fingerprint records of all people with security clearance
• Breached by China in 2015, all records stolen :(I I

Something You Have

• Two-factor authentication has become more commonplace
• Possible second factors:
• SMS passcodes
• Time-based one time passwords
• Hardware tokens

SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent

to your number

SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent

to your number

• SMS two factor is deprecated. Why? 7
this
assumption
is unsound
broke in

practice

SMS Two Factor

• Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS sent

to your number

• SMS two factor is deprecated. Why?
• Social engineering the phone company

1. Call and pretend to be the victim
2. Say “I got a new SIM, please activate it”
3. If successful, phone calls and SMS are now sent to your

SIM in your phone, instead of the victim

• Not hypothetical: successfully used against many
victims

IIcuing
swapping

https://www.vice.com/en_us/article/vbqax3/hackers-sim-swapping-steal-phone-numbers-instagram-bitcoin

I

One Time Passwords

• Generate ephemeral passcodes that
change over time
• To login, supply normal password and

the current one time password
• Relies on a shared secret between

your mobile device and the service
provider
• Shared secret allows both parties to know

the current one time password

Duo Mobile

Lastpass Authenticator

Google Authenticator

Changes
every few
minutes

prfsultime

g

Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC>
TI = <length of time the password should be valid>
K = <shared secret key>
d = <the desired number of digits in the password>
TC = floor((unixtime(now) − unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted
SHA1-based signature

g.gg g

Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC>
TI = <length of time the password should be valid>
K = <shared secret key>
d = <the desired number of digits in the password>
TC = floor((unixtime(now) − unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted
SHA1-based signature

Given K, this algorithm can
be run on your phone and by

the service provider

0

Secret Sharing for TOTP Gen

PEI

Hardware Two Factor

• Special hardware designed to hold
cryptographic keys
• Physically resistant to key extraction

attacks
• E.g. scanning tunneling electron

microscopes

• Uses:
• 2nd factor for OS log-on
• 2nd factor for some online services
• Storage of PGP and SSH keys

suffer

a PUE scheme

Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox
(must be manually enabled)
• Works with Google, Dropbox, Facebook,

Github, Gitlab, etc.

Universal 2nd Factor (U2F)

• Supported by Chrome, Opera, and Firefox
(must be manually enabled)
• Works with Google, Dropbox, Facebook,

Github, Gitlab, etc.

• Pro tip: always buy 2 security keys
• Associate both with your accounts
• Keep one locked in a safe, in case you lose your

primary key ;)C

How does U2F work?

Init

Login

Website
(Relying
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}{login, ch}
Sign challenge using sk

s ← Signsk(ch) { s }

Verifypk(ch)

o.o
D

I

Vulnerable to simple attack

• Lure: A spammed email with a
call to action from a seemingly
legitimate source encouraging
the user to visit a hook website.

• Hook: A website designed to
mimic legitimate site and collect
confidential information.

Simple Phishing

E s

Spear Phishing @ IU
• Experiment by T. Jagatic, N. Johnson, M. Jakobsson, F. Menczer.

Q

Control Phishing Success Rate:

9-23%
with 95% Confidence Interval

Spear Phishing Success Rate:

68-72%
with 95% Confidence Interval

To Male To Female To Any

Spear Phishing Success Rate by Gender

VOIP Phishing

• Lure: Get victim to call a bogus
800... number about their
account.

• Hook: Have the human on the
other end extract the victim’s
information.

From: FlagStar Bank <usflag60536@flagstar.com>
Date: 11 Sep 2007 10:55:21 -0400
To: <samyers@indiana.edu>
Subject: You have one new private message

Dear FlagStar Bank card holder,

You have one new private message.

Please call free 800-870-8124 to listen to your private
message.

Copyright ©2007 FlagStar Bank

Source: Steven Myers, IU

From: FlagStar Bank <usflag60536@flagstar.com>
Date: 11 Sep 2007 10:55:21 -0400
To: <samyers@indiana.edu>
Subject: You have one new private message

Dear FlagStar Bank card holder,

You have one new private message.

Please call free 800-870-8124 to listen to your private
message.

Copyright ©2007 FlagStar Bank

Source: Steven Myers, IU

It

U2F can help prevent this attack

Init

Login

Website
(Relying
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}
Sign challenge using sk

{ s }

D
gHash

challenge u r l Hsia
ee

s signs hurt Hsia

VerifyCahiers
Hsia

U2F can help prevent this attack

Init

Login

Website
(Relying
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

{login, challenge ch}
Sign challenge using sk

{ s }

{login, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, url, tlsid)

added
by
browser

U2F can help prevent tracking

Init

Website
(Relying
Party)

{register}{register}
Make a signing key
(sk,pk)

{ pk, sign_sk(“username”) }

User, pk

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

U2F can help prevent tracking

Init

Website
(Relying
Party)

{appid, register}{appid, register}
Make a signing key
(sk,pk)

{ h, pk, sign_sk(“username”) }

User, h, pk

And link it with
appid, and create
A token “h”

Login {login, appid, challenge ch}Lookup sk using h
Sign challenge using sk

{ s,h }

{login, h, ch, origin, tls_id}
s ← Signsk(ch, url, tlsid)

Verifypk(ch, url, tlsid)
Check h

Sending request with appId: https://u2f.bin.coffee
{
 "version": "U2F_V2",
 "challenge": "uQnl3M4Rj3FZgs6WjyLaZAfwRh4"
}

Got response:
{
 "clientData": "eyJjaGFsbGVuZ2UiOiJ1UW5sM000UmozRlpnczZXanlMYVpBZndSaDQiLCJvcmlnaW4iOiJodHRwczovL3UyZi5iaW4uY29mZmVlIiwidHlwIjoibmF2aWdhdG9yLmlkLmZpbmlzaEVucm9sbG1lbnQifQ",
 "errorCode": 0,
 "registrationData": “BQRSuRLPv0p5udQ55vVhucf3N50q6…”,
 "version": "U2F_V2"
}

Key Handle: 0r0Z0p0F0E0-0d0W0c0Q0b0X0i020C0w0-0E0v0h0t0T0T0P0_0-090_0a050P0e030u0b0z0l0K0Q0r0O0f0u030_0P020B0J0M0x0D050J0_0d0P0Q0e0j060T0U0H0z0m0L0m0t0r0Z0A0u0o0h0-0b070s0w0e0V0X0w0j0g
Certificate: 3082021c3082…
Attestation Cert
Subject: Yubico U2F EE Serial 14803321578
Issuer: Yubico U2F Root CA Serial 457200631
Validity (in millis): 1136332800000
Attestation Signature
R: 00b11e3efe5ae5ac7ca0e0d4fe2c5b5cf18a2531c0f4f70b11c30b72b5f946a9a3
S: 0f37ab2d4f93ebcdaed0a51b4b17fb93403db9873f0e9cce36f17b1502734bb2
[PASS] Signature buffer has no unnecessary bytes.: 71 == 71
[PASS] navigator.id.finishEnrollment == navigator.id.finishEnrollment
[PASS] uQnl3M4Rj3FZgs6WjyLaZAfwRh4 == uQnl3M4Rj3FZgs6WjyLaZAfwRh4
[PASS] https://u2f.bin.coffee == https://u2f.bin.coffee
[PASS] Verified certificate attestation signature
[PASS] Imported credential public key
Failures: 0 TODOs: 0

Authentication Protocols
Unix, PAM, and crypt
Network Information Service (NIS, aka Yellow Pages)
Needham-Schroeder and Kerberos

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

• Next topic: building authentication systems
• Given a user and password, how does the system authenticate the user?
• How can we perform efficient, secure authentication in a distributed system?

Authentication in Unix/Linux

• Users authenticate with the system by interacting with login
• Prompts for username and password
• Credentials checked against locally stored credentials

• By default, password policies specified in a centralized, modular way
• On Linux, using Pluggable Authentication Modules (PAM)
• Authorizes users, as well as environment, shell, prints MOTD, etc.

Example PAM Configuration
cat /etc/pam.d/system-auth
#%PAM-1.0

auth required pam_unix.so try_first_pass nullok
auth optional pam_permit.so
auth required pam_env.so

account required pam_unix.so
account optional pam_permit.so
account required pam_time.so

password required pam_unix.so try_first_pass nullok sha512 shadow
password optional pam_permit.so

session required pam_limits.so
session required pam_unix.so
session optional pam_permit.so

• Use SHA512 as the hash function
• Use /etc/shadow for storage

Unix Passwords

• Traditional method: crypt
• 25 iterations of DES on a zeroed vector
• First eight bytes of password used as key (additional bytes are ignored)
• 12-bit salt

• Modern version of crypt are more extensible
• Support for additional hash functions like MD5, SHA256, and SHA512
• Key lengthening: defaults to 5000 iterations, up to 108 – 1
• Full password used
• Up to 16 bytes of salt

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

• Turns out, world-readable hashes are Bad Idea

• Hashes now located in /etc/shadow
• Also includes account metadata like expiration
• Only visible to root

Password Storage on Linux

47

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

Password Storage on Linux

47

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash>
Algo: 1 = MD5, 5 = SHA256, 6 = SHA512

Distributed Authentication

• Early on, people recognized the need for authentication in distributed
environments
• Example: university lab with many workstations
• Example: file server that accepts remote connections

• Synchronizing and managing password files on each machine is not
scalable
• Ideally, you want a centralized repository that stores policy and credentials

The Yellow Pages

• Network Information Service (NIS), a.k.a. the Yellow Pages
• Developed by Sun to distribute network configurations
• Central directory for users, hostnames, email aliases, etc.
• Exposed through yp* family of command line tools

• For instance, depending on /etc/nsswitch.conf, hostname lookups can
be resolved by using
• /etc/hosts
• DNS
• NIS

• Superseded by NIS+, LDAP,

NIS Password Hashes

[cbw@workstation ~] ypcat passwd
afbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune:/bin/bash
philowe:T.yUMej3XSNAM:13503:65104::/home/philowe:/bin/bash
bratus:2omkwsYXWiLDo:6312:65117::/home/bratus:/bin/tcsh
adkap:ZfHdSwSz9WhKU:9034:65118::/home/adkap:/bin/zsh
amitpoon:i3LjTqgU9gYSc:8198:65117::/home/amitpoon:/bin/tcsh
kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash
david87:vA06wxjJEUgBE:13055:65101::/home/david87:/bin/bash
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash
ppkk315:s6CTSAkqqr/nU:14061:65101::/home/ppkk315:/bin/bash
haynesma:JYWaQUARSqDQE:14287:65105::/home/haynesma:/bin/bash
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh
sushma:G6XNe18GpeQj.:13682:65104::/home/sushma:/bin/bash
guerin1:n0Da2TmO9MDBI:14512:65105::/home/guerin1:/bin/bash

• Crypt based password hashes
• Can easily be cracked
• Many networks still rely on insecure NIS

Distributed Authentication Revisited

• Goal: a user would like to use some
resource on the network
• File server, printer, database, mail

server, etc. cbw

Database

Auth Server

Distributed Authentication Revisited

• Goal: a user would like to use some
resource on the network
• File server, printer, database, mail

server, etc. cbw

Database

Auth Server

Distributed Authentication Revisited

• Goal: a user would like to use some
resource on the network
• File server, printer, database, mail

server, etc.

• Problem: access to resources requires
authentication
• Auth Server contains all credential

information
• You do not want to replicate the

credentials on all services

cbw

Database

Auth Server

Attacker Goals and Threat Model

• Goal: steal credentials and gain access
to protected resources

• Local attacker – may spy on traffic

• Active attacker – may send messages

• In some cases, may be able to steal
information from users

cbw

Database

Auth Server

Attacker Goals and Threat Model

• Goal: steal credentials and gain access
to protected resources

• Local attacker – may spy on traffic

• Active attacker – may send messages

• In some cases, may be able to steal
information from users

cbw

Database

Auth Server

I wanna access the
Database too ;)

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

cbw:p4ssw0rd

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

cbw:p4ssw0rd

Please verify
cbw:p4ssw0rd

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

• Problems: cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

• Problems:
• Passwords being sent in the clear
• Attacker can observe them!
• Clearly we need encryption

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

cbw:p4ssw0rd

(Bad) Distributed Auth Example

• Idea: client forwards user/password to
service, service queries Auth Server

• Problems:
• Passwords being sent in the clear
• Attacker can observe them!
• Clearly we need encryption
• Database learns about passwords
• Additional point of compromise
• Ideally, only the user and the Auth

Server should know their password

cbw

Database

Auth Server

cbw:p4ssw0rd

Looks good!

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

Needham-Schroeder Protocol

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

KBS is not sent in the clear, authenticates B

Needham-Schroeder Example

1) ! → ":!, #, $%

cbw

Database

Auth Server
cbw

cbw

db

db

Needham-Schroeder Example

1) ! → ":!, #, $%

cbw

Database

Auth Server

cbw, db, $%

cbw

cbw

db

db

Needham-Schroeder Example

1) ! → ":!, #, $%
2) " → !:{$%, &!#, #, {&!#, !}&#"

}
&!"

cbw

Database

Auth Server

{ , Kcbw-db, db, {Kcbw-db, cbw}Kdb}Kcbw$%

cbw

cbw

db

db
cbw-db

Needham-Schroeder Example

1) ! → ":!, #, $%
2) " → !:{$%, &!#, #, {&!#, !}&#"

}
&!"

3) ! → #:{&!#, !}&#" cbw

Database

Auth Server
cbw

cbw

db

db
cbw-db

cbw-db
{Kcbw-db, cbw}Kdb

Needham-Schroeder Example

1) ! → ":!, #, $%
2) " → !:{$%, &!#, #, {&!#, !}&#"

}
&!"

3) ! → #:{&!#, !}&#"

4) # → !:{$'}&!#

cbw

Database

Auth Server

{ }Kcbw-db$'

cbw

cbw

db

db
cbw-db

cbw-db

Needham-Schroeder Example

1) ! → ":!, #, $%
2) " → !:{$%, &!#, #, {&!#, !}&#"

}
&!"

3) ! → #:{&!#, !}&#"

4) # → !:{$'}&!#

5) ! → #:{$' − 1}
&!#

cbw

Database

Auth Server
cbw

cbw

db

db
cbw-db

cbw-db
{ }Kcbw-db$' − 1

Attacking Needham-Schroeder

cbw

Database

Auth Server

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

cbw

Database

Auth Server

cbw, db, $%

{ , Kcbw-db, db, {Kcbw-db, cbw}Kdb}Kcbw$%

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

cbw

Database

Auth Server

cbw, db, $%

{ , Kcbw-db, db, {Kcbw-db, cbw}Kdb}Kcbw$%

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

cbw

Database

Auth Server

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

cbw

Database

Auth Server

cbw, db, $%

{ , Kevil, db, {Kevil, cbw}Kdb}Kcbw$%

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

cbw, db, $%

{ , Kevil, db, {Kevil, cbw}Kdb}Kcbw$%

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

{Kevil, cbw}Kdb

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

cbwcbw

db

db

evil cbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

{ }Kcbw-db$'{Kcbw-db, cbw}Kdb

cbwcbw

db

db

evil cbw-db

Replay Attack

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

Typical, Benign Protocol

Replay Attack

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

1)
2)

3)

(→ #:{&!#, !}&#"

→ (:{$'}&!#

(→ #:{$' − 1}
&!#

Typical, Benign Protocol Replay Attack

Replay Attack

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

1)
2)

3)

(→ #:{&!#, !}&#"

→ (:{$'}&!#

(→ #:{$' − 1}
&!#

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB

• So the attacker can also steal KAS

Replay Attack

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

1)
2)

3)

(→ #:{&!#, !}&#"

→ (:{$'}&!#

(→ #:{$' − 1}
&!#

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB

• So the attacker can also steal KAS

• However, what happens after A changes KAS

Replay Attack

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !}&#"
}

&!"

! → #:{&!#, !}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

1)
2)

3)

(→ #:{&!#, !}&#"

→ (:{$'}&!#

(→ #:{$' − 1}
&!#

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB

• So the attacker can also steal KAS

• However, what happens after A changes KAS

• Attacker can still conduct the replay attack! Only is KAB necessary!

Fixed Needham-Schroeder Protocol

1)

2)

3)

4)

5)

! → ":!, #, $%

" → !:{$%, &!#, #, {&!#, !,)}&#"
}

&!"

! → #:{&!#, !,)}&#"

→ !:{$'}&!#

! → #:{$' − 1}
&!#

• Let Alice A and Bob B be two parties that trust server S

• KAS and KBS are shared secrets between [A, S] and [B, S]

• KAB is a negotiated session key between [A, B]

• Ni and Nj are random nonces generated by A and B

• T is a timestamp chosen by S

B only accepts requests
with fresh timestamps

Kerberos

• Created as part of MIT Project Athena
• Based on Needham-Schroeder
• Provides mutual authentication over untrusted networks
• Tickets as assertions of authenticity, authorization
• Forms basis of Active Directory authentication
• Principals
• Client
• Server
• Key distribution center (KDC)
• Authentication server (AS)
• Ticket granting server (TGS)

Kerberos Example

cbw

Database

Auth Server
cbw

cbw

tgt

db

Ticket Granting
Server

tgt

db

Kerberos Example

cbw

Database

Auth Server

cbw

cbw

cbw

tgt

db

Ticket Granting
Server

tgt

db

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT*+,

cbw

cbw

tgt

db

cbw-tgs

Ticket Granting
Server

tgt

db

TGT

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT*+,

cbw

cbw

tgt

db

cbw-tgs

TGT, db, {cbw, T}Kcbw-tgs

Ticket Granting
Server

tgt

db

TGT

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT*+,

cbw

cbw

tgt

db

cbw-tgs

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Kerberos Example

cbw

Database

Auth Server

{ , Kcbw-tgs}Kcbw , TGT*+,

cbw

cbw

tgt

db

cbw-tgs

cbw-db

{Kcbw-db}Kdb, {cbw, T}Kcbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Kerberos Example

cbw

Database

Auth Server

{T - 1}Kcbw-db

{ , Kcbw-tgs}Kcbw , TGT*+,

cbw

cbw

tgt

db

cbw-tgs

cbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Kerberos Example

cbw

Database

Auth Server

{T - 1}Kcbw-db

{ , Kcbw-tgs}Kcbw , TGT*+,

cbw

cbw

tgt

db

cbw-tgs

cbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs , {Kcbw-db}Kdb

cbw-db

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

• Time synchronization
• Inaccurate clocks lead to protocol failures (due to timestamps)
• Solution?

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

• Time synchronization
• Inaccurate clocks lead to protocol failures (due to timestamps)
• Solution?
• Use NTP ;)

Sources
1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Honeywords, Ari Juels and Ron Rivest: http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf

• For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent work
of Blas Ur: http://www.blaseur.com/pubs.htm

